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Dynamic Stills and Clip Trailers

Abstract We propose a method for generating visual
summaries of video. It reduces browsing time, minimizes
screen-space utilization, while preserving the crux of the
video content and the sensation of motion. The outputs
are images or short clips, denoted as dynamic stills or
clip trailers, respectively. The method selects informative
poses out of extracted video objects. Optimal rotations
and transparency supports visualization of an increased
number of poses, leading to concise activity visualiza-
tion. Our method addresses previously avoided scenar-
ios, e.g., activities occurring in one place, or scenes with
non-static background. We demonstrate and evaluate the
method for various types of videos.

Keywords Video Summaries · Key-Pose Selection

1 Introduction

Different types of media have associated promotion mech-
anisms. Books have their covers, and movies have their
trailers. In both examples, promotion is coupled with
content information. In this work, we develop a similar
mechanism for an emerging type of medium - video clips.
We develop means for efficiently extracting and visual-
izing the content of short video clips using two display
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methods: (i) Dynamic still - a single image conveying the
activity by combining information from different tempo-
ral moments; (ii) Video clip trailer - a few seconds long
video that displays the clip’s highlights. We believe that
such a mechanism will greatly enhance many domains
where visual summaries are desired such as online video
libraries or news web pages (e.g., [11,12,14]).

Current video libraries use text, a single image (usu-
ally the clip’s first frame), or a set of key-frames for de-
picting the content of videos. Since the differentiating
factor of videos from images is motion, we believe that
the expressive power of text and key-frames is limited.
Thus, our goal is embedding and visualizing dynamics
in a concise representation, while maintaining the clar-
ity and sensation of motion.

This work focuses on clips of human subjects. Video
objects are extracted from different time-frames, and
several poses that best represent the activity captured
in the video are concurrently displayed. Technically, we
treat a video clip as a three-dimensional (3D) volume
with the spatial axes X, Y and temporal axis T . To re-
duce the inherent spatial redundancy in the video, we
cut out the foreground objects from this volume [17,25]
and compute alpha matting values [24]. We further re-
duce temporal redundancy of the foreground data by
automatically selecting key-poses from the sequence of
extracted objects, utilizing a new algorithm which takes
shape information as input. This data reduction allows
handling of previously neglected scenarios. Unlike synop-
sis mosaics [15] that only treat videos of objects translat-
ing from side to side, we also consider self-occluding ac-
tivities (Figure 2). The resulting output from the above
process is a set of key-poses selected from segmented ob-
jects. These poses with associated alpha masks are de-
noted as pose slices and can be rendered in two different
ways. First, they can be composed into a single static
image that we call a dynamic still. Second, they can
form a few second long video presenting the essence of
the activity. We term this representation a clip trailer.

We provide a set of manual and automatic tools that
enable non-professional video editors to generate dynamic
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Fig. 1 “Ascending and descending stairs”. Visualizing an
activity Eadweard Muybridge, 1887.

stills and clip trailers. These include: rotation and zoom
of the entire set of pose slices and/or each pose slice in-
dependently, and use of transparency for adding spatial
or temporal context and for emphasizing particular ac-
tivities. Our visual content summaries have a range of
application areas, such as web sites where users down-
load video clips or cellular phone download centers. Sum-
maries might also be used as static or “breathing” thumb-
nails on a PC, where several clip trailers are played auto-
matically in an icon size display. We illustrate these ap-
plications using a variety of clips from home and sports
videos.

The rest of this paper is organized as follows. Sec-
tion 2 reviews prior work. Section 3 discusses motivating
observations. Section 4 reviews the technical details of
our method. Results and applications are discussed in
Sections 5 and 6. Section 7 concludes the paper.

