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Abstract
General-purpose processors, while tremendously versatile, 
pay a huge cost for their flexibility by wasting over 99% of 
the energy in programmability overheads. We observe that 
reducing this waste requires tuning data storage and com-
pute structures and their connectivity to the data-flow and 
data-locality patterns in the algorithms. Hence, by backing 
off from full programmability and instead targeting key 
data-flow patterns used in a domain, we can create efficient 
engines that can be programmed and reused across a wide 
range of applications within that domain.

We present the Convolution Engine (CE)—a programma-
ble processor specialized for the convolution-like data-flow 
prevalent in computational photography, computer vision, 
and video processing. The CE achieves energy efficiency by 
capturing data-reuse patterns, eliminating data transfer over-
heads, and enabling a large number of operations per memory 
access. We demonstrate that the CE is within a factor of 2–3× 
of the energy and area efficiency of custom units optimized for 
a single kernel. The CE improves energy and area efficiency 
by 8–15× over data-parallel Single Instruction Multiple Data 
(SIMD) engines for most image processing applications.

1. INTRODUCTION
Processors, whether they are the relatively simple RISC 
cores in embedded platforms, or the multibillion transistor 
CPU chips in Server/Desktop computers, are extremely ver-
satile computing machines. They can handle virtually any 
type of workload ranging from web applications, personal 
spreadsheets, image processing workloads, and embedded 
control applications to database and financial applications. 
Moreover, they benefit from well-established program-
ming abstractions and development tools, and decades of 
programming knowledge making it very easy to code new 
applications.

Processors, however, are also inefficient computing 
machines. The overheads of predicting, fetching, decoding, 
scheduling, and committing instructions account for most 
of the power consumption in a general-purpose processor 
core.2, 7, 16 As a result they often consume up to 1000× more 
energy than a specialized hardware block designed to per-
form just that particular task. These specialized hardware 
blocks also typically offer hundreds of times higher per-
formance using a smaller silicon area. Despite these large 
inefficiencies, processors form the core of most computing 
systems owing to their versatility and reuse.

Over decades, we have been able to scale up the perfor-
mance of general-purpose processors without using exces-
sive power, thanks to advances in semiconductor device 
technology. Each new technology generation exponentially 
reduced the switching energy of a logic gate enabling us 
to create bigger and more complex designs with modest 
increases in power. In recent years, however, the energy scal-
ing has slowed down,12 thus we can no longer scale proces-
sor performance as we used to do. Today we fundamentally 
need to reduce energy waste if we want to scale performance 
at constant power.

This paper presents a novel highly efficient processor archi-
tecture for computational photography, image processing, and 
video processing applications, which we call the Convolution 
Engine (CE). With the proliferation of cheap high quality 
imagers, computational photography and computer vision 
applications are expected to be critical consumer computa-
tion workloads in coming years. Some example applications 
include annotated reality, gesture-based control, see-in the 
dark capability, and pulse measurement.

Many of these applications, however, will require multiple 
TeraOps/s of computation which is far beyond the capability 
of general processor cores especially mobile processors on 
a constrained power budget of less than 1 Watt. The three 
orders of magnitude advantage in compute efficiency of 
hardware accelerators, means that current mobile systems 
use heterogeneous computing chips combining processors 
and accelerators.11,15 An example accelerator is the video 
codec hardware employed in the mobile SOCs. However, 
these accelerators target either a single algorithm or small 
variations on an algorithm. Handling the diverse applica-
tion set needed by these future smart devices requires a 
more programmable computing solution. Our CE provides 
that programmability while still keeping energy dissipation 
close to dedicated accelerators.

Our design approach is based on the observation that 
specialized units achieve most of their efficiency gains by tun-
ing data storage structures to the data-flow and data-locality 
requirements of the algorithm. This tuning eliminates redun-
dant data transfers and facilitates creation of closely coupled 
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data-paths and storage structures allowing hundreds of 
low-energy operations to be performed for each instruc-
tion and data fetched. Processors can enjoy similar energy 
gains if they target computational motifs and data-flow 
patterns common to a wide-range of kernels in a domain. 
Our CE implements a generalized map-reduce abstraction, 
which describes a surprisingly large number of operations 
in image processing domain. The resulting design achieves 
up to two orders of magnitude lower energy consumption 
compared to a general-purpose processor and comes within 
2–3× of dedicated hardware accelerators.

