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ABSTRACT

Current datasets for automatic drum transcription (ADT) are small
and limited due to the tedious task of annotating onset events.
While some of these datasets contain large vocabularies of percus-
sive instrument classes (e.g. ~20 classes), many of these classes
occur very infrequently in the data. This paucity of data makes
it difficult to train models that support such large vocabularies.
Therefore, data-driven drum transcription models often focus on
a small number of percussive instrument classes (e.g. 3 classes).
In this paper, we propose to support large-vocabulary drum tran-
scription by generating a large synthetic dataset (210,000 eight
second examples) of audio examples for which we have ground-
truth transcriptions. Using this synthetic dataset along with exist-
ing drum transcription datasets, we train convolutional-recurrent
neural networks (CRNNs) in a multi-task framework to support
large-vocabulary ADT. We find that training on both the synthetic
and real music drum transcription datasets together improves per-
formance on not only large-vocabulary ADT, but also beat / down-
beat detection small-vocabulary ADT.

1. INTRODUCTION

Automatic Drum Transcription (ADT) is the task of creating a
symbolic score of the percussion instrument events within an audio
recording of a musical piece. It is a subtask within Automatic Mu-
sic Transcription (AMT), which aims to create a symbolic score of
all the events within a musical piece. With accurate AMT, tens of
millions of musical recordings could be indexed, compared, rec-
ommended, mined, and studied at scale using familiar musical
concepts like pitch, harmony, rhythm, meter, and tempo. Accu-
rate ADT could also aid in the development of generative rhythm
models, descriptive models of rhythmic style, and intelligent digi-
tal audio effects that are informed by transcription and style.

ADT researchers typically simplify this problem by focusing
solely on detecting the onset time and instrument class of all the
notes sounded by percussion instruments in the signal. And very
often, they simplify it even further by limiting the problem to only
the notes sounded by the bass drum (BD), snare drum (SD), and hi-
hat (HH) [1, 2, 3,4, 5, 6]—a limit that greatly decreasing the utility
of these systems. This is due to the tedious and time consuming
nature of annotating recordings, which results in ADT datasets that
are small and limited, often consisting of just a couple of hours of
audio [1, 7, 8, 9]. In addition, while some datasets have annota-
tions of a large number of percussion instrument classes [8, 7], oth-
ers are limited to the BD, SD, and HH classes [9, 1], and datasets
that do have larger vocabularies have minimal examples of these
extended classes. The recent successful ADT algorithms have used
deep learning architectures incorporating forms of recurrent neural
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networks [5, 4, 1, 2]. While powerful, these models require train-
ing on many audio examples in order to generalize well, making it
even more difficult to expand the vocabulary of ADT.

Our goal is to learn ADT models that support a large vocab-
ulary of percussion sounds. To address this, we generated a syn-
thetic dataset that is 126 times larger than four of the most popular
drum transcription datasets combined. We constructed this dataset
using a large collection of MIDI drum loops, a large collection
of drum hit recordings, and non-rhythmic harmonic backgrounds.
We then trained and evaluated a multi-task convolutional-recurrent
neural network (CRNN) drum transcription model using both the
synthetic data and existing real music datasets. However, there is a
risk in training with synthetic data—it may not be reflective of the
same distribution as “real music”, and therefore it may not gen-
eralize to it. Despite this, our intuition behind synthesizing and
training with such a dataset is that it would expose the model to a
wide variety of plausible percussion timbres and rhythmic varia-
tions allowing it to generalize to more unseen data.

In this work, we investigate the utility of synthetic data for
ADT. Furthermore, to make full use of the real music datasets on
the ADT task, our model follows a multi-task learning paradigm.
However, both data synthesis and multi-task learning are methods
to mitigate the problem of data paucity. Therefore, we also in-
vestigate the utility of multi-task learning in ADT when used in
combination with synthetic training data.

