
11. Digraphs

The concept of digraphs (or directed graphs) is one of the richest theories in graph theory,
mainly because of their applications to physical problems. For example, flow networks
with valves in the pipes and electrical networks are represented by digraphs. They are
applied in abstract representations of computer programs and are an invaluable tools in the
study of sequential machines. They are also used for systems analysis in control theory.
Most of the concepts and terminology of undirected graphs are also applicable to digraphs,
and hence in this chapter more emphasis will be given to those properties of digraphs that
are not found in undirected graphs.

There are two different treatments of digraphs—one can be found in the book by Har-
ray, Norman and Cartwright [191] and the other in the book by Berge [18]. The former
discusses the application of digraphs to sociological problems, and the latter gives a com-
prehensive mathematical treatment. One can also refer to the books by N. Deo [63], Harary
[104], Behzad, Chartrand and Lesniak-Foster [16], and Buckley and Harary [42].

11.1 Basic Definitions

Digraphs (Directed graphs): A digraph D is a pair (V, A), where V is a nonempty set
whose elements are called the vertices and A is the subset of the set of ordered pairs of
distinct elements of V . The elements of A are called the arcs of D (Fig. 11.1(a)).

Multidigraphs: A multidigraph D is a pair (V, A), where V is a nonempty set of vertices
and A is a multiset of arcs, which is a multisubset of the set of ordered pairs of distinct
elements of V . The number of times an arc occurs in D is called its multiplicity and arcs
with multiplicity greater than one are called multiple arcs of D (Fig. 11.1(b)).

General digraphs: A general digraph D is a pair (V, A), where V is a nonempty set
of vertices, and A is a multiset of arcs, which is a multisubset of the cartesian product of
V with itself. An arc of the form uu is called a loop of D and arcs which are not loops are
called proper arcs of D. The number of times an arc occurs is called its multiplicity. A
loop with multiplicity greater than one is called a multiple loop (Fig. 11.1(c)).
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Oriented graph: A digraph containing no symmetric pair of arcs is called an oriented
graph (Fig. 11.1(d)).

Fig. 11.1

For u, v ∈V , an arc a = (u, v) ∈ A is denoted by uv and implies that a is directed from u

to v. Here, u is the initial vertex (tail) and v is the terminal vertex (head). Also we say that
a joins u to v; a is incident with u and v; a is incident from u and a is incident to v; and u

is adjacent to v and v is adjacent from u. In case both uv and vu belong to A, then uv and
vu are called a symmetric pair of arcs. For any v ∈ V , the number of arcs incident to v is
the indegree of v and is denoted by d−(v). The number of arcs incident from v is called the
outdegree of v and is denoted by d+(v). Berge calls indegree and outdegree as inner and
outer-demi degrees. The total degree (or simply degree) of v is d(v) = d−(v)+d+(v).

We define N+(v) and N−(v) by

N+(v) = {u ∈V : vu ∈ A} and N−(v) = {u ∈V : uv ∈ A}.

If d(v) = k for every v∈V , then D is said to be a k-regular digraph. If for every v∈V, d−(v) =
d+(v), the digraph is said to be an isograph or a balanced digraph. We note that an isograph
is an even degree digraph, but not necessarily regular. Also, every symmetric digraph is an
isograph. Edmonds and Johnson [70] call isographs as asymmetric digraphs and Berge [23]
calls them pseudo-symmetric graphs. Kotzig [137, 138] calls an anti-symmetric isograph
as oriented-in-equilibrium or a ρ-graph.

A vertex v for which d+(v) = d−(v) = 0 is called an isolate. A vertex v is called a trans-
mitter or a receiver according as d+(v) > 0, d−(v) = 0 or d+(v) = 0, d−(v) > 0. A vertex v is
called a carrier if d+(v) = d−(v) = 1.

Underlying graph of a digraph: Let D = (V, A) be a digraph. The graph G = (V, E),
where uv ∈ E if and only if uv or vu or both are in A, is called the underlying graph of D.
This is also called the covering graph C(D) of D. Here we denote C(D) by G(D) or simply
by G.