2 Related work

Representing motion and activity has been a challenging
problem faced by many visual art masters and scientists.
Photography entrepreneurs such as Muybridge, Marey
and others developed multiple-exposure techniques for
visualizing human activities (Figure 1). Advances in com-
puter graphics and computer vision allowed spatially stitch-
ing several images together to create a “panorama” (e.g.,
[26]). Panoramas have been used for representing videos.
For example, Taniguchi et al. [27] combined shot de-
tection and panoramas to generate a mixed catalog of
key frames and panoramas. Irani et al. [15] superim-
posed copies of foreground objects taken at different time
points on a background panorama. To avoid overlaps be-
tween different copies, the video is diluted by sampling
frames uniformly or manually [20]. Recently, an approach
of stroboscopic visualization of movement based on in-
teractive digital photo-montages was proposed by Agar-
wala et al. [2]. Similarly, Chiu et al. [10] suggested ar-
ranging blobs extracted from key-frames in a collage rep-
resentation, as a way to improve screen utilization when
visually summarizing business meetings. However, the
above processes are only effective for non self-occluding
activities, and fail when objects appear at the same im-
age location more than once (Figure 2). Our framework
handles this temporal self-occlusion problem.

(a) Non self-occluding (b) Self-occluding

Fig. 2 Self-occluding vs. non self-occluding activities. While
synopsis mosaics work for non-self occluding activities (a),
they face difficulties with self-occluding activities (b). Our
approach handles both cases (see Figure 12).

Methods for visualizing dynamic scenes have been
studied not only for producing still images such. Agar-
wala et al. [3] and Rav-Acha et al. [22] manipulated
both space and time to generate a wide field-of-view
panoramic video. Interactive artistic manipulations of
such video volumes are implemented in the Khronos Pro-
jector [9]. Unlike this work, the above methods do not
reduce the size of the represented data, and most of them
even increase it for producing the new representation.

Since our focus is on video objects rather than video
frames, we employ a video object cutout process. We
have many options in choosing a video object cutout al-
gorithm. Interactive approaches such as [17,28] are both
useful for a cluttered background or a non-stationary
camera. Alternatively, if the camera is static and the
background is also static, recently proposed automatic
methods [13,25] may be applied. Segmented objects were
also used for the purpose of interactive video brows-
ing [6]. However, standard image and video outputs are
not supported there, and user interaction is required to
select highly informative key-poses.

Our video processing pipeline involves an analysis of
the pose motion for the purpose of key-pose selection.
This problem has been studied in the context of video
summarization and retrieval, traditionally achieved by
key-frame selection to approximate the task of key-pose
selection. Recently, key-pose selection algorithms that fo-
cus on video objects rather than video frames are gain-
ing more attention. Loy et al. [19] computed a frame-to-
frame distance based on contour matching, while Liu et al.
[18] used distance information obtained from motion-
capture data. Both methods cluster frames and select the
cluster centers as key-frames. Assa et al. [4] suggested
that a concise and informative synopsis of a human ac-
tivity is better estimated by selecting the extreme poses
of the motion. In this work, we follow Assa et al. ’s ap-
proach of selecting extreme key-poses and extend it to 2D
video sequences. While Assa et al. ’s work mainly con-
sidered tracking of skeleton joints usually obtained from
motion-capture data, we achieve a similar goal only from
2D foreground images.
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(a) Video volume (b) Key-frames

(c) Object segmentation (d) Pose slices

Fig. 3 Different video visualizations. (a) A video visualized
as space-time volume. (b) A key-frames representation. The
representation is highly redundant and lacks the sensation of
motion (c). A space-time volume of the moving object. This
representation does not suffer from background redundancy,
but still hides the activity details. Our dynamic still repre-
sentation in (d) combines a single background frame with a
set of key-poses to concisely depict the activity.