2. RELATED WORK

As in many domains, there has been a recent shift to solving au-
tomatic drum transcription (ADT) with deep learning [1, 2, 5, 4].
Earlier approaches to ADT often fell into one of three categories
defined by Gillet and Richard: segment and classify, match and
adapt, separate and detect [6]. These approaches often combined
multiple machine learning techniques such as support vector ma-
chines (SVM), hidden markov models (HMM), and non-negative
matrix factorization (NMF) [10, 11]. While these models could
perform well on solo drums [11], they often failed in the presence
of polyphonic music [12]. Recent approaches that use deep learn-
ing incorporate variants of recurrent neural networks (RNNs) and
are more robust than their predecessors in the presence of poly-
phonic music [1, 2, 4, 5]. However, deep architectures require
many audio examples to generalize, and therefore due to the lim-
ited amount of annotated data, these recent approaches have lim-
ited their vocabulary of drum voices to the commonly occurring
bass drum (BD), snare drum (SD), and hi-hat (HH). Recently, Wu
and Lerch proposed to address data paucity in ADT with a student-
teacher learning paradigm that utilizes unlabeled audio data. How-
ever, they still limited their work to BD, SD, and HH.

The field of computer vision also has many tasks which do
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not have enough annotated data to adequately train deep learning
models. Some researchers have addressed this problem by gener-
ating synthetic datasets with 3D-modeling [13, 14]. Ros et al [13]
addressed the problem of urban scene segmentation by generating
images from synthetic worlds using a game development platform.
They trained their models on a combination of real and synthetic
data. Peng et al [14] addressed the problem of object detection us-
ing crowdsourced 3D CAD models to generate images. By using
synthetic data, they were able to explicitly teach the model to learn
invariances to specific transformations.

In machine listening, several researchers have used synthetic
data to train models, including for percussion informatics tasks.
Van Steelant et al [15] synthesized data using MIDI files and drum
sample libraries for the percussive sound classification task. Helen
and Virtanen [10] similarly synthesized data for the drum source
separation task. Thompson et al [16] synthesized drum patterns
for tackling the ADT task using a bar-level classification approach
with mel-frequeny cepstral coefficients (MFCCs) and an SVM.
While their method used a vocabulary of 6 percussion voices, it
had difficulty detecting these voices in the presence of equally
mixed polyphonic accompaniment (f-measure 0.48).

Recently, models incorporating deep multi-task learning [17]
have achieved state-of-the-art performance on multiple music in-
formation retrieval tasks [1, 18]. McFee and Bello [18] used a
structured representation of chord qualities along with a multi-
task model for large-vocabulary chord recognition. Vogl et al [1]
jointly trained a multi-task CRNN for ADT and beat tracking.
While they obtained state-of-the-art results, they found minimal
improvement jointly training the beat detection task, but they did
see improvement when incorporating oracle beat features. Since
they had a minimal amount of data with annotated beats, increas-
ing the amount of training data may be helpful in this scenario. In
this work, we build upon the results of Vogl et al and use a similar
CRNN model for multi-task learning, but we train our model with
an abundance of synthetic data.

3. METHODS

3.1. Task Definition

In this work, we define “small-vocabulary” drum transcription as
the task of transcribing the onsets of 3 percussion voices: bass
drum (BD), snare drum (SD), and hi-hat (HH). We define “large-
vocabulary” drum transcription as the task of transcribing the on-
sets of the following 14 percussion voices which are commonly
found in drum sample libraries: bass drum, snare, snare (rim), low
tom, mid tom, high tom, open hi-hat, closed hi-hat, ride cymbal,
crash cymbal, conga, hand clap, clave, and bell.

3.2. Drum Transcription Datasets

To combat the problem of data paucity in large-vocabulary ADT,
we use a combination of existing real music datasets (3.69 hours
of data) along with a new synthetic dataset of 210k eight-second
audio examples (467 hours). The tasks for which these datasets
have annotations varies. Some have 3-voice drum annotations and
others have annotations for more voices that must be mapped to
our 14-voice task. Some of the datasets also have beat annotations.
See Table 1 for details about the datasets.

Table 1: Summary information on the datasets used in this work.

RBMA IDMT ENST MDB SDDS

[1] SMT [8] 9] [71 (3.2.1)
Hours 1.67 0.51 1.28 0.23 467
Solo Drums No No Yes No No
Onsets 24k 9k 25k 8k 14853k
14-voice No No Yes Yes Yes
3-voice Yes Yes Yes Yes Yes
Beat Yes No No No Yes

3.2.1. Synthetic Drum Dataset (SDDS)

To generate synthetic data, we rendered 60k audio examples from
a collection of MIDI drum loops using randomly selected drum
samples from a sample library. These examples were then aug-
mented by adding harmonic background noise, stochastic noise,
and small pitch shifts, bringing the total number of audio exam-
ples to 210k.

