
APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 85

Convolution Engine:
Balancing Efficiency and Flexibility
in Specialized Computing
By Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos Kozyrakis, and Mark Horowitz

DOI:10.1145/2735841

Abstract
General-purpose processors, while tremendously versatile,
pay a huge cost for their flexibility by wasting over 99% of
the energy in programmability overheads. We observe that
reducing this waste requires tuning data storage and com-
pute structures and their connectivity to the data-flow and
data-locality patterns in the algorithms. Hence, by backing
off from full programmability and instead targeting key
data-flow patterns used in a domain, we can create efficient
engines that can be programmed and reused across a wide
range of applications within that domain.

We present the Convolution Engine (CE)—a programma-
ble processor specialized for the convolution-like data-flow
prevalent in computational photography, computer vision,
and video processing. The CE achieves energy efficiency by
capturing data-reuse patterns, eliminating data transfer over-
heads, and enabling a large number of operations per memory
access. We demonstrate that the CE is within a factor of 2–3×
of the energy and area efficiency of custom units optimized for
a single kernel. The CE improves energy and area efficiency
by 8–15× over data-parallel Single Instruction Multiple Data
(SIMD) engines for most image processing applications.

1. INTRODUCTION
Processors, whether they are the relatively simple RISC
cores in embedded platforms, or the multibillion transistor
CPU chips in Server/Desktop computers, are extremely ver-
satile computing machines. They can handle virtually any
type of workload ranging from web applications, personal
spreadsheets, image processing workloads, and embedded
control applications to database and financial applications.
Moreover, they benefit from well-established program-
ming abstractions and development tools, and decades of
programming knowledge making it very easy to code new
applications.

Processors, however, are also inefficient computing
machines. The overheads of predicting, fetching, decoding,
scheduling, and committing instructions account for most
of the power consumption in a general-purpose processor
core.2, 7, 16 As a result they often consume up to 1000× more
energy than a specialized hardware block designed to per-
form just that particular task. These specialized hardware
blocks also typically offer hundreds of times higher per-
formance using a smaller silicon area. Despite these large
inefficiencies, processors form the core of most computing
systems owing to their versatility and reuse.

Over decades, we have been able to scale up the perfor-
mance of general-purpose processors without using exces-
sive power, thanks to advances in semiconductor device
technology. Each new technology generation exponentially
reduced the switching energy of a logic gate enabling us
to create bigger and more complex designs with modest
increases in power. In recent years, however, the energy scal-
ing has slowed down,12 thus we can no longer scale proces-
sor performance as we used to do. Today we fundamentally
need to reduce energy waste if we want to scale performance
at constant power.

This paper presents a novel highly efficient processor archi-
tecture for computational photography, image processing, and
video processing applications, which we call the Convolution
Engine (CE). With the proliferation of cheap high quality
imagers, computational photography and computer vision
applications are expected to be critical consumer computa-
tion workloads in coming years. Some example applications
include annotated reality, gesture-based control, see-in the
dark capability, and pulse measurement.

Many of these applications, however, will require multiple
TeraOps/s of computation which is far beyond the capability
of general processor cores especially mobile processors on
a constrained power budget of less than 1 Watt. The three
orders of magnitude advantage in compute efficiency of
hardware accelerators, means that current mobile systems
use heterogeneous computing chips combining processors
and accelerators.11,15 An example accelerator is the video
codec hardware employed in the mobile SOCs. However,
these accelerators target either a single algorithm or small
variations on an algorithm. Handling the diverse applica-
tion set needed by these future smart devices requires a
more programmable computing solution. Our CE provides
that programmability while still keeping energy dissipation
close to dedicated accelerators.

Our design approach is based on the observation that
specialized units achieve most of their efficiency gains by tun-
ing data storage structures to the data-flow and data-locality
requirements of the algorithm. This tuning eliminates redun-
dant data transfers and facilitates creation of closely coupled

The original version of this paper is entitled “Convolution
Engine: Balancing Efficiency and Flexibility in Specialized
Computing” and was published in Proceedings of the 40th
Annual International Symposium on Computer Architecture,
June 2013.

http://doi.acm.org/10.1145/2735841

86 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

research highlights

data-paths and storage structures allowing hundreds of
low-energy operations to be performed for each instruc-
tion and data fetched. Processors can enjoy similar energy
gains if they target computational motifs and data-flow
patterns common to a wide-range of kernels in a domain.
Our CE implements a generalized map-reduce abstraction,
which describes a surprisingly large number of operations
in image processing domain. The resulting design achieves
up to two orders of magnitude lower energy consumption
compared to a general-purpose processor and comes within
2–3× of dedicated hardware accelerators.

The next section provides an overview of why general
processors consume so much power and the limitations
of existing optimization strategies. Section 3 then intro-
duces the convolution abstraction and the five application
kernels we target in this study. Section 4 describes the CE
architecture focusing primarily on features that improve
energy efficiency and/or allow for flexibility and reuse. We
then compare this CE to both general-purpose cores with
SIMD extensions and to highly customized solutions for
individual kernels in terms of energy and area efficiency.
Section 5 shows that the CE is within a factor of 2–3× of cus-
tom units and almost 10× better than the SIMD solution for
most applications.