The next section provides an overview of why general 
processors consume so much power and the limitations 
of existing optimization strategies. Section 3 then intro-
duces the convolution abstraction and the five application 
kernels we target in this study. Section 4 describes the CE 
architecture focusing primarily on features that improve 
energy efficiency and/or allow for flexibility and reuse. We 
then compare this CE to both general-purpose cores with 
SIMD extensions and to highly customized solutions for 
individual kernels in terms of energy and area efficiency. 
Section 5 shows that the CE is within a factor of 2–3× of cus-
tom units and almost 10× better than the SIMD solution for 
most applications.

2. BACKGROUND
The low efficiency of general-purpose processors is 
explained in Figure 1, which compares the energy dissi-
pation of various arithmetic operations with the overall 
instruction energy for an extremely simple RISC processor. 
The energy dissipation of arithmetic operations that per-
form the useful work in a computation remains much lower 
than the energy wasted in the instruction overheads such as 
instruction fetch, decode, pipeline management, program 
sequencing, etc. The overhead is even worse for media pro-
cessing applications which typically operate on short data 
requiring just 0.2–0.5 pJ (90 nm) of energy per operation, 
with the result that over 99% energy goes into overheads.

These overheads must be drastically reduced to increase 
energy efficiency. That places two constraints on the proces-
sor design, (i) the processor must execute hundreds of oper-
ations per instruction to sufficiently amortize instruction 
cost and (ii) the processor must also fetch little data, since 
even a cache hit costs 25 pJ (90 nm) per memory fetch, com-
pared to 0.2–0.5 pJ for the arithmetic operations.

These two constraints seem contradictory as performing 
hundreds of operations per cycle would generally necessitate 
reading large amounts of data from the memory. These condi-
tions could be reconciled, however, for algorithms where most 
instructions either operate on intermediate results produced 
by previous instructions, or reuse most of the input data used 
by the previous instructions. If an adequate storage structure 
is in place to retain this “past data” in the processor data-path, 
then large number of operations can be performed per instruc-
tion without needing frequent trips to the memory. Fortunately 
compute bound applications including most image process-
ing and video processing algorithms are a good match for these 
constraints, providing large data-parallelism and data-reuse.

Most high-performance processors today already include 
SIMD units which are widely regarded as the most efficient 
general-purpose optimization for compute intensive appli-
cations. SIMD units typically achieve an order of magnitude 
energy reduction by simultaneously operating on many 
data operands in a single cycle (typically 8–16). However, as 
explained in Hameed et al.7 the resulting efficiency remains 
two orders of magnitude less than specialized hardware 
accelerators, as the SIMD model does not scale well to larger 
degrees of parallelism.

To better understand the architectural limitations of tra-
ditional SIMD units, consider the two-dimensional sum of 
absolute difference operation (SAD) operating on a 16-bit 
8 × 8 block as shown in Listing 1.5 The 2D SAD operator is 
widely employed in multimedia applications such as H.264 
video encoder to find the closest match for a 2D image sub-
block in a reference image or video frame. Listing 1 carries 
out this search for every location in a srchWinHeight × srch-
WinWidth search window in the reference frame, resulting 
in four nested loops. All four loops are independent and can 
be simultaneously parallelized. At the same time, each SAD 
output substantially reuses the input data used to compute 
previous outputs, both in vertical and horizontal directions.

However, a typical SIMD unit with a register row size of 
128 bits is only able to operate on elements that fit in one 
register row limiting the parallelism to the inner most loop. 
Trying to scale up the SIMD width to gain more parallelism 
requires either simultaneously reading multiple image rows 
from the register file (to parallelize across the 2nd most-
inner loop), or simultaneously reading multiple overlapping 
rows of image data (to parallelize across multiple horizontal 
outputs). Neither support exists in the SIMD model.
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Figure 1. Comparison of functional unit energy with that of a typical 
RISC instruction in 90nm. Strategy for amortizing processor overheads 
includes executing hundreds of low-power operations per instruction.