3 Approach

The main challenge in generating an informative visual
summary is dealing with the huge redundancies inherent
in video. This section discusses several fundamental ob-
servations regarding video clips. Based on these observa-
tions, we then briefly describe the proposed framework.
(1) Background has a huge temporal redundancy. This is
illustrated by the complete video volume in Figure 3(a).
This observation leads to today’s approach of key-frame
representation, in which temporal redundancy is reduced
(Figure 3(b)).
(2) Foreground is more attractive and informative than
the background. In Figure 3 the walking person is clearly
the most important portion in the scene. Furthermore,
the background contributes mostly as an atmosphere,
and its details are not crucial for understanding the scene.
Consequently, we cut the background off from the vol-
ume (Figure 3(c)), and place it once as the background
of the final output.
(3) Not all poses have the same importance. Poses at
the beginning and the end of each consecutive motion
are more important than intermediate poses.
(4) Background and foreground are not very sensitive
to small rotations from the standard “head-on view”.
Hence, we encourage manipulations of the viewing an-
gle. A pleasing result is illustrated in Figure 3(d). Note
that our display size is on the same order of a single
video frame’s. Accordingly, the essence of the video clip
is depicted by decreasing the redundancy in both back-
ground and foreground, and by choosing important poses
of foreground that we call pose slices.

Fig. 4 Components of our framework. First, the input
video volume is decomposed into foreground and background.
Then, the motion of extracted objects is analyzed to produce
key-poses and rendering instructions. These are used to com-
pose the final visualization.

4 Technical Description

The proposed processing steps are illustrated in Fig-
ure 4. First, the input video volume is separated into
foreground and background. Then, the motion and pose
information of extracted foreground objects is analyzed,
and highly informative key-poses are selected. Prior to
composition, we compute an optimal viewing angle that
minimizes the mutual occlusion of different poses. The
composition step allows the author to define a set of ren-
dering instructions to control the visualization effects.
For producing dynamic stills, the visualization parame-
ters such as the viewing angle and key-pose opacity are
fixed. For a clip trailer, these parameters are time depen-
dent. The next sections describe the major steps used in
this process.

4.1 Video decomposition

The video decomposition begins with extracting fore-
ground objects. Recently, we witnessed significant progress
in this field. Li et al. [17] and Wang et al. [28] described
interactive approaches, and showed that it is possible
to segment complicated scenes with a user’s guidance.
Sun et al. [25] and Criminisi et al. [13] described meth-
ods of foreground extraction in real time for scenes with
stationary background. Our method is not constrained to
a particular video segmentation method, and the choice
depends on the complexity of the scene. This is illus-
trated in Figure 5. For the simple stationary background
in (a) the method of [25] was used, while for the clut-
tered scene in (b) the method of [17] was used. After
video object segmentation, we apply an alpha matting
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(a)

(b)

(c)

Fig. 5 Segmentation and scene complexity. The simple scene
in (a) was segmented automatically in realtime, while the
cluttered scene in (b) was segmented interactively. Final re-
sults are shown in (c).

algorithm, crucial for achieving a high-quality visualiza-
tion. In our implementation, we use the Poisson matting
algorithm [24].

4.2 Motion extremum analysis

This section describes an automatic method for select-
ing key-poses. The input is a sequence of segmented in-
stances of foreground objects from all the frames in the
video, denoted here as poses. This defines a curve in the
huge space of all poses. We argue that important poses
are extremum points on this curve, since activity is best
illustrated by changes in motion. Such extremum points
simplify the interpolation process for completing the ac-
tivity representation. Thus, we call our approach motion
extremum analysis. The output of this module is “pose
slices”. Figuratively, we slice the 3D blob of the fore-
ground object’s data and select poses with high impor-
tance for depicting activity.

Our method for motion extremum analysis is com-
posed of the following steps: (i) Computing several pose-
to-pose dissimilarity measures organized in dissimilar-
ity matrices. These matrices are denoted Mdi , where
di is the i-th dissimilarity measure. Each matrix is of
size F × F where F is the number of poses extracted
in the segmentation step (Figure 6(a)). (ii) Combining
these measures to produce an F × F unified dissimi-
larity matrix (Figure 6(b)). (iii) Embedding poses on a
low-dimensional sphere, forming a motion curve (Fig-
ure 6(c)). The analysis of this motion curve enables the
evaluation of the importance of poses. The correspon-
dence between extremum poses and motion curve cusps
is illustrated in Figure 6(c).