2. BACKGROUND
The low efficiency of general-purpose processors is
explained in Figure 1, which compares the energy dissi-
pation of various arithmetic operations with the overall
instruction energy for an extremely simple RISC processor.
The energy dissipation of arithmetic operations that per-
form the useful work in a computation remains much lower
than the energy wasted in the instruction overheads such as
instruction fetch, decode, pipeline management, program
sequencing, etc. The overhead is even worse for media pro-
cessing applications which typically operate on short data
requiring just 0.2–0.5 pJ (90 nm) of energy per operation,
with the result that over 99% energy goes into overheads.

These overheads must be drastically reduced to increase
energy efficiency. That places two constraints on the proces-
sor design, (i) the processor must execute hundreds of oper-
ations per instruction to sufficiently amortize instruction
cost and (ii) the processor must also fetch little data, since
even a cache hit costs 25 pJ (90 nm) per memory fetch, com-
pared to 0.2–0.5 pJ for the arithmetic operations.

These two constraints seem contradictory as performing
hundreds of operations per cycle would generally necessitate
reading large amounts of data from the memory. These condi-
tions could be reconciled, however, for algorithms where most
instructions either operate on intermediate results produced
by previous instructions, or reuse most of the input data used
by the previous instructions. If an adequate storage structure
is in place to retain this “past data” in the processor data-path,
then large number of operations can be performed per instruc-
tion without needing frequent trips to the memory. Fortunately
compute bound applications including most image process-
ing and video processing algorithms are a good match for these
constraints, providing large data-parallelism and data-reuse.

Most high-performance processors today already include
SIMD units which are widely regarded as the most efficient
general-purpose optimization for compute intensive appli-
cations. SIMD units typically achieve an order of magnitude
energy reduction by simultaneously operating on many
data operands in a single cycle (typically 8–16). However, as
explained in Hameed et al.7 the resulting efficiency remains
two orders of magnitude less than specialized hardware
accelerators, as the SIMD model does not scale well to larger
degrees of parallelism.

To better understand the architectural limitations of tra-
ditional SIMD units, consider the two-dimensional sum of
absolute difference operation (SAD) operating on a 16-bit
8 × 8 block as shown in Listing 1.5 The 2D SAD operator is
widely employed in multimedia applications such as H.264
video encoder to find the closest match for a 2D image sub-
block in a reference image or video frame. Listing 1 carries
out this search for every location in a srchWinHeight × srch-
WinWidth search window in the reference frame, resulting
in four nested loops. All four loops are independent and can
be simultaneously parallelized. At the same time, each SAD
output substantially reuses the input data used to compute
previous outputs, both in vertical and horizontal directions.

However, a typical SIMD unit with a register row size of
128 bits is only able to operate on elements that fit in one
register row limiting the parallelism to the inner most loop.
Trying to scale up the SIMD width to gain more parallelism
requires either simultaneously reading multiple image rows
from the register file (to parallelize across the 2nd most-
inner loop), or simultaneously reading multiple overlapping
rows of image data (to parallelize across multiple horizontal
outputs). Neither support exists in the SIMD model.

RISC Instruction

Load/Store D-$ Overhead

Overhead ALU

ALU

Overhead + + + + + +

+

+

+

125 pJ

150 pJ

15–20 pJ

7 pJ

0.2–0.5 pJ

SP Floating Point

32-bit Addition

8-bit Addition

To get more than two orders of magnitude gain in efficiency

hundreds

Figure 1. Comparison of functional unit energy with that of a typical
RISC instruction in 90nm. Strategy for amortizing processor overheads
includes executing hundreds of low-power operations per instruction.

Listing 1. 2D 8 × 8 sum of absolute difference operation (SAD),
commonly employed in H.264 motion estimation.

for (sWinY = 0; sWinY < srchWinHeight; sWinY++){
for (sWinX = 0; sWinX < srchWinWidth; sWinX++){

sad = 0;
for (y = 0; y < 8; y++){

for (x = 0; x < 8; x++){
cY = y + sWinY; cX = x + sWinX;
sad += abs(ref[cY][cX] - cur[y][x]);

}
}
outSad[sWinY][sWinX] = sad;

}
}

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 87

Exploiting the data-reuse requires storing the complete
8 × 8 block in eight rows of the SIMD register file, so that
the data is locally available for computing subsequent out-
put pixels. This is straightforward in vertical direction, as
every new output just needs one new row and the seven old
rows could be reused. To get reuse in the horizontal direc-
tion, however, each of the eight rows must be shifted by one
pixel before computing each new output pixel, incurring
substantial instruction overhead. At the same time, since
the shifting process destroys the old pixels, we are limited
to getting reuse either in the vertical or horizontal direc-
tion but not both, with the result that each data item gets
fetched eight times from the memory, wasting too much
memory energy.

GPUs achieve a much higher degree of parallelism by using
a large number of simple SIMD cores, each with local regis-
ter resources, and very large memory bandwidth to maintain
high computational throughput. While that results in great
compute throughput, the energy consumption is also very
high thanks to large data access cost. Measuring the perfor-
mance and energy consumption of an optimized GPU imple-
mentation of H.264 SAD algorithm13 using GPUGPUSim
simulator1 with GPUWattch energy model,9 we ascertain that
the GPU implementation runs 40× faster compared to an
embedded 128-bit SIMD unit, but also consumes 30× higher
energy. That further illustrates the need to minimize memory
accesses and provide low-cost local data-accesses.