Listing 1. 2D 8 × 8 sum of absolute difference operation (SAD), 
commonly employed in H.264 motion estimation.

for (sWinY = 0; sWinY < srchWinHeight; sWinY++){
for (sWinX = 0; sWinX < srchWinWidth; sWinX++){

sad = 0;
for (y = 0; y < 8; y++){

for (x = 0; x < 8; x++){
cY = y + sWinY; cX = x + sWinX;
sad += abs(ref[cY][cX] - cur[y][x]);

}
}
outSad[sWinY][sWinX] = sad;

}
}
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Exploiting the data-reuse requires storing the complete 
8 × 8 block in eight rows of the SIMD register file, so that 
the data is locally available for computing subsequent out-
put pixels. This is straightforward in vertical direction, as 
every new output just needs one new row and the seven old 
rows could be reused. To get reuse in the horizontal direc-
tion, however, each of the eight rows must be shifted by one 
pixel before computing each new output pixel, incurring 
substantial instruction overhead. At the same time, since 
the shifting process destroys the old pixels, we are limited 
to getting reuse either in the vertical or horizontal direc-
tion but not both, with the result that each data item gets 
fetched eight times from the memory, wasting too much 
memory energy.

GPUs achieve a much higher degree of parallelism by using 
a large number of simple SIMD cores, each with local regis-
ter resources, and very large memory bandwidth to maintain 
high computational throughput. While that results in great 
compute throughput, the energy consumption is also very 
high thanks to large data access cost. Measuring the perfor-
mance and energy consumption of an optimized GPU imple-
mentation of H.264 SAD algorithm13 using GPUGPUSim 
simulator1 with GPUWattch energy model,9 we ascertain that 
the GPU implementation runs 40× faster compared to an 
embedded 128-bit SIMD unit, but also consumes 30× higher 
energy. That further illustrates the need to minimize memory 
accesses and provide low-cost local data-accesses.

As the next section shows, the SAD operator belongs to a 
large class of algorithms which can be described as convolu-
tion-like and have the desired parallelism and reuse charac-
teristics for efficient execution. Next section discusses this 
computational abstraction and provides a number of exam-
ple applications.

3. COMPUTATIONAL MODEL
Equations (1) and (2) provide the definition of standard dis-
crete 1D and 2D convolutions. When dealing with images, 
Img is a function from image location to pixel value, while f is 
the filter applied to the image. Practical kernels reduce com-
putation (at a small cost of accuracy) by making the filter size 
small, typically in the order of 3 × 3 to 8 × 8 for 2D convolution:

� (1)

� (2)

We generalize the concept of convolution by identifying 
two components of the convolution: a map operation and a 
reduce operation. In Equations (1) and (2), the map operation 
is the multiplication that is done on pairs of pixel and tap 
coefficient, and the reduce operation is the summation of all 
these pairs to the output value at location [n, m]. Replacing 
the map operation in Equation (2) from x · y to |x − y| while 
leaving the reduce operation as summation, yields a sum of 
absolute numbers (SAD) function which is used for H.264’s 
motion estimation. Further replacing the reduce operation 
from ∑ to max will yield a max of absolute differences opera-
tion. Equation (3) expresses the computation model of our 

CE, where f, Map, and Reduce (“R” in Equation 3) are the 
pseudo instructions, and c is the size of the convolution:

�
(3)

The convolution like data-flow works for many appli-
cations, but is sometimes limited by having a single asso-
ciative operation in the reduction. There are a number of 
applications that have a data locality pattern similar to con-
volution, but need to combine results through a specific 
graph of operations rather than simple reduction. These 
applications can be handled by the CE by increasing the 
complexity of the Reduce operator to enable noncommu-
tative functions, and allowing a different function to be 
used at each reduction stage. This generalized combining 
network extends the “reduction” stage to create a structure 
that can input a large number of values and then compute a 
small number of outputs through effectively a fused super 
instruction as shown in Figure 2.

The down side of this extension is that the placement of 
input into the combining tree is now significant; thus, to 
realize the full potential of the new generalized reduce oper-
ator, a high level of flexibility is required in the data supply 
network to move the needed data to the right position. This 
is achieved by extending the definition of the map operator 
to also support a data permutation network in addition to 
the already supported set of compute operators. These new 
enhancements to the map and reduce operators substan-
tially boost their generalizability and applicability and thus 
increase the space of supported applications.

We now introduce a few kernels that we use in this paper 
and discuss how each of them maps into the computing 
abstractions we have defined above. Table 1 summarizes this 
information.