In case G = (V, E) is a graph, the digraph with vertex set V and a symmetric uv whenever
uv ∈ E, is called the digraph corresponding to G, and is denoted by D(G), or D. Clearly,
D(G) is a symmetric digraph. An oriented graph obtained from the graph G = (V, E) by
replacing each edge uv ∈ E by an arc uv or vu, but not both is called an orientation of G and
is denoted by O(G) or O.
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Complete symmetric digraph: A digraph D = (V, A) is said to be complete if both
uv and vu ∈ A, for all u, v ∈ V . Obviously this corresponds to Kn, where |V | = n, and is
denoted by K∗

n . A complete antisymmetric digraph, or a complete oriented graph is called
a tournament. Clearly, a tournament is an orientation of Kn (Fig. 11.2).

Fig. 11.2

We note that the number of arcs in K∗
n is n (n−1) and the number of arcs in a tournament

is
n(n−1)

2
.

11.2 Digraphs and Binary Relations

Let A and B be nonempty sets. A (binary) relation R from A to B is a subset of A×B. If
R ⊆ A×B and (a, b) ∈ R, where a ∈ A, b ∈ B, we say a “is related to” b by R, and we write
aRb. If a is not related to b by R, we write a R/ b. A relation R defined on a set X is a subset
of X ×X . For example, less than, greater than and equality are the relations in the set of
real numbers. The property “is congruent to” defines a relation in the set of all triangles in
a plane. Also, parallelism defines a relation in the set of all lines in a plane.

Let R define a relation on a nonempty set X . If R relates every element of X to itself, the
relation R is said to be reflexive. A relation R is said to be symmetric if for all xi x j ∈X , xi R x j

implies x j R xi. A relation R is said to be transitive if for any three elements xi, x j and xk in
X , xiRx j and x j R xk imply xi R xk. A binary relation is called an equivalence relation if it is
reflexive, symmetric and transitive.

A binary relation R on a set X can always be represented by a digraph. In such a repre-
sentation, each xi ∈ X is represented by a vertex xi and whenever there is a relation R from
xi to x j, an arc is drawn from xi to x j, for every pair (xi, x j). The digraph in Figure 11.3
represents the relation is less than, on a set consisting of four numbers 2, 3, 4, 6.

Fig. 11.3
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We note that every binary relation on a finite set can be represented by a digraph without
parallel edges and vice versa.

Clearly, the digraph of a reflexive relation contains a loop at every vertex (Fig. 11.4). A
digraph representing a reflexive binary relation is called a reflexive digraph.

Fig 11.4

The digraph of a symmetric relation is a symmetric digraph because for every arc from
xi to x j, there is an arc from x j to xi. Figure 11.5 shows the digraph of an irreflexive and
symmetric relation on a set of three elements.

Fig. 11.5

A digraph representing a transitive relation on its vertex set is called a transitive digraph.
Figure 11.6 shows the digraph of a transitive, which is neither reflexive, nor symmetric.

Fig. 11.6

A binary relation R on a set M can also be represented by a matrix, called a relation
matrix. This is a (0, 1), n×n matrix MR = [mi j], where n is the number of elements in M,
and is defined by

mi j =

{

1 i f xi R x j is true,
0 , otherwise.
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Isomorphic digraphs: Two digraphs are said to be isomorphic if their underlying
graphs are isomorphic and the direction of the corresponding arcs are same. Two non-
isomorphic digraphs are shown in Figure 11.7.

Fig. 11.7

Subdigraph: Let D = (V, A) be a digraph. A digraph H = (U, B) is the subdigraph of D

whenever U ⊆V and B ⊆ A. If U = V , the subdigraph is said to be spanning.

Complement of a digraph: The complement D = (V, A) of the digraph D = (V, A) has
vertex set V and a ∈ A if and only if a /∈ A. That is, D is the relative complement of D in K∗

n ,
where |V |= n.

Converse digraph: The converse D′ = (V, A′) of the digraph D = (V, A) has vertex set
V and a = uv∈ A′ if and only if a′ = vu ∈ A. That is, A′ is obtained by reversing the direction
of each arc of D. Clearly, (D′)′ = D′′ = D.

A digraph D is self-complementary if D ∼= D and D is said to be self-converse if D ∼= D′.
A digraph D is said to be self-dual if D ∼= D ∼= D′.