As the next section shows, the SAD operator belongs to a
large class of algorithms which can be described as convolu-
tion-like and have the desired parallelism and reuse charac-
teristics for efficient execution. Next section discusses this
computational abstraction and provides a number of exam-
ple applications.

3. COMPUTATIONAL MODEL
Equations (1) and (2) provide the definition of standard dis-
crete 1D and 2D convolutions. When dealing with images,
Img is a function from image location to pixel value, while f is
the filter applied to the image. Practical kernels reduce com-
putation (at a small cost of accuracy) by making the filter size
small, typically in the order of 3 × 3 to 8 × 8 for 2D convolution:

� (1)

� (2)

We generalize the concept of convolution by identifying
two components of the convolution: a map operation and a
reduce operation. In Equations (1) and (2), the map operation
is the multiplication that is done on pairs of pixel and tap
coefficient, and the reduce operation is the summation of all
these pairs to the output value at location [n, m]. Replacing
the map operation in Equation (2) from x · y to |x − y| while
leaving the reduce operation as summation, yields a sum of
absolute numbers (SAD) function which is used for H.264’s
motion estimation. Further replacing the reduce operation
from ∑ to max will yield a max of absolute differences opera-
tion. Equation (3) expresses the computation model of our

CE, where f, Map, and Reduce (“R” in Equation 3) are the
pseudo instructions, and c is the size of the convolution:

�
(3)

The convolution like data-flow works for many appli-
cations, but is sometimes limited by having a single asso-
ciative operation in the reduction. There are a number of
applications that have a data locality pattern similar to con-
volution, but need to combine results through a specific
graph of operations rather than simple reduction. These
applications can be handled by the CE by increasing the
complexity of the Reduce operator to enable noncommu-
tative functions, and allowing a different function to be
used at each reduction stage. This generalized combining
network extends the “reduction” stage to create a structure
that can input a large number of values and then compute a
small number of outputs through effectively a fused super
instruction as shown in Figure 2.

The down side of this extension is that the placement of
input into the combining tree is now significant; thus, to
realize the full potential of the new generalized reduce oper-
ator, a high level of flexibility is required in the data supply
network to move the needed data to the right position. This
is achieved by extending the definition of the map operator
to also support a data permutation network in addition to
the already supported set of compute operators. These new
enhancements to the map and reduce operators substan-
tially boost their generalizability and applicability and thus
increase the space of supported applications.

We now introduce a few kernels that we use in this paper
and discuss how each of them maps into the computing
abstractions we have defined above. Table 1 summarizes this
information.

3.1. Motion estimation
Motion estimation is a key component of many video codecs
including H.264, consuming about ˜90% of the execution
time for H.264 software implementations.4, 7 The kernel
operates on subblocks of a video frame, trying to find each
subblock’s location in a previous and/or future reference
frame of the video stream. In particular, in H.264, motion
estimation is computed in two steps:

Integer Motion Estimation (IME): IME searches for
the matching block in the reference image using the SAD

Input Input

Op Op Op Op

Super
InstructionOpOp

Op

Output Output

Figure 2. Generalized reduction unit fuses multiple operations into a
super instruction.

88 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

research highlights

operator previously described in Section 2. Note how SAD
fits quite naturally to a CE abstraction: the map function is
absolute difference and the reduce function is summation.

Fractional Motion Estimation (FME): FME refines the ini-
tial match obtained at the IME step to a quarter-pixel resolu-
tion. It first up-samples the block selected by IME, and then
performs a slightly modified variant of the SAD operation.
Up-sampling also fits nicely to the convolution abstraction
and actually includes two convolution operations: first,
the image block is up-sampled by two using a six-tap sepa-
rable 2D filter. This part is purely convolution. Second, the
resulting image is up-sampled by another factor of two by
interpolating adjacent pixels, which can be defined as a map
operator (to generate the new pixels) with no reduce.

3.2. SIFT
Scale Invariant Feature Transform (SIFT) looks for distinctive
features in an image.10 To ensure scale invariance, Gaussian
blurring and down-sampling is performed on the image to
create a pyramid of images at coarser and coarser scales.
A Difference-of-Gaussian (DoG) pyramid is then created by
computing the difference between every two adjacent image
scales. Features of interest are then found by looking at the
scale-space extrema in the DoG pyramid.10

Gaussian blurring and down-sampling are naturally 2D
convolution operations. Finding scale-space extrema is a 3D
stencil computation, but we can convert it into a 2D stencil
operation by interleaving rows from different images into a
single buffer. The extrema operation is mapped to convolu-
tion using compare as a map operator and logical AND as the
reduce operator.

3.3. Demosaic
Camera sensor output is typically a red, green, and blue
(RGB) color mosaic laid out in Bayer pattern.3 At each
location, the two missing color values are then interpo-
lated using the luminance and color values in surround-
ing cells. Because the color information is undersampled,
the interpolation is tricky; any linear approach yields color
fringes. We use an implementation of Demosaic that is
based upon adaptive color plane interpolation (ACPI),8
which computes image gradients and then uses a three-
tap filter in the direction of smallest gradient. While this
fits the generalize convolution flow, it requires a complex

“reduction” tree to implement the gradient-based selec-
tion. The data access pattern is also nontrivial since indi-
vidual color values from the mosaic must be separated
before performing interpolation.