3.1. Motion estimation
Motion estimation is a key component of many video codecs 
including H.264, consuming about ˜90% of the execution 
time for H.264 software implementations.4, 7 The kernel 
operates on subblocks of a video frame, trying to find each 
subblock’s location in a previous and/or future reference 
frame of the video stream. In particular, in H.264, motion 
estimation is computed in two steps:

Integer Motion Estimation (IME): IME searches for 
the matching block in the reference image using the SAD 

Input Input

Op Op Op Op

Super
InstructionOpOp

Op

Output Output

Figure 2. Generalized reduction unit fuses multiple operations into a 
super instruction.
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operator previously described in Section 2. Note how SAD 
fits quite naturally to a CE abstraction: the map function is 
absolute difference and the reduce function is summation.

Fractional Motion Estimation (FME): FME refines the ini-
tial match obtained at the IME step to a quarter-pixel resolu-
tion. It first up-samples the block selected by IME, and then 
performs a slightly modified variant of the SAD operation. 
Up-sampling also fits nicely to the convolution abstraction 
and actually includes two convolution operations: first, 
the image block is up-sampled by two using a six-tap sepa-
rable 2D filter. This part is purely convolution. Second, the 
resulting image is up-sampled by another factor of two by 
interpolating adjacent pixels, which can be defined as a map 
operator (to generate the new pixels) with no reduce.

3.2. SIFT
Scale Invariant Feature Transform (SIFT) looks for distinctive 
features in an image.10 To ensure scale invariance, Gaussian 
blurring and down-sampling is performed on the image to 
create a pyramid of images at coarser and coarser scales. 
A Difference-of-Gaussian (DoG) pyramid is then created by 
computing the difference between every two adjacent image 
scales. Features of interest are then found by looking at the 
scale-space extrema in the DoG pyramid.10

Gaussian blurring and down-sampling are naturally 2D 
convolution operations. Finding scale-space extrema is a 3D 
stencil computation, but we can convert it into a 2D stencil 
operation by interleaving rows from different images into a 
single buffer. The extrema operation is mapped to convolu-
tion using compare as a map operator and logical AND as the 
reduce operator.

3.3. Demosaic
Camera sensor output is typically a red, green, and blue 
(RGB) color mosaic laid out in Bayer pattern.3 At each 
location, the two missing color values are then interpo-
lated using the luminance and color values in surround-
ing cells. Because the color information is undersampled, 
the interpolation is tricky; any linear approach yields color 
fringes. We use an implementation of Demosaic that is 
based upon adaptive color plane interpolation (ACPI),8 
which computes image gradients and then uses a three-
tap filter in the direction of smallest gradient. While this 
fits the generalize convolution flow, it requires a complex 

“reduction” tree to implement the gradient-based selec-
tion. The data access pattern is also nontrivial since indi-
vidual color values from the mosaic must be separated 
before performing interpolation.

4. CONVOLUTION ENGINE
Convolution operators are highly compute-intensive, par-
ticularly for large stencil sizes, and being data-parallel they 
lend themselves to vector processing. However, as explained 
earlier, existing SIMD units are limited in the extent to 
which they can exploit the inherent parallelism and local-
ity of convolution due to the organization of their register 
files. The CE overcomes these limitations with the help of 
shift register structures. As shown in Figure 3 for the 2D con-
volution case, when such a storage structure is augmented 
with an ability to generate multiple shifted versions of the 
input data, it can fill 128 ALUs from just a small 16 × 8 2D 
register with low access energy as well as area. Similar gains 
are possible for 1D horizontal and 1D vertical convolutions. 
As we will see shortly, the CE facilitates further reductions in 
energy overheads by creating fused super-instructions intro-
duced in Section 3.

The CE is developed as a domain specific hardware exten-
sion to Tensilica’s extensible RISC cores.6 The extension 
hardware is developed using Tensilica’s TIE language.14 The 
next sections discuss the key blocks in the CE extension 
hardware, depicted in Figure 4.

4.1. Register files
The 2D shift register is used for vertical and 2D convolution 
flows and supports vertical row shift: one new row of pixel 
data is shifted in as the 2D stencil moves vertically down 
into the image. The 2D shift register provides simultaneous 
access to all of its elements enabling the interface unit to 
feed any data element to the ALUs. 1D shift register is used 
to supply data for horizontal convolution flow. New image 
pixels are shifted horizontally into the 1D register as the 1D 
stencil moves over an image row.