The examples were constructed in the following manner. From
arelease of eight sample libraries', we collected all of the one-shot
drum samples that were labeled as bass drum, snare, snare (rim),
tom, open hi-hat, closed hi-hat, ride cymbal, crash cymbal, conga,
hand clap, clave, and bell. These samples were a mixture of both
electronic- and acoustic-sounding drums. We did not have con-
sistent specific tom labels, so we split the tom recordings based
on the sum of their median pitch [19] rank and median spectral
centroid rank into low toms (0-25 percentile), mid toms (35-65
percentile), and high toms (75-100 percentile). The largest, most
diverse of the sample libraries? was set aside as the test/validate
set, and the remaining libraries were used for the train set. The
exception to this statement is the ride cymbals—the test set did not
have any recordings labeled as ride cymbals. To compensate, we
divided the ride cymbals between the two sets. All of the drum
hit recordings were resampled to 44.1 kHz and peak RMS normal-
ized. The pitch, spectral centroid, and RMS energy were computed
on frames of size 1024 with 50% overlap. This overall process re-
sulted in 3758 recordings in the train set and 2053 recordings in
the test/validate set.

Next, 60k (50k train / 5k validate / 5k test) MIDI drum loops
were sampled from the freely available Drum Percussion Midi
Archive (800k)’—an archive of 800k MIDI drum loops scraped
from public web sites, much like how the content of the Lakh MIDI
dataset was acquired [20]. We sampled these loops by randomly
selecting one measure from a random MIDI file in the collection
with the constraints that the measure was less than 3 seconds long
and contained at least 3 percussion instruments. The measure was
then looped and processed to be 8 seconds in duration with the
first downbeat occurring at a random offset from the beginning of
the file. Each MIDI loop was then rendered to audio by creating
a separate “track” for each percussion voice, randomly selecting a
drum sample for each percussion voice, and placing them in the
track “monophonically” (i.e. drum hits for the same voice never
overlapped) at each note onset time. The training set loops were
rendered with the training set of drum samples, and both the vali-
date and test loops were rendered with the testing/validation set of

1http ://musician.givegetwin.com/drum—heaven/
2Wave Alchemy - Drum Tools 01 Deluxe
3https://goo.gl/GhVipc
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Figure 1: Distribution of drum onsets in both the Real mu-
sic (i.e., RBMAI13, ENST-Drums, IDMT-SMT, MDB-Drums) and
Synth (i.e., SDDS) dataset groups. Note the log-scale of the x-axis.

drum samples. When rendering the loops, we scaled the amplitude
of each drum sample by MIDI velocity as recommended in [21]:

r=10"®/20 (D
Umax 1
b= — 2
(Umax - 1)\/; Vmax — 1 ( )
_— 1-b 3)
Umax
2 f
a:{(mv—i—b) 1U>Q @)
0 otherwise

where v is the note’s MIDI velocity in the range [0, Umax] With
Umax = 127, rgp is the output amplitude range in dB (set to 60
dB), and a is the resulting amplitude. All percussion voice tracks
were mixed together with equal weights.

To generate non-rhythmic background accompaniment with-
out discernible onsets, we selected 20 recordings (10 train, 10
test) containing harmonic instruments from MedleyDB [22]. Each
recording was “smeared” in time by processing it with the Pysox
[23] reverberator both forward and backward with randomly se-
lected reverberation settings in a range to produce long-tail rever-
beration. This was repeated 12 times for each recording, each time
pitched up an additional semitone, to produce 120 training back-
grounds and 120 test/validate backgrounds. All files were trimmed
to 30 seconds.

Using the MUDA data augmentation library [24], we then aug-
mented the rendered training set of drum loops by a factor of four
by varying both the background and the pitch, each with two vari-
ants. The goal of augmentation was to help the model learn in-
variances to different backgrounds and small changes in pitch. For
each file, we selected two random 8 s background segments with
random mixing coefficients in the range [0.01,0.5], and we se-
lected two random semitone pitch shifts sampled from N (0, 0.05).
Lastly, to add robustness to noise, we also added white noise with
a random mixing coefficient in the range [0.01, 0.1]. We repeated
this process for the training and validation sets, but we only used
one variant of each augmentation step, which resulted in only one
processed recording per drum loop. The unprocessed drum loops
were discarded. The augmentation process increased the size of

the training set from 50k to 200k, while both the testing and val-
idation sets remained at 5k. We will refer to this dataset as the
Synthetic Drum Dataset (SDDS).