4. CONVOLUTION ENGINE
Convolution operators are highly compute-intensive, par-
ticularly for large stencil sizes, and being data-parallel they
lend themselves to vector processing. However, as explained
earlier, existing SIMD units are limited in the extent to
which they can exploit the inherent parallelism and local-
ity of convolution due to the organization of their register
files. The CE overcomes these limitations with the help of
shift register structures. As shown in Figure 3 for the 2D con-
volution case, when such a storage structure is augmented
with an ability to generate multiple shifted versions of the
input data, it can fill 128 ALUs from just a small 16 × 8 2D
register with low access energy as well as area. Similar gains
are possible for 1D horizontal and 1D vertical convolutions.
As we will see shortly, the CE facilitates further reductions in
energy overheads by creating fused super-instructions intro-
duced in Section 3.

The CE is developed as a domain specific hardware exten-
sion to Tensilica’s extensible RISC cores.6 The extension
hardware is developed using Tensilica’s TIE language.14 The
next sections discuss the key blocks in the CE extension
hardware, depicted in Figure 4.

4.1. Register files
The 2D shift register is used for vertical and 2D convolution
flows and supports vertical row shift: one new row of pixel
data is shifted in as the 2D stencil moves vertically down
into the image. The 2D shift register provides simultaneous
access to all of its elements enabling the interface unit to
feed any data element to the ALUs. 1D shift register is used
to supply data for horizontal convolution flow. New image
pixels are shifted horizontally into the 1D register as the 1D
stencil moves over an image row.

The 2D Coefficient Register stores data that does not
change as the stencil moves across the image. This can be
filter coefficients, current image pixels in IME for perform-
ing SAD, or pixels at the center of Windowed Min/Max sten-
cils. The results of convolution operations are either written
back to the 2D Shift Register or the Output Register. A later

Table 1. Mapping kernels to convolution abstraction.

 Map Reduce Stencil sizes Data flow

IME SAD Abs diff Add 4 × 4 2D convolution
FME 1/2 pixel up-sampling Multiply Add 6 1D horizontal and vertical

convolution
FME 1/4 pixel up-sampling Average None – 2D matrix operation
SIFT Gaussian blur Multiply Add 9, 13, 15 1D horizontal and vertical convolution
SIFT DoG Subtract None – 2D matrix operation
SIFT extrema Compare Logical AND 9 × 3 2D convolution
Demosaic interpolation Multiply Complex 3 1D horizontal and vertical

convolution

Some kernels such as subtraction operate on single pixels and thus have no stencil size defined. We call these as matrix operations. There is no reduce step for these operations.

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 89

pattern and the functional units perform the arithmetic.
Interface units. The Interface Units (IF) arrange data from

the register files into a specific pattern needed by the map
operation. For 2D convolutions, multiple shifted 2D sub-
blocks can be simultaneously accessed from the 2D regis-
ter. Multiple block sizes such as 2 × 2, 4 × 4, 8 × 8, etc. are
supported and the appropriate size is selected based on
convolution kernel size. Similarly for vertical convolution,
multiple 2D register columns can be accessed in parallel,
with support for multiple column access sizes. Finally, the
1D IF supports accessing multiple shifted 1D blocks from
the 1D shift register for horizontal convolution. We are also
exploring a more generalized permutation layer to support
arbitrary maps.

Functional units. Since all data rearrangement is handled
by the interface unit, the functional units are just an array of
short fixed point two-input arithmetic ALUs. In addition to
multipliers, we support absolute difference to facilitate SAD
and other typical arithmetic operations such as addition,
subtraction, and comparison. The output of the ALU is fed
to the Reduce stage.

Reduce unit. The reduce part of the map-reduce operation
is handled by a programmable reduce stage. Based upon
the needs of our applications, we currently support arith-
metic and logical reduction stages. The degree of reduction
is dependent on the kernel size, for example a 4 × 4 2D ker-
nel requires a 16 to 1 reduction whereas 8 to 1 reduction is
needed for an 8-tap 1D kernel. Thus, the reduction stage is
implemented as a combining tree and outputs can be tapped
out from multiple stages of the tree.

To enable the creation of “super instructions” described
in Section 3, we augment the combining tree to enable
handle noncommutative operations by adding support for
diverse arithmetic operations at different levels of the tree.
This fusion increases the computational efficiency by reduc-
ing the number of required instructions and by eliminat-
ing temporary storage of intermediate data in register files.
Because this more complex data combination need not be
commutative, the right data (output of the map operation)
must be placed on each input to the combining network.
Thus, a “Data Shuffle Stage” is also added to the CE in the
form of a very flexible swizzle network that provides permu-
tations of the input data.

4.3. Other hardware
To facilitate vector operations on the convolution output,
we have added a 32-element SIMD unit. This unit interfaces
with the 2D Output Register and uses it as a Vector Register
file. This unit is wider than typical SIMD units, as it oper-
ates on intermediate data generated by convolution data
path and thus is not constrained by data memory accesses.
Despite being wider, the vector unit is still lightweight as
it only supports basic vector add and subtract type opera-
tions and has no support for higher cost operations such as
multiplications.

Because an application may perform computation that
conforms neither to the convolution block nor to the vector
unit, or may otherwise benefit from a fixed function imple-
mentation. If the designer wishes to build a customized

section shows how the output register file also works as the
vector register file for the vector unit shown in Figure 4.