The 2D Coefficient Register stores data that does not 
change as the stencil moves across the image. This can be 
filter coefficients, current image pixels in IME for perform-
ing SAD, or pixels at the center of Windowed Min/Max sten-
cils. The results of convolution operations are either written 
back to the 2D Shift Register or the Output Register. A later 

Table 1. Mapping kernels to convolution abstraction.

 Map Reduce Stencil sizes Data flow

IME SAD Abs diff Add 4 × 4 2D convolution
FME 1/2 pixel up-sampling Multiply Add 6 1D horizontal and vertical 

convolution
FME 1/4 pixel up-sampling Average None – 2D matrix operation
SIFT Gaussian blur Multiply Add 9, 13, 15 1D horizontal and vertical convolution
SIFT DoG Subtract None – 2D matrix operation
SIFT extrema Compare Logical AND 9 × 3 2D convolution
Demosaic interpolation Multiply Complex 3 1D horizontal and vertical 

convolution

Some kernels such as subtraction operate on single pixels and thus have no stencil size defined. We call these as matrix operations. There is no reduce step for these operations.
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pattern and the functional units perform the arithmetic.
Interface units. The Interface Units (IF) arrange data from 

the register files into a specific pattern needed by the map 
operation. For 2D convolutions, multiple shifted 2D sub-
blocks can be simultaneously accessed from the 2D regis-
ter. Multiple block sizes such as 2 × 2, 4 × 4, 8 × 8, etc. are 
supported and the appropriate size is selected based on 
convolution kernel size. Similarly for vertical convolution, 
multiple 2D register columns can be accessed in parallel, 
with support for multiple column access sizes. Finally, the 
1D IF supports accessing multiple shifted 1D blocks from 
the 1D shift register for horizontal convolution. We are also 
exploring a more generalized permutation layer to support 
arbitrary maps.

Functional units. Since all data rearrangement is handled 
by the interface unit, the functional units are just an array of 
short fixed point two-input arithmetic ALUs. In addition to 
multipliers, we support absolute difference to facilitate SAD 
and other typical arithmetic operations such as addition, 
subtraction, and comparison. The output of the ALU is fed 
to the Reduce stage.

Reduce unit. The reduce part of the map-reduce operation 
is handled by a programmable reduce stage. Based upon 
the needs of our applications, we currently support arith-
metic and logical reduction stages. The degree of reduction 
is dependent on the kernel size, for example a 4 × 4 2D ker-
nel requires a 16 to 1 reduction whereas 8 to 1 reduction is 
needed for an 8-tap 1D kernel. Thus, the reduction stage is 
implemented as a combining tree and outputs can be tapped 
out from multiple stages of the tree.

To enable the creation of “super instructions” described 
in Section 3, we augment the combining tree to enable 
handle noncommutative operations by adding support for 
diverse arithmetic operations at different levels of the tree. 
This fusion increases the computational efficiency by reduc-
ing the number of required instructions and by eliminat-
ing temporary storage of intermediate data in register files. 
Because this more complex data combination need not be 
commutative, the right data (output of the map operation) 
must be placed on each input to the combining network. 
Thus, a “Data Shuffle Stage” is also added to the CE in the 
form of a very flexible swizzle network that provides permu-
tations of the input data.

4.3. Other hardware
To facilitate vector operations on the convolution output, 
we have added a 32-element SIMD unit. This unit interfaces 
with the 2D Output Register and uses it as a Vector Register 
file. This unit is wider than typical SIMD units, as it oper-
ates on intermediate data generated by convolution data 
path and thus is not constrained by data memory accesses. 
Despite being wider, the vector unit is still lightweight as 
it only supports basic vector add and subtract type opera-
tions and has no support for higher cost operations such as 
multiplications.

Because an application may perform computation that 
conforms neither to the convolution block nor to the vector 
unit, or may otherwise benefit from a fixed function imple-
mentation. If the designer wishes to build a customized 

section shows how the output register file also works as the 
vector register file for the vector unit shown in Figure 4.