(a) Dissimilarity matrices

(b) Unified matrix (c) Motion curve

Fig. 6 Motion extremum analysis. Several dissimilarity ma-
trices (a) are merged into a single unified matrix (b). Poses
are then embedded into a low-dimensional space. The cusps
of the resulting motion curve (c) correspond to extremum
poses of the activity (wide-open/closed legs).

Inter-pose dissimilarity measures. Pose-to-pose dissimi-
larity is measured using features computed for each pair
of foreground silhouettes: (i) Orientation of the major
axis, (ii) Elongation, (iii) Solidity, (iv) Shape overlap,
and (v) Centroid position. Other features were tested,
e.g., the velocity of the silhouettes’ centroids, and the
radii of the silhouettes’ circumcircles centered at the cen-
troids. However, these were discarded due to the small
weights they were given during the unification process
(see below).
(i) Orientation of the silhouette’s main axis is computed
using Principal Components Analysis (PCA) on the set S
of 2D pixel coordinates inside the silhouette. The orien-
tation dissimilarity Md1(i, j) between the poses in frames
i and j can be defined as:

Md1(i, j) = 1 − |cos αij | ,
where αij is the angle between the main axis of pose i
and that of pose j.
(ii) Elongation ri of pose i, is measured by the ratio of
the pixel distribution’s variance along its primary and
secondary axes in the eigen-space. It is measured by
the first and second eigenvalues of the silhouette covari-
ance matrix. This property differentiates thin elongated
shapes from circular shapes. The elongation dissimilarity
between poses i and j can be defined as:

Md2(i, j) = |log(ri/rj)| .
(iii) The solidity of a foreground object is defined as the
ratio between the area inside the silhouette and the area
of its bounding box. This measure is useful for detecting
the extension of limbs, the waving of hair or clothes, etc.
The solidity dissimilarity Md3(i, j) is defined similarly to
Md2(i, j) by substituting ri and rj with solidity values.
(iv) Shape overlap is computed using the absolute corre-
lation [8] between pairs of registered silhouettes. Regis-
tration is achieved by aligning the silhouettes’ centroids.
The absolute correlation is minimized over a small search
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radius R to reduce the sensitivity to subtle segmentation
errors:

Md4(i, j) = min
dx,dy

∑

(x,y)∈B

|Si(x + dx, y + dy) − Sj(x, y)|,

where B is the bounding box surrounding both silhou-
ettes.
(v) The position dissimilarity is defined as the Euclidean
distance between silhouettes’ centroids. A few other mea-
sures (velocity, radius and area) were also tested. These,
however, did not contribute to the unified representa-
tion of all dissimilarity measures (next paragraph), and
therefore have been omitted.

Unified dissimilarity matrix. A unified dissimilarity ma-
trix M is computed, aggregating the different inter-pose
dissimilarity matrices Mdi

. We start by converting each
dissimilarity matrix into a corresponding cross-product
matrix Pdi , as in multidimensional scaling (MDS), and
normalizing each matrix by its first eigenvalue. An ag-
gregation matrix is computed as a linear combination of
the normalized matrices, and is then converted back into
the unified dissimilarity matrix M . The weights for the
linear combination are derived from a non-centered PCA
of the Pdi

matrices [1]. This gives an “optimal” solution
in the sense that measures which agree the most with
each other contribute the most to the unified dissimilar-
ity matrix.