4.2. Map and reduce logic
As described earlier we abstract convolution as a map and
reduce step that transforms each input pixel into an output
pixel. In our implementation, interface units and ALUs
work together to implement the map operation; the inter-
face units arrange the data as needed for the particular map

2D Shift Register 2D Register

R
ef

er
en

ce
 B

lo
ck

C
ur

re
nt

 B
lo

ckR0,0

R0,0

R0,1 R0,15

Generate “2D”
shifted versions

128 Multipliers/ALUs

Reduction

Out0 Out1

Multiplexer Broadcast

R7,0

R7,0 R7,7

R7,8

R0,7

R0,8 R0,6

C0,0 C0,7

C15,0

C0,0 C0,7

C15,0 C7,7

C7,7

R0,14

R0,15

R7,6 R7,14

R7,15

R7,1 R7,15

Figure 3. Implementation of 8 × 8 2D SAD operation that exploits
parallelism in all four loops of Listing 1. The reference block resides
in a 2D shift register while the current block is stored in a 2D
register. Because both registers allow 2D access of the 8 × 8 block,
64 ALUs can operate in parallel. To enable an even larger degree of
parallelism and to exploit data-reuse in the horizontal direction, the
shift register generates pairs of multiple overlapping 8 × 8 blocks
which are then fed to the ALU through a multiplexer. These pairs
allow parallel execution of 128 ALUs generating two outputs in
parallel. After the generation of four pairs of horizontal outputs, the
shift register shifts up by one to make room for a new row of search
window achieving vertical data-reuse.

Load/Store IF

2D Shift Register

1D Shift Register

Data
Shuffle
Stage

Horizontal
IF

SIMD ALUs
ALUs

REDUCE

MAP

ALU Input Port 1

ALU Input Port 2

Instruction Graph Fusion/Multi-
level Reduction Tree

Column
IF

2D IF 2D IF1D IF

2D Coefficient
Register

Output
Register file

Row Select

Figure 4. Block diagram of convolution engine. The interface units
(IF) connect the register files to the functional units and provide shifted
broadcast to facilitate convolution. Data shuffle (DS) stage combined
with instruction graph fusion (IGF) stage create the generalized
reduction unit, and is called the complex graph fusion unit.

90 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

research highlights

of values from 2D and coefficient registers, performs the
convolution and write the result into the row 0 of 2D output
register.

The code example in Listing 2 brings it all together and
implements a 2D 8 × 8 Filter. First the CE is set to perform
multiplication at MAP stage and addition at reduce stage
which are the required setting for filtering. Then the con-
volution size is set which controls the pattern in which data
is fed from the registers to the ALUs. Filter tap coefficients

unit for such computation, the CE allows the fixed function
block access to its Output Register File. This model is simi-
lar to a GPU where custom blocks are employed for raster-
ization and such, and that work alongside the shader cores.
For these applications, we created three custom functional
blocks to compute motion vector costs in IME and FME and
the Hadamard Transform in FME.

4.4. Resource sizing
Energy efficiency considerations and resource require-
ments of target applications drive the sizes of various
resources within CE. As shown in Hameed et al.,7 amor-
tizing the instruction cost requires performing hundreds
of ALU operations per instruction for media processing
applications based on short 8-bit Addition/Subtraction
operations. Many convolution flow applications are, how-
ever, based on higher energy multiplication operations.
Our analysis shows that for multiplication-based algo-
rithms, 50–100 operations per instruction are enough to
provide sufficient amortization. Increasing the number
of ALUs much further than that gives diminishing returns
and increases the size of storage required to keep these
units busy, thus increasing storage area and data-access
energy. Thus for this study we choose an ALU array size of
128 ALUs, and size the rest of the resources accordingly
to keep these ALUs busy. To provide further flexibility we
allow powering off half of the ALU array and compute
structures. The size and capability of each resource is pre-
sented in Table 2. These resources support filter sizes of
4, 8, and 16 for 1D filtering and 4 × 4, 8 × 8, and 16 × 16 for
2D filtering. Notice that that the register file sizes deviate
from power of 2 to efficiently handle boundary conditions
common in convolution operations.

4.5. Programming the convolution engine
CE is implemented as a processor extension and adds a
small set of instructions to the processor ISA. These CE
instructions can be issued as needed in regular C code
through compiler intrinsics. Table 3 lists the major CE
instructions. Configuration instructions set kernel param-
eters such as convolution size, ALU operation to use at Map
and Reduction stages, etc. Then, there are load and store
operations for each register resource. Finally, there are the
compute instructions, one for each of the three supported
convolution flows—1D horizontal, 1D vertical, and 2D.
For example the CONVOLV_2D instruction reads one set

Table 2. Sizes for various resources in CE.

 Resource sizes

ALUs 128 × 10 bit ALUs
1D shift register 80 × 10 bit
2D input shift register 16 rows × 36 cols × 10 bit
2D output shift register 16 rows × 36 cols × 10 bit
2D coefficient register 16 rows × 16 cols × 10 bit
Horizontal interface 4, 8, 16 kernel patterns
Vertical interface 4, 8, 16 kernel patterns
2D interface 4 × 4, 8 × 8, and 16 × 16 patterns
Reduction tree 4:1, 8:1, . . ., 128:1

 Description

SET_CE_OPS Set arithmetic functions for MAP and REDUCE
steps

SET_CE_OPSIZE Set convolution size
LD_COEFF_REG_n Load n bits to specified row of 2D coeff register
LD_1D_REG_n Load n bits to 1D shift register. Optional Shift left

LD_2D_REG_n Load n bits to top row of 2D shift register.
Optional shift row down

ST_OUT_REG_n Store top row of 2D output register to memory
CONVOLVE_1D_HOR 1D convolution step—input from 1D shift register
CONVOLVE_1D_VER 1D convolution step—column access to 2D shift

register
CONVOLVE_2D 2D convolution step with 2D access to 2D shift

register

Table 3. Major instructions added to processor ISA.