11.3 Directed Paths and Connectedness

Directed walks: A (directed) walk in a digraph D = (V A) is a sequence v0 a1 v1 a2 . . . ak vk,
where vi ∈V and ai ∈ A are such that ai = vi−1 vi for 1 ≤ i≤ k, no arc being repeated. As there
is only one arc of the form vi v j, the walk can also be represented by the vertex sequence
v0v1 . . .vk. A vertex may appear more than once in a walk. Clearly, the length of the walk
is k. If v0 6= vk, the walk is open, and if v0 = vk, the walk is closed. A walk is spanning if
V = {v0, . . ., vk}.

A (directed) path is an open walk in which no vertex is repeated. A (directed) cycle is a
closed walk in which no vertex is repeated. A digraph is acyclic if it has no cycles.

A semiwalk is a sequence v0a1v1a2 . . .akvk with vi ∈V and ai ∈A such that either ai = vi−1vi

or aivivi−1 and no arc is repeated. The length of the semiwalk is k. If v0 6= vk, the semiwalk
is open, and if vo = vk, the semiwalk is closed. If no vertex is repeated in an open (closed)
semiwalk, it is called a semi path (semicycle).

A spanning path of a digraph is called a Hamiltonian path and a spanning cycle is called
a Hamiltonian cycle. A digraph with a Hamiltonian cycle is said to be Hamiltonian.
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Fig. 11.8

In Figure 11.8, v1 a1 v2 a2 v3 a4 v4 is an open walk, v1 a1 v2 a3 v3 a4 v4 is semiwalk, v1 a1 v2 a8 v4

a5 v5 is a path and v1 a1 v2 a8 v4 a5 v5 a6 v1 is a cycle.
In a digraph D = (V, A), a vertex u is said to be joined to a vertex v, if there is a semipath

from u to v. We note that the relation ‘is joined to’ is reflexive, symmetric and transitive,
and therefore is an equivalence relation on V . A vertex u is said to be reachable from a
vertex v, if there is a path from v to u. The relation ‘is reachable from’ is reflexive and
transitive, but not symmetric, since there may or may not be a path from u to v. A vertex v

is called a source of D if every vertex of D is reachable from v, and v is called a sink of D,
if v is reachable from every other vertex.

Principle of duality for digraphs

While changing a digraph D to its converse D′, we observe that the properties about D

get changed to the corresponding properties about D′. When D′ is changed to D′′ = D, the
original properties of D are obtained. Such type of a pair of properties are called dual
properties, (transmitter, receiver), (source, sink), (indegree, outdegree), (isolate, isolate)
and (carrier, carrier). The dual of a statement P about a digraph is the statement P′ obtained
from P by changing every concept in P to its dual. For any statements P and Q for digraphs,
P ⇒ Q in D is true if and only if P′ ⇒ Q′ in D′ and for any digraph D there is a converse D′.
Therefore for every result in digraphs we get a dual result by changing every property to
its dual. This is called the principle of duality for digraphs.

Definition: A digraph is said to be strongly connected or strong, if every two of its
distinct vertices u and v are such that u is reachable from v and v is reachable from u.
A digraph is unilaterally connected or unilateral, if either u is reachable from v or v is
reachable from u and is weakly connected or weak, if u and v are joined by a semipath.
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In Figure 11.9, (a) shows a strong digraph, (b) a unilateral digraph and (c) a weak digraph.

Fig. 11.9

A digraph is said to be disconnected if it is not even weak. A digraph is said to be strictly
weak if it is weak, but not unilateral. It is strictly unilateral, if it is unilateral but not strong.

Two vertices of a digraph D are said to be

i. 0-connected if there is no semipath joining them,

ii. 1-connected if there is a semipath joining them, but there is no u−v path or v−u path,

iii. 2-connected if there is a u− v or a v−u path, but not both,

iv. 3-connected if there is u− v path and a v−u path.

Definition: An arc sequence in a digraph D is an alternating sequence of vertices and
arcs of D.

The following results characterise various types of connectivity in digraphs.

Theorem 11.1 A digraph is strong if and only if it has a spanning closed arc sequence.

