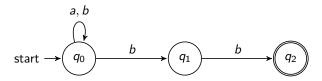
Non-deterministic Finite Automata

Non-deterministic Finite Automata (NFA)

Regular Languages, NFAs and DFAs

Non-deterministic finite automaton (NFA)



 $\delta(q, a)$ is not one state, but a set of states.

δ	а	b
q_0	$\{q_0\}$	$\{q_0, q_1\}$
$ q_1 $	Ø	$\{q_2\}$
<i>q</i> ₂	Ø	Ø

Non-deterministic Finite Automata (NFA)

 $\begin{array}{ll} M \text{ is a NFA over } \Sigma \text{ if } M = (Q, q_0, \delta, F) \text{ with} \\ Q & \text{ is a finite set of states} \\ q_0 \in Q & \text{ is the initial state} \\ F \subseteq Q & \text{ is a finite set of final states} \\ \delta : Q \times \Sigma \to \mathcal{P}(Q) & \text{ is the transition function} \\ [\mathcal{P}(Q) \text{ denotes the collection of subsets of } Q] \end{array}$

Reading function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ (multi-step transition)

$$\delta^*(q, \lambda) = \{q\}$$

$$\delta^*(q, aw) = \{q' \mid q' \in \delta^*(p, w) \text{ for some } p \in \delta(q, a)\}$$

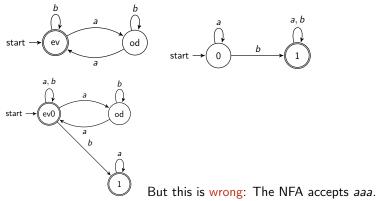
$$= \bigcup_{p \in \delta(q, a)} \delta^*(p, w)$$

The language accepted by M, notation $\mathcal{L}(M)$, is:

 $\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q \in \delta^*(q_0, w) \text{ such that } q \in F \}$

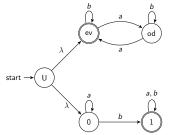
Union of languages of NFAs

Example Suppose we want to have an NFA for $L_1 \cup L_2 = \{w \mid |w|_a \text{ is even or } |w|_b \ge 1\}$ First idea: put the two machines "non-deterministically in parallel"



NFAs with silent steps: NFA- λ

We add λ -transitions or 'silent steps' to NFAs The correct union of M_1 and M_2 is:



In an NFA- $\!\lambda$ we allow

$$\delta(q,\lambda)=q'$$

for $q \neq q'$. That means

$$\delta: Q imes (\Sigma \cup \{\lambda\}) o \mathcal{P}(Q)$$

NFA- λ (definition)

 $\begin{array}{ll} M \text{ is an NFA-}\lambda \text{ over } \Sigma \text{ if } M = (Q, q_0, \delta, F) \text{ with} \\ Q & \text{ is a finite set of states} \\ q_0 \in Q & \text{ is the initial state} \\ F \subseteq Q & \text{ is a finite set of final states} \\ \delta : Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q) & \text{ is the transition function} \end{array}$

The λ -closure of a state q, λ -closure(q), is the set of states reachable with only λ -steps.

Reading function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ (multi-step transition)

$$\begin{split} \delta^*(q,\lambda) &= \lambda \text{-closure}(q) \\ \delta^*(q,aw) &= \{q' \mid \exists p \in \lambda \text{-closure}(q) \exists r \in \delta(p,a) \, (q' \in \delta^*(r,w)) \} \\ &= \bigcup_{p \in \lambda \text{-closure}(q)} \bigcup_{r \in \delta(p,a)} \delta^*(r,w) \end{split}$$

The language accepted by M, notation $\mathcal{L}(M)$, is:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q \in \delta^*(q_0, w) \text{ such that } q \in F \}$$

Kleene's Theorem (announced last lecture)

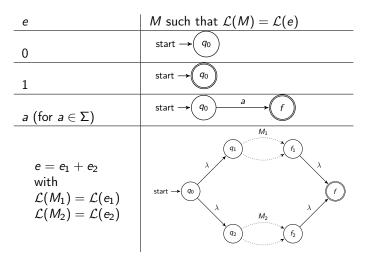
Theorem

The languages accepted by DFAs are exactly the regular languages We will prove this as follows:

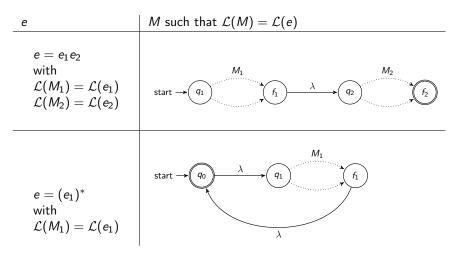
- 1. For every regular expression e there is an NFA- λ M such that $\mathcal{L}(e)=\mathcal{L}(M)$
- 2. For every NFA- λ *M* there is an NFA *M'* such that $\mathcal{L}(M) = \mathcal{L}(M')$
- 3. For every NFA *M* there is a DFA \overline{M} such that $\mathcal{L}(M) = \mathcal{L}(\overline{M})$
- 4. For every DFA *M* there is a regexp *e* such that $\mathcal{L}(M) = \mathcal{L}(e)$.