Listing 2. Example C code implements 8 × 8 2D filter for a vertical
image stripe and adds 2 to each output.

// Set MAP function = MULT , Reduce function = ADD
SET_CE_OPS (CE_MULT , CE_ADD);

// Set convolution size 8
SET_CE_OPSIZE(8);

// Load eight rows of eight 8-bit coefficients
// into Coeff Reg ’s rows 0 to 7
for(i = 0; i < 8; i++){

LD_COEFF_REG_128(coeffPtr , 0);
coeffPtr += coeffWidth;

}

// Load & shift seven rows of sixteen input pixels
// into 2D shift register
for(i = 0; i < 7; i++){

LD_2D_REG_128(inPtr , SHIFT_ENABLED);
inPtr += width;

}

// Filtering loop
for (y = 0; y < height; y++) {

// Load & Shift 16 more pixels
LD_2D_REG_128(inPtr , SHIFT_ENABLED);

// Filter first 8 locations. Because we have
// access to 128-ALUS , we can filter two 8x8
// blocks in parallel
for(RW_OFFSET = 0; RW_OFFSET < 8; RW_OFFSET+=2){

CONVOLVE_2D(RW_OFFSET , RW_OFFSET);
}

// Add 2 to row 0 of output register
SIMD_ADD_CONST (0, 2);

// Store 8 output pixels
ST_OUT_REG_64(outPtr);

inPtr += width;
outPtr += width;

}

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 91

are then loaded into the coefficient register. Finally, the
main processing loop repeatedly loads new input pixels
into the 2D shift register and issues 2D_CONVOLVE opera-
tions to perform filtering. While 16 new pixels are read with
every load, our 128-ALU CE configuration can only process
two 8 × 8 filtering operation per operation. Therefore four
2D_CONVOLVE operations are performed per iteration.
For illustration purposes we have added a SIMD instruction
which adds 2 to each output value produced by the convolu-
tion operation. The results from output register are written
back to memory.

Figure 5 maps this execution onto the CE hardware. The
8 × 8 coefficients are stored in the first eight rows of the
Coefficient Register File. Eight rows of image data are shifted
into the first eight rows of the 2D Shift register. Since we have
128 functional units, we can filter two 8 × 8 2D locations at
a time. Thus the 2D Interface Unit generates two shifted ver-
sions of 8 × 8 blocks, which are rearranged into 1D data and
fed to the ALUs. The functional units performs an element-
wise multiplication of each input pixel with the correspond-
ing coefficient and the output is fed to the Reduction stage.
The degree of reduction is determined by the filter size, which
in this case is 8 × 8; therefore, 64:1 reduction is chosen. The
two outputs of the reduction stage are normalized and writ-
ten to the Output Register.

It is important to note that unlike a stand-alone accel-
erator the sequence of operations in CE is completely
controlled by the C code which gives complete flexibil-
ity over the algorithm. For example, in the filtering code
above, it is possible for the algorithm to produce one CE
output to memory and then perform a number of non-CE
operations on that output before invoking CE to produce
another output.

5. EVALUATION
To evaluate the efficiency of the CE, we map each target
application described in Section 3 on a chip multiprocessor
(CMP) comprised of two CEs. To quantify the performance
and energy cost of such a programmable unit, we also built

custom heterogeneous chip multiprocessors (CMP) for each
of the three applications. These custom CMPs are based
around application-specific cores, each of which is highly
specialized for a specific kernel required by the application.
Both the CE and application-specific cores are built as a data-
path extension to the processor cores using Tensilica’s TIE
language.14 Tensilica’s TIE compiler uses this description to
generate simulation models and RTL for each extended pro-
cessor configuration.

To quickly simulate and evaluate the CMP configura-
tions, we created a multiprocessor simulation framework
that employs Tensilica’s Xtensa Modeling Platform (XTMP)
to perform cycle accurate simulation of the processors and
caches. For energy estimation we use Tensilica’s energy
explorer tool, which uses a program execution trace to give
a detailed analysis of energy consumption in the processor
core as well as the memory system. The estimated energy
consumption is within 30% of actual energy dissipation. To
account for interconnection energy, we created a floor plan
for the CMP and estimated the wire energies from that. That

Load/Store IF

2D Shift Register

8 Pixel Rows 8 × 8 Coeff
Block

16 × 16 × 10-bit

16 × 18 × 10-bit

16 × 18 × 10-bit40 × 10-bit

16 × 10-bit

64 × 20-bit

128 × 10-bit
128 × 10-bit

128 × 10-bit Multiplies

Up to 128:1
Reduce

16 × 10-bit
(2 × 64:1 Reductgion)

1D Shift Register
2D Coefficient

Register
Filtered Data

Data
Shuffle
Stage

Horizontal
IF

Column
IF

2D IF 2D IF

160-bit

1D IF

ALU input Port 1

256-bit 256-bit 256-bit
256-bit

ALU input Port 2

ALUs

Instruction Graph Fusion/
Multi-level Reduction Tree

REDUCE

MAP

SIMD ALUs

Output
Register file

Row Select

Figure 5. Executing a 8 × 8 2D filter on CE. The grayed out boxes
represent units not used in the example.