Proof

Necessity Let D = (V, A) be a strong digraph with V = {v1, v2, . . ., vn}. Then there is an
arc sequence from each vertex in V to every other vertex in V . Therefore, there exists in D,
arc sequences Q1, Q2, . . ., Qn−1 such that the first vertex of Qi is vi and the last vertex of Qi

is vi+1, for i = 1, 2, . . . , n−1. Also, there exists an arc sequence, say Qn , with first vertex
vn and the last vertex v1. Then the arc sequence obtained by traversing the arc sequences
Q1, Q2, . . .,Qn in succession is a spanning closed arc sequence of D.

Sufficiency Let u and v be two distinct vertices of V . If v follows u in any spanning
closed arc sequence, say Q of D, then there exists a sequence of the arcs of Q forming an
arc sequence from u to v. If u follows v in Q, then there is an arc sequence from u to the
last vertex of Q and an arc sequence from that vertex to v. An arc sequence from u to v is
then obtained by traversing these two arc sequences in succession. q

Theorem 11.2 A digraph D is unilateral if and only if it has a spanning arc sequence.
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Proof

Necessity Assume D is unilateral. Let Q be an arc sequence in D which contains maxi-
mum number of vertices and let Q begin at the vertex v1 of D and end at the vertex v2 of D.
If Q is a spanning arc sequence, there is nothing to prove. Assume that Q is not a spanning
arc sequence. Then there exists a vertex, say u of D that is not in Q. Also in D, there is
neither an arc sequence from u to v1, nor from v2 to u. Since D is unilateral and does not
contain an arc sequence from u to v1, D contains an arc sequence from v1 to u.

Let w(6= v2) be the last vertex of Q from which an arc sequence from w to u exists in
D. Let Q1 be an arc sequence from w to u in D. Let z be the vertex in D which is the
immediate successor of the last appearance of w in Q. Clearly, D does not contain an arc
sequence from z to u. Since D is unilateral, there is an arc sequence, say Q2 from u to z in
D. Traversing Q from v1 to the last appearance of w, then traversing u, then traversing Q2

to vertex z and finally traversing Q to v2, we obtain an arc sequence from v1 to v2 which has
more distinct vertices than Q. This is a contradiction and thus Q is a spanning arc sequence
in D (Fig. 11.10).

The sufficiency follows from the definition. q

Fig. 11.10

Theorem 11.3 A digraph is weak if and only if it has a spanning semi arc sequence.

Proof Let D = (V, A) be a weak digraph with V = {v1, v2, . . . , vn}. Since D is weak, there
is a semi arc sequence, say Qi from vi to vi+1 in D for i = 1, 2, . . ., n− 1. The semi arc
sequence obtained by traversing the semi arc sequences Q1, Q2, . . ., Qn in succession is a
spanning semi arc sequence of D.

Conversely, let D be a digraph containing a spanning semi arc sequence, say Q. Let v1

and v2 be two distinct vertices of D. Clearly, v1 and v2 are in Q, since Q is spanning. The
part of Q which begins at any appearance of v1 (v2) and ends at any appearance of v2 (v1)
represents a semi arc sequence from v1 to v2 (from v2 to v1) in D. Thus there is either a semi
arc sequence from v1 to v2, or from v2 to v1 in D. Hence D is weak.

Definition: In a digraph D, a strong component is a maximal strong subdigraph of D.
A unilateral component is a maximal unilateral subdigraph of D and a weak component is
a maximal weak subdigraph of D. In Figure 11.1(b), the digraph has a strong component
induced by the vertex set {v2, v3, v4}. In Figure 11.1(c), the digraph has a unilateral com-
ponent induced by the vertex set {v1, v4, v2} and a weak component which is the digraph
itself.
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Theorem 11.4

i. Every vertex and every arc of a digraph D belongs to a unique weak component.

ii. Every vertex and every arc of a digraph of D belongs to at least one unilateral com-
ponent.

iii. Every vertex of a digraph belongs to a unique strong component. Every arc is con-
tained in at most one strong component and it is in a strong component if and only if
it is in a cycle.