4.2. Map and reduce logic
As described earlier we abstract convolution as a map and 
reduce step that transforms each input pixel into an output 
pixel. In our implementation, interface units and ALUs 
work together to implement the map operation; the inter-
face units arrange the data as needed for the particular map 
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Figure 3. Implementation of 8 × 8 2D SAD operation that exploits 
parallelism in all four loops of Listing 1. The reference block resides 
in a 2D shift register while the current block is stored in a 2D 
register. Because both registers allow 2D access of the 8 × 8 block, 
64 ALUs can operate in parallel. To enable an even larger degree of 
parallelism and to exploit data-reuse in the horizontal direction, the 
shift register generates pairs of multiple overlapping 8 × 8 blocks 
which are then fed to the ALU through a multiplexer. These pairs 
allow parallel execution of 128 ALUs generating two outputs in 
parallel. After the generation of four pairs of horizontal outputs, the 
shift register shifts up by one to make room for a new row of search 
window achieving vertical data-reuse.
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reduction unit, and is called the complex graph fusion unit.
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of values from 2D and coefficient registers, performs the 
convolution and write the result into the row 0 of 2D output 
register.

The code example in Listing 2 brings it all together and 
implements a 2D 8 × 8 Filter. First the CE is set to perform 
multiplication at MAP stage and addition at reduce stage 
which are the required setting for filtering. Then the con-
volution size is set which controls the pattern in which data 
is fed from the registers to the ALUs. Filter tap coefficients 

unit for such computation, the CE allows the fixed function 
block access to its Output Register File. This model is simi-
lar to a GPU where custom blocks are employed for raster-
ization and such, and that work alongside the shader cores. 
For these applications, we created three custom functional 
blocks to compute motion vector costs in IME and FME and 
the Hadamard Transform in FME.

4.4. Resource sizing
Energy efficiency considerations and resource require-
ments of target applications drive the sizes of various 
resources within CE. As shown in Hameed et al.,7 amor-
tizing the instruction cost requires performing hundreds 
of ALU operations per instruction for media processing 
applications based on short 8-bit Addition/Subtraction 
operations. Many convolution flow applications are, how-
ever, based on higher energy multiplication operations. 
Our analysis shows that for multiplication-based algo-
rithms, 50–100 operations per instruction are enough to 
provide sufficient amortization. Increasing the number 
of ALUs much further than that gives diminishing returns 
and increases the size of storage required to keep these 
units busy, thus increasing storage area and data-access 
energy. Thus for this study we choose an ALU array size of 
128 ALUs, and size the rest of the resources accordingly 
to keep these ALUs busy. To provide further flexibility we 
allow powering off half of the ALU array and compute 
structures. The size and capability of each resource is pre-
sented in Table 2. These resources support filter sizes of 
4, 8, and 16 for 1D filtering and 4 × 4, 8 × 8, and 16 × 16 for 
2D filtering. Notice that that the register file sizes deviate 
from power of 2 to efficiently handle boundary conditions 
common in convolution operations.

4.5. Programming the convolution engine
CE is implemented as a processor extension and adds a 
small set of instructions to the processor ISA. These CE 
instructions can be issued as needed in regular C code 
through compiler intrinsics. Table 3 lists the major CE 
instructions. Configuration instructions set kernel param-
eters such as convolution size, ALU operation to use at Map 
and Reduction stages, etc. Then, there are load and store 
operations for each register resource. Finally, there are the 
compute instructions, one for each of the three supported 
convolution flows—1D horizontal, 1D vertical, and 2D. 
For example the CONVOLV_2D instruction reads one set 

Table 2. Sizes for various resources in CE.

 Resource sizes

ALUs 128 × 10 bit ALUs
1D shift register 80 × 10 bit
2D input shift register 16 rows × 36 cols × 10 bit
2D output shift register 16 rows × 36 cols × 10 bit
2D coefficient register 16 rows × 16 cols × 10 bit
Horizontal interface 4, 8, 16 kernel patterns
Vertical interface 4, 8, 16 kernel patterns
2D interface 4 × 4, 8 × 8, and 16 × 16 patterns
Reduction tree 4:1, 8:1, . . ., 128:1

 Description

SET_CE_OPS Set arithmetic functions for MAP and REDUCE 
steps

SET_CE_OPSIZE Set convolution size
LD_COEFF_REG_n Load n bits to specified row of 2D coeff register
LD_1D_REG_n Load n bits to 1D shift register. Optional Shift left

LD_2D_REG_n Load n bits to top row of 2D shift register. 
Optional shift row down

ST_OUT_REG_n Store top row of 2D output register to memory
CONVOLVE_1D_HOR 1D convolution step—input from 1D shift register
CONVOLVE_1D_VER 1D convolution step—column access to 2D shift 

register
CONVOLVE_2D 2D convolution step with 2D access to 2D shift 

register

Table 3. Major instructions added to processor ISA.