100

10

1

E
ne

rg
y

no
rm

al
iz

ed
 t

o
cu

st
om

(l
ow

er
 is

 b
et

te
r)

0

SIFT-DoG SIFT-Extrema H.264-FME H.264-IME Demosaic

Custom Convolution Engine SIMD

Figure 6. Energy consumption normalized to custom
implementation.

10.0

1.0

0.1

O
ps

/m
m

2 n
or

m
al

iz
ed

 t
o

cu
st

om
(h

ig
he

r
is

 b
et

te
r)

0.0

SIFT-DoG SIFT-Extrema H.264-FME H.264-IME Demosaic

Custom Convolution Engine SIMD

Figure 7. Ops/mm2 normalized to custom implementation: number
of image blocks each core processes in 1 second, divided by the area
of the core. For H.264 an image block is a 16 × 16 macroblock and for
SIFT and Demosaic it is a 64 × 64 image block.

92 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

research highlights

The figures show that the biggest impact on energy effi-
ciency takes place when the needed communication paths
become more complex. This overhead is more serious when
the fundamental computation energy is small. In general,
the communication path complexity grows with the size
of the storage structures, so over-provisioning registers as is
often needed in a programmable unit hurts efficiency. This
energy overhead is made worse since such structures not
only require more logic in terms of routing and muxing but
also have a direct impact on the leakage energy. On the other
hand, more flexible functional units have small overheads,
which provides flexibility at low cost.

6. CONCLUSION
As specialization emerges as the main approach to address-
ing the energy limitations of current architectures, there is
a strong desire to make maximal use of these specialized
engines. This in turn argues for making them more flex-
ible, and user accessible. While flexible specialized engines
might sound like an oxymoron, we have found that focus-
ing on the key data-flow and data-locality patterns within
broad domains allows one to build a highly energy efficient
engine, that is, still user programmable. We presented the

interconnection energy was then added to energy estimates
from Tensilica tools. The simulation results employ 90 nm
technology at 1.1 V operating voltage with a target frequency
of 450 MHz. All units are pipelined appropriately to achieve
the frequency target.

Figures 6 and 7 compare the performance and energy dis-
sipation of the proposed CE against a 128-bit data-parallel
(SIMD) engine and the custom accelerator implementation
for each of the five algorithms of interest. In most cases
we used the SIMD engine as a 16-way 8-bit data-path, but
in a few examples we created 8-way 16-bit data-paths. For
our algorithms, making this unit wider did not change the
energy efficiency appreciably.

The fixed function data points truly highlight the power
of customization: for each application a customized
accelerator requires 8–50× less energy compared to SIMD
engine. Performance per unit area is also 8–30× higher
than the SIMD implementation. Demosaic achieves the
smallest improvement (8×) because it generates two new
pixel values for every pixel that it loads from the memory.
Therefore, after the customization of compute operations,
loads/stores and address manipulation operations become
the bottleneck and account for approximately 70% of the
total instructions.

Note the biggest gains were in IME and SIFT extrema cal-
culations. Both kernels rely on short integer add/subtract
operations that are very low energy (relative to the multiply
used in filtering and up-sampling). As previously discussed,
for SIMD implementation the instruction overheads and
data access energy are still large relative to the amount
of computation done. Custom accelerators, on the other
hand, are able to exploit the parallelism and data-reuse in
their respective kernels, fully amortizing instruction and
data fetch.

We can now better understand where the CE stands. The
architecture of the CE is closely matched to the data-flow
of convolution-based algorithms, therefore the instruction
stream difference between fixed function units and the CE
is very small. Compared to a SIMD implementation, the CE
requires 8–15× less energy with the exception of Demosaic
that shows an improvement of 4× while the performance to
area ratio of CE is 5–6× better. Again Demosaic is at the low
end of the gain as a consequence of the abundance of loads
and stores. If we discount the effect of memory operations
from Demosaic, assuming its output is pipelined into
another convolution like stage in the image pipeline, the
CE-based Demosaic is approximately 7× better than SIMD
and within 6× of custom accelerator. The higher energy
ratio compared to a custom implementation points up the
costs of the more flexible communication in the general-
ized reduction.

However, for all the other applications the energy over-
head of the CE compared to fixed function units stands at a
modest 2–3×, while the area overhead is just 2×. While these
over-heads are small, to better understand the sources of
these inefficiencies, Figures 8 and 9 create three different
implementations of each application, moving from a cus-
tom implementation, to one with flexible registers, but fixed
computation, and to the fully flexible CE.

3.50

E
ne

rg
y

no
rm

al
iz

ed
 t

o
fix

ed
 k

er
ne

l 3.00

2.50

2.00

1.50

1.00

0.50

0.00

Fixed Kernel Flexible Kernel Size Flexible Size and Pattern Full flexibility

SIFT-DoG SIFT-Extrema H.264-FME H.264-IME

Figure 8. Change in energy consumption as programmability is
incrementally added to the core.