A low-dimensional motion curve. Based on the unified
dissimilarity matrix, we embed the sequence of input
poses into a low-dimensional space. For this task, we
use the spectral clustering method [21], a method de-
signed for segmentation. It applies eigen-decomposition
to a normalized version of a dissimilarity matrix, denoted
as an affinity matrix. In our case, the affinity between
poses is derived from their dissimilarity, as computed in
the previous step. A spectral clustering method is applied
to the temporally ordered sequence of points (poses). To
incorporate this additional information and to avoid the
influence of temporally distant poses, we multiply the
entries of the affinity matrix M(i, j) by an exponential
decay factor e−|i−j|/δ, where δ is a constant which in-
dicates that human motion segments are usually a few
seconds long, e.g. 3 seconds. The output of the eigen-
decomposition is a set of column eigenvectors ordered
by their eigenvalues. The first k eigenvectors define an
F ×k matrix, where each pose i is associated with the ith

row of this matrix. In theory, spectral gap may be used

Fig. 7 A dynamic still showing key-poses selected from a 2D
animated sequence.

Fig. 8 Global rotation (a) and (b) is used to address oc-
clusions between poses. (c) The optimal viewing angle is re-
covered by aligning the global motion-plane (yellow) with the
major diagonal of the video volume, as indicated by an arrow.

to select k. In practice, a significant gap rarely exists.
Therefore, global measures such as stress [16] should be
used to select k. This set of F row-vectors are normal-
ized to unit length and placed on the Sk unit sphere [21].
The advantage of this process is that it attempts to pre-
serve local distance, thus similar poses are represented by
adjacent points on the sphere. The advantages and re-
lations of this approach to other embedding techniques
(e.g., [23]) are discussed in [7].

Pose slicing. To select key-poses, we follow the approach
of Assa et al. [4]. We iteratively choose poses which are
locally extreme (distant from their temporal neighbor-
hood). This is illustrated in Figure 6(c), where the sharp
corners of the motion curve are selected and indeed cor-
respond to extremum poses of the original motion. We
compared our approach with Assa et al. ’s method by
rendering one of their animation sequences (Figure 7).
Although our method does not take the explicit 3D mo-
tion data as input, it is able to generate a virtually equiv-
alent result only from 2D silhouette data. This completes
the video decomposition process.

4.3 Display composition

Once pose slices are selected, they are optimally visual-
ized using their shape information and positions in the
space-time video volume. This section introduces our ap-
proach for efficiently visualizing multiple pose slices in a
limited screen space.

Global viewing angle. When visualizing multiple pose slices
at the same time, self-occlusion of poses becomes one of
the major problems. In our approach, self-occlusion of
the pose slices is minimized by rotating the space-time
video volume from the head-on view to a new viewing
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(a)

(b)

Fig. 9 After global rotation (a) some pose slices might ap-
pear flat. This is resolved by an automatic local rotation (b).

angle (Figure 8(a) and (b)). This rotation approach has
an advantage; the orientation of the background plane
gives a visual cue as to the direction of the time axis.
An optimal viewing angle is computed automatically ac-
cording to the global direction of the motion observed
in the video volume. It can be computed by collecting
3D positions of foreground pixels throughout the video
volume and fitting a 2D plane that minimizes the sum
of perpendicular distances from the points. We imple-
ment this approach using PCA. The resulting 2D plane
is denoted the global motion plane.

To minimize the deviation from the original viewing
angle, we align the global motion plane with the closest
diagonal of the 3D video volume. Figure 8(c) illustrates
the global motion plane, and the recovered global rota-
tion (marked in yellow). Note that this rotation depends
on the spacing between poses. Namely, stretching the
time axis reduces inter-occlusion and results in a smaller
rotation.

Local viewing angle. The global viewing angle is opti-
mized to provide the most informative visualization. How-
ever, a global rotation of the space-time volume results
in a non-uniform viewing angle for different poses, and
may cause some pose slices to appear flat (Figure 9(a)).
A secondary rotation, we denote as the local viewing an-
gle, is used to compensate for this flattening artifact. Our
approach is motivated by visualization methods that use
a cylindrical (or spherical) coordinate system (e.g., [26]).
In contrast to a planar display, a cylindrical surface gives
an orthogonal projection of surface points to a camera.
At the same time, we wish to place poses along the Z-
axis, in order to maintain relative positions of key-poses.
Therefore, we only rotate each pose slice about its cen-
tral axis to face toward the camera. In this way, the

(a) Object only

(b) Object with spatial context

Fig. 10 Spatial context. (a) Only pose slices are visible; (b)
shows the table that the samurai jumped from.

secondary rotation angle is automatically computed and
applied (Figure 9 (b)).