Listing 2. Example C code implements 8 × 8 2D filter for a vertical 
image stripe and adds 2 to each output.

// Set MAP function = MULT , Reduce function = ADD
SET_CE_OPS (CE_MULT , CE_ADD);

// Set convolution size 8
SET_CE_OPSIZE(8);

// Load eight rows of eight 8-bit coefficients
// into Coeff Reg ’s rows 0 to 7
for(i = 0; i < 8; i++){

LD_COEFF_REG_128(coeffPtr , 0);
coeffPtr += coeffWidth;

}

// Load & shift seven rows of sixteen input pixels
// into 2D shift register
for(i = 0; i < 7; i++){

LD_2D_REG_128(inPtr , SHIFT_ENABLED);
inPtr += width;

}

// Filtering loop
for (y = 0; y < height; y++) {

// Load & Shift 16 more pixels
LD_2D_REG_128(inPtr , SHIFT_ENABLED);

// Filter first 8 locations. Because we have
// access to 128-ALUS , we can filter two 8x8
// blocks in parallel
for(RW_OFFSET = 0; RW_OFFSET < 8; RW_OFFSET+=2){

CONVOLVE_2D(RW_OFFSET , RW_OFFSET);
}

// Add 2 to row 0 of output register
SIMD_ADD_CONST (0, 2);

// Store 8 output pixels
ST_OUT_REG_64(outPtr);

inPtr += width;
outPtr += width;

}
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are then loaded into the coefficient register. Finally, the 
main processing loop repeatedly loads new input pixels 
into the 2D shift register and issues 2D_CONVOLVE opera-
tions to perform filtering. While 16 new pixels are read with 
every load, our 128-ALU CE configuration can only process 
two 8 × 8 filtering operation per operation. Therefore four 
2D_CONVOLVE operations are performed per iteration. 
For illustration purposes we have added a SIMD instruction 
which adds 2 to each output value produced by the convolu-
tion operation. The results from output register are written 
back to memory.

Figure 5 maps this execution onto the CE hardware. The 
8 × 8 coefficients are stored in the first eight rows of the 
Coefficient Register File. Eight rows of image data are shifted 
into the first eight rows of the 2D Shift register. Since we have 
128 functional units, we can filter two 8 × 8 2D locations at 
a time. Thus the 2D Interface Unit generates two shifted ver-
sions of  8 × 8 blocks, which are rearranged into 1D data and 
fed to the ALUs. The functional units performs an element-
wise multiplication of each input pixel with the correspond-
ing coefficient and the output is fed to the Reduction stage. 
The degree of reduction is determined by the filter size, which 
in this case is 8 × 8; therefore, 64:1 reduction is chosen. The 
two outputs of the reduction stage are normalized and writ-
ten to the Output Register.

It is important to note that unlike a stand-alone accel-
erator the sequence of operations in CE is completely 
controlled by the C code which gives complete flexibil-
ity over the algorithm. For example, in the filtering code 
above, it is possible for the algorithm to produce one CE 
output to memory and then perform a number of non-CE 
operations on that output before invoking CE to produce 
another output.

5. EVALUATION
To evaluate the efficiency of the CE, we map each target 
application described in Section 3 on a chip multiprocessor 
(CMP) comprised of two CEs. To quantify the performance 
and energy cost of such a programmable unit, we also built 

custom heterogeneous chip multiprocessors (CMP) for each 
of the three applications. These custom CMPs are based 
around application-specific cores, each of which is highly 
specialized for a specific kernel required by the application. 
Both the CE and application-specific cores are built as a data-
path extension to the processor cores using Tensilica’s TIE 
language.14 Tensilica’s TIE compiler uses this description to 
generate simulation models and RTL for each extended pro-
cessor configuration.

To quickly simulate and evaluate the CMP configura-
tions, we created a multiprocessor simulation framework 
that employs Tensilica’s Xtensa Modeling Platform (XTMP) 
to perform cycle accurate simulation of the processors and 
caches. For energy estimation we use Tensilica’s energy 
explorer tool, which uses a program execution trace to give 
a detailed analysis of energy consumption in the processor 
core as well as the memory system. The estimated energy 
consumption is within 30% of actual energy dissipation. To 
account for interconnection energy, we created a floor plan 
for the CMP and estimated the wire energies from that. That 
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The figures show that the biggest impact on energy effi-
ciency takes place when the needed communication paths 
become more complex. This overhead is more serious when 
the fundamental computation energy is small. In general, 
the communication path complexity grows with the size 
of the storage structures, so over-provisioning registers as is 
often needed in a programmable unit hurts efficiency. This 
energy overhead is made worse since such structures not 
only require more logic in terms of routing and muxing but 
also have a direct impact on the leakage energy. On the other 
hand, more flexible functional units have small overheads, 
which provides flexibility at low cost.