3.2.2. Real Music Datasets

We also trained and evaluated on four standard drum transcription
datasets: RBMA13 [1], IDMT-SMT [8], ENST-Drums [9], and
MDB-Drums [7].

RBMA13 [1] is a dataset of 27 fully-produced music tracks in
the genres of electronic dance music (EDM), singer-songwriter,
and fusion-jazz. It contains both annotated drum onsets and beat /
downbeats. While there are several classes of percussion sounds in
the recordings, only the BD, SD, and HH are annotated. We used
the dataset’s 3 predefined cross-validation splits.

IDMT-SMT [8] is a dataset of solo drum recordings consist-
ing of BD, SD, and HH sounds from acoustic drum kits (10 dif-
ferent kits), drum synthesizers, and drum sample libraries. The
dataset contains both recordings of isolated, single drum sounds
and also recordings of rhythmic patterns using multiple drums. In
this work, we only used the recordings of the rhythmic patterns.
We randomly split the dataset into 3 cross-validation splits.

ENST-Drums [9] is a dataset of recordings from 3 drummers
with different drum kits. It contains drum onset annotations for
20 different classes of percussion sounds. Of these 20 classes,
we mapped 11 down to 10 of the classes in our vocabulary. The
9 remaining classes that were out of our vocabulary (e.g., brush
sweep, Chinese ride cymbal) were ignored. While the dataset also
contains many solo drum recordings, we only used the subset of
recordings with accompaniment. The accompaniment and drums
were summed together to create polyphonic mixtures. We used the
splits of the drummers for our 3 cross-validation splits.

MDB-Drums [7] is a set of 23 fully-produced music tracks
from the MedleyDB dataset [22]. It contains 6 classes of percus-
sion sounds (bass drum, snare drum, hi-hat, tom, cymbal, other)
with 21 subclasses (e.g., snare drum: drag, open hi-hat). Of these
21 subclasses, we mapped 17 down to 9 of the classes in our vocab-
ulary and ignored the remaining 4 classes. We used the dataset’s
three predefined cross-validation splits.

3.3. Multi-Task Model

In this work, we used a convolutional-recurrent neural network
(CRNN) model, very similar to the current state-of-the-art ADT
model published in [1]. The model is constructed of 4 blocks of
components as described in Table 2 and visualized in Figure 2.

We want to fully utilize the ADT and beat annotations in the
real music datasets, but some datasets have 3-voice annotations
and others have a larger number of voices that we reduced to our
14-voice vocabulary. Rather than trying to map the 3-voice annota-
tions up to 14-voices and dealing with class assignment ambiguity,
we instead treat it as two separate tasks—3-voice transcription and
14-voice transcription—and map the 14-voice annotations down to
3-voices (i.e., grouping the specific snare and hi-hat annotations,
keeping bass drum as is, and ignoring the rest). To support all of
these tasks, we designed our model as a multi-task with different
outputs and losses for three tasks: 14-voice drum transcription,
3-voice drum transcription, and beat / downbeat detection.

The model receives two feature types as inputs in the input
block. The first is the log-magnitude, log-frequency short-time
Fourier transform (Logf-STFT). To compute this feature, we first
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Figure 2: High-level architecture of multi-task convolutional-recurrent neural network model. See Table 2 for details.

Table 2: Detailed architecture of multi-task convolutional-
recurrent neural network model. Components that occur in par-
allel at the same model depth are presented in the same row. The
parentheses on the right-hand side of each cell indicate the output
size for that component.

Logf-STFT (799, 64) Logf-Onset (799, 64)
BatchNorm (799, 64) BatchNorm (799, 64)
Stack (799, 64, 2)
32 (3x3) Conv (799, 64, 32)
32 (3x3) Conv (799, 64, 32)
BatchNorm (799, 64, 32)
ReLU (799, 64, 32)
30% Dropout (799, 64, 32)
64 (3x3) Conv (799, 64, 64)
64 (3x3) Conv (799, 64, 64)
BatchNorm (799, 64, 64)
ReLU (799, 64, 64)
30% Dropout (799, 64, 64)
64 (1x64) Conv (799, 1, 64
BatchNorm (799, 1, 64)
ReLU (799, 1, 64)
(-6:4+6) Context Windowing (799, 832)
64 BLSTM (799, 128)
64 BLSTM (799, 128)
64 BLSTM (799, 128)
3 FC (799, 3)
3-voice