Proof

i. If a vertex v lies in two weak components W1 and W2, let v1 and v2 be any two vertices
of W1 −W2 and W2 −W1. Then there is a vv1 and vv2 semi-path. Also there is a v1 v2

semipath, so that W1 and W2 are in the same weak component. Similar argument holds
for an arc.

ii. Since each vertex and each arc is a unilateral subdigraph, the result follows.

iii. Let v be any vertex and S be the set of vertices mutually reachable with v including v

itself. Then 〈 S 〉 is a strong component containing v. The uniqueness of this follows
as in (i). Also, a similar argument holds for an arc.

If an arc uv is in a cycle, then all vertices on the cycle are pairwise reachable and belong
to a strong component containing the arcs of the cycle, in particular uv. Conversely, if uv

is in a strong component, u and v are mutually reachable and hence there is vu path, which
together with uv gives a cycle. q

We note that the vertex sets of the weak components of a digraph give a partition πw

of its vertex set V and is called a weak partition. Similarly, the vertex sets of the strong
components of a digraph give a partition πs of V , which is a refinement of the partition πw.
This πs is called the strong partition.

Definition: Let V = S1 ∪ S2 ∪ . . .∪ Sk be a partition π of the vertex set V of the digraph D

= (V, A). Consider a digraph Dπ with vertex set Vπ = {S1, S2, . . ., Sk} which has an arc SiS j

if and only if in D there is at least one arc from a vertex of Si to a vertex of S j. Then Dπ is
called the contraction of D with respect to the partition π.

The contraction of a digraph D with respect to its strong partition πS is called the con-
densation D∗ of D.

Definition: The symmetrisation DS of a digraph D is obtained from D by adding uv to A

whenever uv /∈ A, but vu ∈ A. Equivalently, DS = D(G(D)), which is the digraph correspond-
ing to the underlying graph of D.
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Figure 11.11 illustrates these operations.

Fig. 11.11

We note from the definition of the condensation that a digraph D and its condensation
have the same kind of connectedness.

Theorem 11.5 If S1 and S2 are two strong components of digraph D, and v1 ∈ S1 and
v2 ∈ S2, then there is a v1 − v2 path in D if and only if there is an S1 −S2 path in D∗.

Proof Let there be a v1 − v2 path P in D. If length of P is one, then there is an S1 − S2

arc in D∗. We induct on the length of P. Let the result hold for any path of length n−1 in
D. Assume that P = v1u1u2 . . .un−1v2 is of length n. Let S(un−1) be the strong component
containing un−1. Then by induction hypothesis, there is a path P∗ from S1 to S(un−1) in D∗.
If un−1 ∈ S2, this path serves as an S1 −S2 path. If not, since un−1v2 ∈ A, there is an arc from
S(un−1) to S2 in D∗, and thus an S1 −S2 path.

Conversely, let S1S3S4 . . .S2 be an S1 −S2 path in D∗. Then there are arcs u1u3, u′
3

u4, u′
4

u5, ..., u′nu2 in D, ui, u′i ∈ Si. Since the Si’s are strong components, there are v1 − u1, u3 −
u′

3
, . . .,un−u′n,u2− v2 paths in D. These along with the arcs given above form a v1 − v2 path

in D. q

The following result can be easily established.

Theorem 11.6 If v1, v2 are vertices in different strong components S1, S2 of a digraph
D, then there is a strict semipath but no path joining v1 to v2 if and only if there is a strict
semipath and no path from S1 to S2 in D∗.

Now we have the following result.

Theorem 11.7 The condensation D∗ of any digraph is acyclic.

Proof If D∗ contains a cycle, let S1S2 be an arc in this cycle. By Theorem 11.1, S1S2

lies on a strong component of D∗. Therefore S1 and S2 are mutually reachable in D∗, and
by Theorem 11.5, there are vertices v1 ∈ S1 and v2 ∈ S2 which are mutually reachable in D.
Thus v1 and v2 belong to the same strong component S of D. So, S1 = S2 = S, and S1S2 is
not an arc in D∗, contradicting the assumption. q
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We note that a digraph D is strong if and only if D∗ consists of a single vertex.

Definition: A cut-set in a digraph D = (V,A) is a set of arcs of A, which constitute a cut-
set in the multigraph G = (V,E), obtained from D by removing the orientation from each
arc of A.

11.4 Euler Digraphs

A digraph D is said to be Eulerian if it contains a closed walk which traverses every arc of
D exactly once. Such a walk is called an Euler walk. A digraph D is said to be unicursal if
it contains an open Euler walk.