6. CONCLUSION
As specialization emerges as the main approach to address-
ing the energy limitations of current architectures, there is 
a strong desire to make maximal use of these specialized 
engines. This in turn argues for making them more flex-
ible, and user accessible. While flexible specialized engines 
might sound like an oxymoron, we have found that focus-
ing on the key data-flow and data-locality patterns within 
broad domains allows one to build a highly energy efficient 
engine, that is, still user programmable. We presented the 

interconnection energy was then added to energy estimates 
from Tensilica tools. The simulation results employ 90 nm 
technology at 1.1 V operating voltage with a target frequency 
of 450 MHz. All units are pipelined appropriately to achieve 
the frequency target.

Figures 6 and 7 compare the performance and energy dis-
sipation of the proposed CE against a 128-bit data-parallel 
(SIMD) engine and the custom accelerator implementation 
for each of the five algorithms of interest. In most cases 
we used the SIMD engine as a 16-way 8-bit data-path, but 
in a few examples we created 8-way 16-bit data-paths. For 
our algorithms, making this unit wider did not change the 
energy efficiency appreciably.

The fixed function data points truly highlight the power 
of customization: for each application a customized 
accelerator requires 8–50× less energy compared to SIMD 
engine. Performance per unit area is also 8–30× higher 
than the SIMD implementation. Demosaic achieves the 
smallest improvement (8×) because it generates two new 
pixel values for every pixel that it loads from the memory. 
Therefore, after the customization of compute operations, 
loads/stores and address manipulation operations become 
the bottleneck and account for approximately 70% of the 
total instructions.

Note the biggest gains were in IME and SIFT extrema cal-
culations. Both kernels rely on short integer add/subtract 
operations that are very low energy (relative to the multiply 
used in filtering and up-sampling). As previously discussed, 
for SIMD implementation the instruction overheads and 
data access energy are still large relative to the amount 
of computation done. Custom accelerators, on the other 
hand, are able to exploit the parallelism and data-reuse in 
their respective kernels, fully amortizing instruction and 
data fetch.

We can now better understand where the CE stands. The 
architecture of the CE is closely matched to the data-flow 
of convolution-based algorithms, therefore the instruction 
stream difference between fixed function units and the CE 
is very small. Compared to a SIMD implementation, the CE 
requires 8–15× less energy with the exception of Demosaic 
that shows an improvement of 4× while the performance to 
area ratio of CE is 5–6× better. Again Demosaic is at the low 
end of the gain as a consequence of the abundance of loads 
and stores. If we discount the effect of memory operations 
from Demosaic, assuming its output is pipelined into 
another convolution like stage in the image pipeline, the 
CE-based Demosaic is approximately 7× better than SIMD 
and within 6× of custom accelerator. The higher energy 
ratio compared to a custom implementation points up the 
costs of the more flexible communication in the general-
ized reduction.

However, for all the other applications the energy over-
head of the CE compared to fixed function units stands at a 
modest 2–3×, while the area overhead is just 2×. While these 
over-heads are small, to better understand the sources of 
these inefficiencies, Figures 8 and 9 create three different 
implementations of each application, moving from a cus-
tom implementation, to one with flexible registers, but fixed 
computation, and to the fully flexible CE.
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CE which supports a number of different algorithms from 
computational photography, image processing and video 
processing, all based on convolution-like patterns. A single 
CE design supports applications with convolutions of vari-
ous size, dimensions, and type of computation. To achieve 
energy efficiency, CE captures data-reuse patterns, elimi-
nates data transfer overheads, and enables a large num-
ber of operations per cycle. CE is within a factor of 2–3× of 
the energy and area efficiency of single-kernel accelerators 
and still provides an improvement of 8–15× over general-
purpose cores with SIMD extensions for most applications. 
While the CE is a single example, we hope that similar stud-
ies in other application domains will lead to other efficient, 
programmable, and specialized accelerators.
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