In
Block

CNN
Block

RNN
Block

Out 14 FC (799, 14)
Block

2 FC (799,2)
Beats

14-voice

g RL| s | R | s | R3| s | R[S 9

Figure 3: Round robin sampling for training. S is the synthetic
dataset and RN are the real datasets: 1:RBM-13, 2:IMDT-SMT,
3:ENST, 4:MDB

resample the audio to 22050 Hz and peak normalize it. We then
compute the linear-frequency STFT on 1024-sample frames with
a ~10 ms (221 sample) hop size. The magnitudes of the linearly-
spaced frequency bins are then grouped into log-spaced bins us-
ing triangular frequency-domain filters—8 octaves of 8 bins per
octave, starting at 40 Hz (i.e, 64 bins). We then log-scale these
features. The second input is a multi-band onset signal computed
from the Logf-STFT features before we log-scale magnitude. For
each frequency bin, we compute the difference function between
the current frame and the mean of the previous 22 frames. We then
half-wave rectify and log-scale the signal. In the model, these fea-
tures are batch-normalized [25] and concatenated on top of each
other, creating a 2-channel input to the CNN block.

The purpose of the CNN block is to model the timbral charac-
teristics of drum onsets. Described in detail in Table 2, this block
consists of 3 stacks of convolutions, batch-normalization, rectified
linear unit (ReLU) activations, and dropout [26] (rate = 0.3) lay-
ers. Each of the first two stacks uses 2 layers of 3 x 3 convolution
filters, padded so the output is the same size as the input. The final
stack uses one layer of 1 x 64 convolution filters (without padding)
and does not include dropout. This block maintains the temporal
resolution of the input.

The purpose of the RNN block is to model the temporal dy-
namics of drum onsets. This block consists of a stack of three bidi-
rectional long short-term memory (BLSTM) [27] components. To
more explicitly model the context, the input to the first BLSTM is
padded and each temporal frame is concatenated with the 6 previ-
ous and 6 subsequent frames.

Each output frame of the RNN block is fed into three task-
specific fully-connected (FC) layers in the output block: 14-voice
transcription, 3-voice transcription, and beat / downbeat detection.
In multi-task learning, this architecture is described as “hard pa-
rameter sharing” in which tasks share parameters for several lay-
ers followed by task-specific layers [17]. The model outputs and
training data are encoded as multi-label binary activations with the
same temporal resolution as the input (see Figure 2)—i.e, for each
temporal frame, a class (i.e, percussion voice or beat / downbeat)
bin is 1 if it contains an onset event, and O otherwise. The loss for
each output is computed using binary cross-entropy.

3.4. Training

For the experiments in this paper, our model was implemented in
Keras [28] and was trained on 8 s examples. We optimized using
Adam [29] with gradients clipped at 1.0, a learning rate of 0.001,
B1 = 0.9, B2 = 0.999, and decay = 0. We used batch sizes
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of 8 and an “epoch” size of 2000. We reduced the learning rate on
plateau (patience=5), and we trained for a maximum of 100 epochs
with early stopping set to a patience of 25 epochs.

3.4.1. Task weights

With multiple outputs and loss functions, the optimizer minimizes
a weighted combination of the losses:

L =~Lo+v1L1+ L2 ()

where +; are the loss weights. Tasks with sparse output targets can
achieve a low loss by simply predicting constant output. There-
fore, if losses are equally weighted, training heuristics such as
early-stopping and learning rate reduction will be dominated by
tasks with denser outputs. In our training data, the distribution of
the 14-voice transcription task is much sparser than the others, re-
sulting in a small loss. To remedy this, we weighted the tasks by
the inverse estimated entropy of their event activity distribution:

Nevents
P = 6
b Nclasses X Ntimesteps ©
v = (=pilog(pi) = (1 —pi)log(1 —pi)) ™" (D)

We estimated ; from the empirical distribution of events in the
training set for each task, and weighted the task losses 0.53, 0.16,
and 0.31 respectively for 14-voice transcription, 3-voice transcrip-
tion, and beat / downbeat detection.

In addition, a task loss was masked for training examples with-
out annotations for that particular task. This enables us to train a
multi-task model with incomplete data.