Spatial context. In some video clips, a better under-
standing of the portrayed activity can be achieved by in-
corporating spatial context into the visualization. This is
accomplished by visualizing additional “secondary” ob-
jects that appear next to the foreground object. These
secondary objects can be extracted in the video object
segmentation phase. Alternatively, image portions around
the foreground object can be visualized by manipulat-
ing alpha values to create a gradual fade-out effect (Fig-
ure 10). In our case, alpha values are assigned using a
sigmoidal function of the city-block distance d from the
foreground object’s boundary:

α(d) =
1

1 + e
d−η

σ

,

where η determines the width of the spatial context, and
σ controls the strength of the fade-out effect. η and σ
can be tuned interactively.

Temporal context. Another option to enrich the visual
experience is to add pose slices. This, however, might
cause a self-occlusion problem. Therefore, we add the

Fig. 11 Temporal context. The transparency of additional
poses is based on their importance. Most informative poses
(i.e., motion extreme points) are completely opaque.
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(a) Key frames (b) Synopsis mosaic (c) Our representation

Fig. 12 Comparison of different video summaries. We compare the results of our visualization with previous methods using
three different examples. The top row illustrates that our method can address more elegantly non static background, and
a scene with multiple objects. The middle row illustrates how our method depicts a self-occluding activity. The third row
compares summaries of a long home video.

poses (a) selectively using the key-pose selection results;
(b) using transparency. Figure 11 displays an example of
the temporal context effect. The number of poses to be
added can be controlled interactively.

5 Discussion and evaluation

5.1 Benefits

The advantages of using our visualization are evident
from the comparison of different methods shown in Fig-
ure 12. It is clear that our method captures the sensation
of motion that is lost in a key-frames representation. Due
to its better screen utilization, it provides a comprehen-
sible visualization that allows a quick acquaintance with
an efficient orientation in video sequences. It is also ev-
ident that previously proposed methods (i.e., synopsis
mosaics) cannot address the above scenarios.

In the presence of large camera motions, our method
should be applied after registration of the video sequence.
The resulting space-time video volume is not a rectan-
gular box. However, all the previously described steps
apply in such cases as well. It is also interesting to note
that a regular superposition of objects (e.g., [2,15]) is
a special case of our method. Namely, when the object
translates from side to side, the global rotation is effec-
tively 0◦, and the resulting dynamic still is essentially a
dynamic panorama.

5.2 Limitations

The effective range of clips that our current implementa-
tion can address depends on the number of poses needed
in order to describe a given activity. From our experience,
the proposed visualization allows for about a dozen poses
to be viewed simultaneously (i.e, in the same screen-
space as a single frame). Obviously, our visualization can
benefit from panoramic display and can depict longer
activities. Other packing problems exist in the presence
of multiple objects. While multiple objects may be dis-
played (see for example, Figure 12(c) top), there may be
cases where rotations of distinct objects will occlude each
other. Finally, the trade-off for the better screen utiliza-
tion is that the exact spatial information of an activity
is lost. The global rotation slightly shifts the locations of
pose slices. An example where this may cause confusion
is shown in Figure 13; although the girl was walking in
place, it is perceived as forward motion.

5.3 User Studies

To verify the contribution of our representations we ran
two user studies. One user study measured whether the
clip trailers deliver accurate content information in a
shorter time, and the other evaluates whether they were
attractive.
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Fig. 13 This dynamic still illustrates the limitations of depth
ordering. While the person in the figure is walking in place,
it is perceived as if she is moving forward.