The following result characterises Eulerian digraphs.

Theorem 11.8 A digraph D = (V,A) is Eulerian if and only if D is connected and for
each of its vertices v, d−(v) = d+(v).

Proof

Necessity Let D be an Eulerian digraph. Therefore, it contains an Eulerian walk, say W .
In traversing W , every time a vertex v is encountered we pass along an arc incident towards
v and then an arc incident away from v. This is true for all the vertices of W , including the
initial vertex of W , say v, because we began W by traversing an arc incident away from v

and ended W by traversing an arc incident towards v.

Sufficiency Let for every vertex v in D, d−(v) = d+(v). For any arbitrary vertex v in D, we
identify a walk, starting at v and traversing the arcs of D at most once each. This traversing
is continued till it is impossible to traverse further. Since every vertex has the same number
of arcs incident towards it as away from it, we can leave any vertex that we enter along the
walk and the traversal then stops at v. Let the walk traversed so far be denoted by W . If W

includes all arcs of A, then the result follows. If not, we remove from D all the arcs of W

and consider the remainder of A. By assumption, each vertex in the remaining digraph, say
D1, is such that the number of arcs directed towards it equals the number of arcs directed
away from it. Further, W and D1 have a vertex, say u in common, since D is connected.
Starting at u, we repeat the process of tracing a walk in D1. If this walk does not contain
all the arcs of D1, the process is repeated until a closed walk that traverses each of the arcs
of D exactly once is obtained. Hence D is Eulerian. q

Theorem 11.9 A weakly connected digraph D = (V,A) is unicursal if and only if D con-
tains vertices u and v such that d+(u) = d−(u)+1,d−(v) = d+(v)+1 and d+(w) = d−(w), for
all w ∈V , where w 6= u, v. In this case, the open Euler walk begins at u and ends at v.

Proof Let D be unicursal. Then D has an Euler walk W that begins at u and ends at v.
Therefore, as in Theorem 11.8, for every vertex w different from both u and v, we have



Graph Theory 307

d+(w) = d−(w). Also, the first arc of W contributes one to the outdegree of u while every
other occurrence of u in W contributes one each to the outdegree of u. Thus, d+(u) =
d−(u)+1.

Similarly, d−(v) = d+(v)+1.

Conversely, let D be a weakly connected digraph containing vertices u and v such that
d+(u) = d−(u)+1, d−(v) = d+(v)+1 and for each w 6= u, v, d+(w) = d−(w). In D, add a new
arc a joining u and v. Now, we get a digraph D1 in which the new outdegree of v is one
more than its old outdegree, so that d−(v) = d+(v). Similarly, d−(u) = d+(u), and for every
other vertex w, d−(w) = d+(w). Also, D1 is weakly connected, and since d−(z) = d+(z) for
every vertex z in D1, it follows from Theorem 11.8 that D1 is Eulerian. Let W be an Euler
walk in D1. Clearly, D1 contains all the arcs of D together with the added arc a. Deleting
the arc a produces an open Euler walk in D. Hence D is unicursal. q

Theorem 11.10 A non-trivial weak digraph is an isograph if and only if it is the union
of arc-disjoint cycles.

Proof If the weak digraph D is a union of arc-disjoint cycles, each cycle contributes one
to the indegree and one to the outdegree of each vertex on it. Thus, d+(v) = d−(v), for all
v ∈V .

Conversely, let D be a non-trivial weak isograph. Then each vertex has positive outde-
gree and therefore D has a cycle, say Z. Removing the edges of Z from D, we get a digraph
D1 whose weak components are isographs. By using an induction argument, each such
non-trivial weak component is a union of arc-disjoint cycles. These cycles together with Z

provide a decomposition of the arc set of D into cycles. q

Corollary 11.1 Every weak isograph is strong.

Proof If u and v are any two vertices of the weak isograph D, there is a semi path P

joining u and v, and each arc of this lies on some cycle of D. The union of these cycles
provides a closed walk containing u and v. Thus u and v are mutually reachable. q

11.5 Hamiltonian digraphs

Definition: A spanning path of a digraph is called a Hamiltonian path and a span-
ning cycle a Hamiltonian cycle. A digraph containing a Hamiltonian cycle is said to be
Hamiltonian.