3.4.2. Sampling

To have a numerically stable loss when training with incomplete
data, the data has to be sampled such that all tasks are represented
in each batch. Therefore, a simple random sampling procedure is
not adequate. To accommodate this constraint, we utilize a round-
robin sampling procedure using Pescador [30] as shown in Fig-
ure 3. This sampling procedure cycles through the real music
datasets. Each time it samples from a real music dataset, it ran-
domly selects an 8 s time interval from the dataset. Each time it
samples from the synthetic music dataset, it randomly selects an 8
s example from the dataset. When training with both real and syn-
thetic data, every other sample is from the synthetic dataset. This
helps prevent overfitting due to the large quantity of synthetic data.
The round-robin sampling procedure ensure that all active datasets
will be present in a single batch, and therefore all tasks will be
present as well. However, since the datasets vary in size, exam-
ples in smaller datasets will be presented more frequently to the
model. This sampling procedure was used in both training and the
calculation of the validation loss. However, when testing, we did
not use this procedure—outputs were predicted for each example
once, using the entire duration of the signal, i.e., the full duration
of a music track rather than a 8 s time interval.

3.5. Experiments
To evaluate the effectiveness of our synthetic training data, we
trained our model with three variations of training data:

1. Real: the real music dataset group (RBMA13, IDMT-SMT,
ENST, MDB-Drums)

2. Synth: the synthetic dataset (SDDS)

3. Real + Synth: and the combination of both the real music
dataset group and the synthetic dataset.

To balance the task in each batch, we used the round robin sam-
pling scheme described in Section 3.4.2. When training with the
real music datasets, we used the cross-validation splits as noted in
Section 3.2.2 for training. To do so, we grouped the corresponding
splits of the datasets together, e.g. the first splits from each dataset
were grouped together when determining training and validation
sets. For validation and testing, we further partitioned the data,
using 25% of each split for validation and 75% for testing. In con-
trast, the synthetic dataset had one large training set and smaller
validation and test sets. For consistency with the Real and Real
+ Synth variants, training with the Synth variant was also repeated
three times with different random samples.

Furthermore, to investigate if the addition of large amounts of
synthetic data could benefit from a larger model, we also varied the
capacity of the model. We trained a “small” model as described in
Table 2, and we also trained a “large” model. In the large model,
convolution layers that originally had 32 filters were increased to
128 filters, and the number of units in the BLSTM components
was increased from 64 to 256.

As noted earlier, we trained our models with a multi-task learn-
ing paradigm to make use of the Real datasets that only have small-
vocabulary annotations. However, both data synthesis and multi-
task learning can be viewed as methods to mitigate the problem
of data paucity. To investigate how multi-task learning affects the
ADT task in combination with data synthesis, we also trained sin-
gle task models for comparison. These models used the small-
capacity configuration and were only trained on Real + Synth data.
We again evaluated them on Real and Synth data separately.

For each variation, we trained three models, one for each vali-
dation split. For each split, we selected the model with the lowest
validation loss for evaluation. To evaluate our model outputs, we
estimated the locations of onsets and beats from the output acti-
vations using the peak picking method described in [31], in which
an output activation sample is selected as a peak if it meets the
following criteria:

1. z(n) = maxz(z(n — Mpre), ..., (N + Mpost))
2. z(n) > mean (x(n — opre)y ..., (N 4 Opost)) +
3. n— NiastOnset > W

where x(n) is an output activation, n is the index of the current
sample, nigstonset 18 the index of the last identified onset, § is
a threshold parameter, w is the minimum number of samples be-
tween onsets, and Mpre, Mpost, Opre, Opost are sample offset val-
ues that define the window over which the max and mean func-
tions are computed. We tuned peak parameters for each model and
task combination using a randomized search with 500 iterations
scored on the validation set.

The resulting models were separately evaluated on both the
test set of their corresponding split’s real music dataset group and
of the synthetic dataset. We used a 50 ms evaluation window in all
experiments.

4. RESULTS

Table 3 presents the results of the experiments described in Sec-
tion 3.5. Each value in the table is a mean metric (f-measure, pre-
cision, and recall) averaged over the test sets for the three cross-
validation splits. For the small capacity variants evaluated on the
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Table 3: Mean model performance (over CV splits) for all three tasks evaluated on both real music and synthetic datasets while varying the
distribution of training data, model capacity, and tasks. F: f-measure, P: precision, R: recall. Bold items indicate best performance per
column for each group of training variants. *Asterisk indicates best task performance on Real data across all variants.