So: reg expr, DFA, NFA, NFA- λ all characterise the same languages!

From regular expression to NFA- λ



Regexp to NFA- λ (continued)



Regular languages accepted by an NFA- λ

Proposition. For every regular expression e there is an NFA- $\lambda~M_e$ such that

$$\mathcal{L}(M_e) = \mathcal{L}(e).$$

Proof. Apply the toolkit. M_e can be found by induction on the structure of e: First do this for the simplest regular expressions. For a composed regular expression compose the automata.

Corollary. For every regular language *L* there is an NFA- λ *M* that accepts *L* (so $\mathcal{L}(M) = L$).

From NFA- λ to NFA

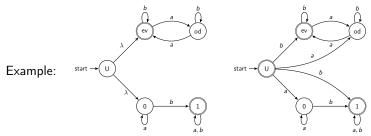
• if there is a path

$$q_1 \xrightarrow{\lambda} q_2 \xrightarrow{\lambda} \dots \xrightarrow{\lambda} q_n \xrightarrow{a} q'$$

then add

$$q_1 \stackrel{a}{
ightarrow} q'$$

• a state is accepting if reaches an accepting state via λ -steps



From NFA- λ to NFA

Given an NFA- λ $M = (Q, \delta, q_0, F)$ we build the NFA

$$M'=(Q,ar{\delta},q_0,ar{F})$$

where

•
$$\overline{\delta}(q, a) = \bigcup_{p \in \lambda \text{-closure}(q)} \delta(p, a).$$

•
$$ar{F} = \{q \in Q \mid \lambda ext{-closure}(q) \cap F \neq \emptyset\}$$
 and

Theorem

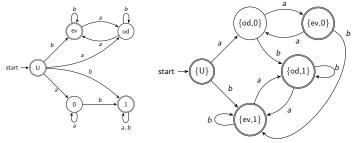
Given an NFA- λ $M = (Q, \delta, q_0, F)$, the corresponding automaton $M' = (Q, \overline{\delta}, q_0, \overline{F})$ after elimination of λ -transitions accepts the same language.

From NFA to DFA

We can transform any NFA into a DFA that accepts the same language. Idea:

- Keep track of the set of all states you can go to!
- States of the DFA are sets-of-states from the original NFA.
- A set of states is final if one of the members is final.

Example $L = \{w \mid |w|_a \text{ is even or } |w|_b \ge 1\}$



Eliminating non-determinism

Let *M* be a NFA given by (Q, q_0, δ, F) Define the DFA \overline{M} as $(\overline{Q}, \overline{q_0}, \overline{\delta}, \overline{F})$ where

$$\overline{Q} = \mathcal{P}(Q)$$

$$\overline{q_0} = \{q_0\}$$

$$\overline{\delta}(H, a) = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q,$$

$$\overline{F} = \{H \subseteq Q \mid H \cap F \neq \emptyset\}$$

Correctness

Given M, an NFA, we have defined the DFA \overline{M} by

$$\overline{Q} = \mathcal{P}(Q)$$

$$\overline{q_0} = \{q_0\}$$

$$\overline{\delta}(H, a) = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q,$$

$$\overline{F} = \{H \subseteq Q \mid H \cap F \neq \emptyset\}$$

Theorem M and \overline{M} accept the same languages.

Proof: This follows from Lemma

$$\delta^*(q,w)\cap F
eq \emptyset \iff \overline{\delta}^*(\{q\},w)\in \overline{F}$$

(Take $q := q_0$)

Proof of the Lemma: induction on w, considering the cases $w = \lambda$ and w = au.

Equivalence of regexp, DFA, NFA and NFA- λ

Theorem

The class of regular languages is (equivalently) characterized as

- 1. The languages described by a regular expression
- 2. The languages accepted by an NFA- λ
- 3. The languages accepted by an NFA
- 4. The languages accepted by a DFA