3.50

4.00

4.50

A
re

a
no

rm
al

iz
ed

 t
o

fix
ed

 k
er

ne
l

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Fixed Kernel Flexible Kernel Size Flexible Size and Pattern Full flexibility

SIFT-DoG SIFT-Extrema H.264-FME H.264-IME

Figure 9. Increase in area as programmability is incrementally added
to the core.

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 93

CE which supports a number of different algorithms from
computational photography, image processing and video
processing, all based on convolution-like patterns. A single
CE design supports applications with convolutions of vari-
ous size, dimensions, and type of computation. To achieve
energy efficiency, CE captures data-reuse patterns, elimi-
nates data transfer overheads, and enables a large num-
ber of operations per cycle. CE is within a factor of 2–3× of
the energy and area efficiency of single-kernel accelerators
and still provides an improvement of 8–15× over general-
purpose cores with SIMD extensions for most applications.
While the CE is a single example, we hope that similar stud-
ies in other application domains will lead to other efficient,
programmable, and specialized accelerators.

Acknowledgments
This material is based upon work supported by the Defense
Advanced Research Projects Agency under Contract No.
HR0011-11-C-0007. Any opinions, findings, and conclusion
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency.�

Tsai, C.-H., Chen, C.-Y., Chen, T.-W.,
Chen, L.-G. Analysis and architecture
design of an HDTV720p 30 frames/
sec H.264/AVC encoder. IEEE Trans.
Circuits Syst. Video Technol. 16, 6
(2006), 673–688.

	 5.	 Corbal, J., Valero, M., Espasa, R.
Exploiting a new level of DLP
in multimedia applications. In
Proceedings of the 32nd Annual
International Symposium on
Microarchitecture (Nov. 1999), 72–79.

	 6.	 Gonzalez, R. Xtensa: A configurable
and extensible processor. Micro
IEEE 20, 2 (Mar. 2000), 60–70.

	 7.	 Hameed, R., Qadeer, W., Wachs, M.,
Azizi, O., Solomatnikov, A., Lee, B.C.,
Richardson, S., Kozyrakis, C., Horowitz,
M. Understanding sources of
inefficiency in general-purpose chips.
In ISCA ’10: Proceedings of the 37th
Annual International Symposium on
Computer Architecture (2010), ACM.

	 8.	 Hamilton, J.F., Adams, J.E. Adaptive
Color Plane Interpolation in Single
Sensor Color Electronic Camera. US
Patent Application No. 5629734 (1997).

	 9.	 Leng, J., Gilani, S., Hetherington, T.,
Tantawy, A.E., Kim, N.S., Aamodt, T.M.,
Reddi, V.J. GPUWattch: Enabling
energy optimizations in GPGPUs. In
ISCA 2013: International Symposium

on Computer Architecture (2013).
	10.	 Lowe, D. Distinctive image features

from scale-invariant keypoints. Int.
J. Comput. Vision 60, 2 (2004), 91–110.

	11.	 NVIDIA Inc. Tegra mobile
processors. http://www.nvidia.com/
object/tegra-4-processor.html.

	12.	 Shacham, O., Azizi, O., Wachs, M.,
Qadeer, W., Asgar, Z., Kelley, K.,
Stevenson, J., Solomatnikov A.,
Firoozshahian, A., Lee, B., Richardson, S.,
 Horowitz, M. Rethinking digital design:
Why design must change. IEEE Micro
30, 6 (Nov. 2010), 9–24.

	13.	 Stratton, J.A., Rodrigues, C., Sung, I.-J.,
Obeid, N., Chang, L.W., Anssari, N., Liu,
G.D., Hwu, W.-M.W. Parboil: A Revised
Benchmark Suite for Scientific and
Commercial Throughput Computing.
IMPACT Technical Report. In
IMPACT-12-01, 2012.

	14.	 Tensilica Inc. Tensilica
Instruction Extension (TIE)
Language Reference Manual.

	15.	 Texas Instruments Inc. OMAP
5 platform. www.ti.com/omap.

	16.	 Venkatesh, G., Sampson, J., Goulding, N.,
Garcia, S., Bryksin, V., Lugo-Martinez, J.,
Swanson, S., Taylor, M.B.
Conservation cores: Reducing the
energy of mature computations.
In ASPLOS’10 (2010), ACM.

Wajahat Qadeer and Rehan Hameed
({wqadeer, rhameed}@gmail.com),
Palo Alto, CA.

Ofer Shacham (shacham@alumni.
stanford.edu), Google, Mountain View, CA.

Preethi Venkatesan (preethiv@stanford.
edu), Intel Corporation, Santa Clara, CA.

Christos Kozyrakis and Mark Horowitz
({kozyraki, horowitz}@stanford.edu),
Stanford University, Stanford, CA.

References
	 1.	 Bakhoda, A., Yuan, G., Fung, W.W.L.,

Wong, H., Aamodt, T.M. Analyzing
CUDA workloads using a detailed
GPU simulator. In ISPASS: IEEE
International Symposium on
Performance Analysis of Systems
and Software (2009).

	 2.	 Balfour, J., Dally, W., Black-Schaffer, D.,
Parikh, V., Park, J. An energy-efficient
processor architecture for embedded
systems. Comput. Architect. Lett. 7, 1
(2007), 29–32.

	 3.	 Bayer, B. Color Imaging Array. US
Patent Application No. 3971065 (1976).

	 4.	 Chen, T.-C., Chien, S.-Y., Huang, Y.-W., ©ACM 0001-0782/14/1100 $15.00.

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