Learning Capacity  Eval. Data Train. Data 14-voice Trans. 3-voice Trans. Beat Detect.
Paradigm F P R F 3 R F P R
Real 0.58 0.55 0.61 0.69 0.64 0.74 0.62 0.68 0.58
Real Synth 0.43 0.45 0.42 0.61 0.57 0.67 0.61 0.59 0.64
Small Real + Synth 0.68 0.67 *0.70%  *0.77%  *0.77* 0.77 0.74 0.74 0.74
Real 0.47 0.51 0.43 0.61 0.60 0.62 0.58 0.56 0.60
Synth Synth 0.74 0.76 0.72 0.85 0.84 0.86 0.70 0.68 0.75
Multi-task Real + Synth 0.70 0.64 0.77 0.84 0.81 0.87 0.69 0.72 0.68
Real 0.63 0.63 0.63 0.72 0.69 0.76 0.57 0.59 0.55
Real Synth 0.44 0.42 0.45 0.62 0.58 0.68 0.63 0.58 0.69
Large Real + Synth 0.70 0.73 0.68 0.76 0.74 0.78 *0.75%  *0.75%  *0.75%
Real 0.48 0.51 0.46 0.63 0.64 0.63 0.60 0.55 0.65
Synth Synth 0.77 0.78 0.77 0.87 0.86 0.87 0.75 0.68 0.84
Real + Synth 0.72 0.71 0.74 0.83 0.81 0.87 0.69 0.72 0.69
Real Real + Synth ~ *0.72%  *0.74* 0.69 - - - - - -
Synth Real + Synth 0.69 0.68 0.71 - - - - - -
Single-task Small Real Real + Synth - - - *0.77* 0.74 *0.81%* - - -
Synth Real + Synth - - - 0.82 0.78 0.87 - - -
Real Real + Synth - - - - - - 0.64 0.59 0.69
Synth Real + Synth - - - - - - 0.65 0.61 0.71

Real test set, the model trained on only Synth data performs worse
than the model trained on only Real data—e.g., f-measure 0.43 vs
0.58 for 14-voice transcription. This is true across all three tasks,
though the effect on beat detection is minimal. However, when
models are trained on both the Real and Synth data together, we
see a large improvement in performance on all three tasks—e.g.,
f-measure 0.68 for 14-voice transcription. This trend is present
in all three tasks. This implies that both Real and Synth are use-
ful and complementary when training ADT models. We speculate
that the Synth data teaches the model a wider variety of percus-
sion timbres, whereas the Real data teaches the model to ignore
instruments not relevant to the ADT task. This conjecture seems
to hold with respect to the models’ performance when evaluated
on the Synth data—the models trained on only the Synth perform
better or equal to the models trained on both Synth and Real data.

To further understand the models’ performance on the 14-voice
transcription task, we also evaluated class-specific performance
(see Figure 4). We find that when trained on only Real data, the
model only predicts 3 classes with f-measure performance above
0.5—bass drum (0.68), snare drum (0.61), and closed hi-hat (0.62).
Except for the open hi-hat (f-measure 0.11), the model fails to pre-
dict all other classes. When Synth data is added to the training
set, the f-measure performance improves for the bass drum (0.73),
snare drum (0.74), closed hi-hat (0.74), and open hi-hat (0.55).
The model now also has non-zero f-measure for several classes
on which the Real-trained model completely failed to predict—
e.g., crash cymbals (0.08), ride cymbals (0.45), low toms (0.09),
mid toms (0.05), high and toms (0.04). Unfortunately, the perfor-
mance on all of these classes is quite low with the exception of
the ride cymbals. Interestingly, the precision on the tom classes is
much higher than the recall—while this may have several causes,
one possible cause could be improperly tuned peak-picking pa-

rameters, indicating that we should investigate class-specific pa-
rameters. There are also several classes on which the model still
completely fails—snares (rim), congas, hand claps, bells, claves.
However, if we revisit the class distribution of drum onsets for the
Real data in Figure 1, we see that class performance is closely
correlated to the data’s class distribution. While this could be
caused by high-variance performance estimates due to the rarity
of these onset events in the evaluation data, if this were the case,
one might expect the model to have a high performance for at least
one such classes. For comparison, if we look at the model’s perfor-
mance when evaluated on Synth data, we see a significant increase
in performance for all of these classes except for the hand claps
and bells, which have the lowest representation in the Synth data.
Therefore while the Synth training data may expose the model to
a wider variety of timbres, we still need to expose the model to
classes of interest in a musical context with other instruments—
with its current architecture, the model does not seem to generalize
this ability across classes.