Evaluating informativeness. Thirty users were asked to
find unique events in video sequences or in the respec-
tive summaries. They are also asked to answer simple
questions about them (e.g., describe the boy’s emotions,
who failed in returning a tennis serve). For each of the
given 6 tasks, we tested the correctness of the answers
and measured the time needed to complete the task. The
results indicate that: (i) The fraction of correct answers
was similar using both visualizations; (ii) The response
time using the proposed video summaries was a few sec-
onds (less than five), while using regular videos it had
a linear dependency in the temporal length of the video
clip, and was generally longer; (iii) Training with a single
video summary significantly improved the success rate.

Evaluating attractiveness. One hundred and forty users
were asked to select the most attractive video clip out of
six options. Three of these were visualized by clip trailers
and the other three were still images extracted from the
videos. To overcome the inherent bias to particular video
clips (e.g., clips that consisted of attractive objects), the
selection of clip trailer or image for each video was re-
versed for half of the participants. The results indicate
that in five out of six cases clip trailers were more at-
tractive. Further details may be found in [5].

6 Applications and results

This section shows several results of our visual video
summaries and illustrates the applicability of our video
previewing techniques for different applications.

Video clips promotion. Clip trailers contribute to pro-
motion of video clips. Therefore, a major application for

clip trailers is in the domain of video media centers, such
as video download web sites, Video-on-Demand interac-
tive TV channels, or even video information and enter-
tainment services featured on cellular phones. In Fig-
ure 12, we compare a key-frames representation of video
clips as shown on a commercial web site with our inno-
vative approach.

Breathing thumbnails. Another straightforward applica-
tion of clip trailer technology is breathing thumbnails.
Breathing thumbnails stands for a dynamic visual rep-
resentation of home-users’ PC folders containing video
clips. This representation is built by concurrently dis-
playing miniaturized clip trailers summarizing the video
clips contained in the folder. It can be constructed man-
ually or automatically if video segmentations are pro-
vided. An example of breathing thumbnails is illustrated
in Figure 14.

Informative time line and indexing. Locating a specific
clip from a clip archive is a difficult task, especially for
videos with long and rich contents. One needs to te-
diously use the rewind/fast-forward buttons in order to
understand what the clip is all about. On the other hand,
clip trailers can show the major events in a video clip in
a very informative way. Furthermore, our motion analy-
sis that captures the key-poses may be used to generate
an informative timeline. As illustrated in Figure 15, an
informative timeline is constructed by rotating the pose
slices to a 90◦ view angle, with the secondary rotation
making them all nicely visible1. This technique, com-

1 The data was obtained from mocap.cs.cmu.edu. The
database was created with funding from NSF EIA-0196217.

Fig. 14 Breathing Thumbnails. Iconized clip trailers can re-
place conventional static thumbnails. Such moving (“breath-
ing”) thumbnails are more informative than the clip’s first
frame that is currently used on regular PC’s.
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Fig. 15 Informative timeline.

bined with breathing thumbnails, simplifies the browsing
process in a video archive.

7 Summary and future work

We have described means for an effective visualization
of video clips. Our visualizations, dynamic stills and clip
trailers, provide a better utilization of the display space,
and therefore also a better utilization of time. Further-
more, our framework allows us to address scenarios that
so far have been neglected (e.g., the presence of self-
occlusion). The effectiveness of our approach is illus-
trated qualitatively by a large number of examples. It
is also evaluated quantitatively with two user studies.

In the future, we plan to address some derived issues.
First, video object segmentation remains the most time
consuming part of our system. We would like to speed
up this part, by combining proximity relations between
coherent segments. Second, we wish to combine key-pose
selection with occlusion constraints. By coupling the key-
pose selection process with the resulting visualization,
the screen space to information ratio and visual quality
may be improved. This could be achieved by enforcing a
new constraint on the key-pose selection algorithm.
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