From Table 3, we also see that the large capacity models have
roughly the same performance as the small models (sometimes
slightly worse, sometimes slightly better) when evaluated on Real
data. Whereas, the large capacity models trained and evaluated on
Synth data see a small but consistent boost in performance from
the higher capacity. Therefore, while increasing model capacity
may help when training and evaluating on an abundance of syn-
thetic data from the same distribution, it does not seem to improve
model performance when evaluated on real music data.

Lastly, the models trained separately on the 14-voice and 3-
voice transcription tasks typically performed very similarly to their
multi-task counterparts (f-measure +0.02) with the single-task 14-
voice model performing a bit better on the Real data (f-measure
0.72 vs 0.68). In contrast, the single-task beat detection model
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Figure 4: Mean model performance (over CV splits) for 14-voice transcription performance broken down by class. Top: Model trained
and evaluated on the real music datasets (RBM-13, IDMT-SMT, ENST, MDB). Middle: Model trained on both the real music dataset group
and synthetic dataset (SDDS), and evaluated on the real music datasets. Bottom: Trained on both the real music datasets and synthetic

dataset, and evaluated on the synthetic dataset.

performed worse than its multi-task counterpart when evaluated
on the Real data (f-measure 0.64 vs 0.74). Furthermore, we had
the least amount of annotated Real data for the beat detection task
(only RBMA-13 has beat / downbeat annotations). Thus, while
multi-task learning in conjunction with synthetic data does seem to
considerably aid on some tasks (e.g., beat / downbeat detection),
this is not true for all tasks, and for 14-voice drum transcription
it seems to actually hinder performance. These results seem to
indicate that the benefit of synthetic data possibly overwhelms the
benefit of multi-task learning for the ADT task.

5. CONCLUSION

In this work, we addressed the problem of data paucity for large-
vocabulary automatic drum transcription (ADT) by generating a
large synthetic dataset. We found that training with synthetic data
can improve performance not only on ADT but also on beat detec-
tion. Improvements were observed on both 3-voice and 14-voice
transcription tasks. On the 14-voice task, training with synthetic
data increased performance for five classes on which the model
without synthetic data training failed completely. Unfortunately,
there is still a lot of room for improvement for 14-voice drum tran-
scription. For synthetic data to help, it needs to be utilized in con-
junction with real music data. In fact, it seems that it may need
at least some minimum amount of annotated real music data in
each class of interest, a problem that is exacerbated by the class
imbalance in real music ADT training data. In our experiments
we did not investigate what this minimum threshold is. However,
these results imply that determining this minimum and focusing
efforts to annotate up to this minimum for classes of interest could
be a reasonable next step for improving large-vocabulary drum
transcription. Another reasonable next step could be to resyn-
thesize new percussion tracks with a variety of timbres for anno-

tated datasets that have separate accompaniment and percussion
tracks (e.g,, MDB-Drums). We also investigated the benefits of
multi-task learning for ADT in combination with training on syn-
thetic data. In our experiments, we trained both single task and
multi-task models, and we found that multi-task learning poten-
tially harmed the ADT task, but greatly benefited our auxiliary
beat / downbeat detection task.

While the distribution of the full SDDS dataset is prohibitive
due to its size, we have made both a small portion of the data avail-
able for download along with the trained multi-task and single-task
models with highest performance on the Real datasets. Further-
more, we have also released a Python package to generate a similar
dataset given collections of drum samples and MIDI files.*

In summary, data synthesis is a promising approach to combat
the problem of data paucity in ADT and to increase the vocabulary
size of ADT systems, but additional work is needed to investigate
how to further improve performance on rare percussion classes. In
addition, multi-task learning can also be a powerful tool to take
advantage of limited training data, but its benefit is not consistent
across tasks when combined with synthetic data. In future work,
we hope to further investigate when training on auxiliary tasks is
beneficial in music information retrieval.
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