Regarding the results on Hamiltonian digraphs, there are surveys by Bermond and
Thomassen [24], and by Jackson. There are a number of results that are analogous to
those proved for Hamiltonian graphs in Chapter 3. Two early results on sufficient condi-
tions are due to Ghouila-Houri [87] and Woodall [270]. But now we have a more general
result due to Meyniel [160]. The proof of Meyniel’s result given here is due to Bondy and
Thomassen [38].
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First, we have the following observations.

Lemma 11.1 Let P = v1 v2 . . .vk be a path in the digraph D and v be any vertex in V −
V(P). If there is no v1 − vk path with vertex set V (P)∪{v}, then |{v, V(P)}| ≤ k +1, where
{v, V(P)} is the set of all arcs in D with one end in v or V(P) and the other end in V (P) or v,
respectively.

Proof By the assumption on P, for any v ∈ V −V (P), there is no path vi v vi+1 in D.
Therefore for each i, 1 ≤ i ≤ k−1, |(vi, v)|+ |(v, vi+1)| ≤ 1.

Hence, |{v, V(P)}| =
k−1

∑
i=1

(|vi ,v)|+ |v, vi+1|+ |(v, v1)|+ |(vk, v)|

≤ (k−1)1 +2 = k+1. q

Let in a digraph D = (V, A), S be a proper subset of V . A u−v path of length at least two
with only u and v in S is called an S-path.

Theorem 11.11 Let D be a strong non-Hamiltonian digraph and C = v1v2 . . .vkv1 be a
cycle of D such that there is no cycle of D whose vertex set properly contains V (C) = C,
say. Then there exists a v ∈ V −C, and integers p and q(1 ≤ p, q ≤ k) such that (i) vp v ∈ A,
(ii) vvp+i /∈ A for i, 1 ≤ i ≤ q and (iii) d(v)+d(vp+q) ≤ 2n−1−q.

Proof

Case 1 D has no C-path. Since D is strong and C is a proper subset of V , there is a vertex in
C joined to some vertex of V −C by a path and joined from some vertex of V −C by a path.
By the assumption on C, there is a cycle C′ having only one vertex, say vp, common with C.
Let v be the successor of vp on C′ (Fig. 11.12(a)). If v is adjacent to or from any vertex of C

other than vp , D has a C-path. Therefore, |{v,C}|≤ 2. Clearly, |{vp+1,C}|≤ 2(k−1). For any
u∈V −C, if vuvp+1 or vp+1uv is a 2-path, then these are C-paths in D. Thus, such adjacencies
are not possible. Therefore, |{u, {v, vp+1}}| ≤ 2 for such u. Putting these together, we have

d(v)+d(vp+1) ≤ 2 +2(k−1)+2(n− k−1) = 2n−2,

and this verifies the statements with q = 1.

Case 2 D has a C-path, say P = vp u1u2 . . .usvp, where ui ∈V −C. Choose P such that r is
least. By the assumption on C, r > 1. Let v = u1.

i. By the assumption on C and the minimality of r, v is not adjacent to any vp+i , 1 ≤ i ≤
r −1. Therefore the path Q = vp+r vp+r+1 . . . vk . . . v1 . . . vp and v satisfy the hypothesis
of Lemma 11.1 and we have

|{v, V(Q)}| = |{v, C}| ≤ k− r +2. (11.11.1)
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ii. By the minimality of r, we observe that for any u ∈ V −C, vuvp+i or vp+i uv are not
possible paths in D, for 1 ≤ i ≤ r−1 (Fig. 11.12(b)). Thus, for any u ∈V −C,

|{u, {v, vp + i}}|= 2, for any such i. (11.11.2)

iii. Since D is strong, there are vp − vp+r and vp+r − vp paths in D. Clearly, vp+rvp+r+1 . . .
vkv1v2 . . .vp is such a vp+r − vp path. It is possible that there are other vp+r − vp

paths containing all these vertices and some more, say vp+1 vp+2 . . ..vp+i−1. Let q

be the largest integer i, 1 ≤ i ≤ r such that there is a vp+r − vp path with vertex set
S = {vp+r,vp+r+1, . . . ,v1, v2, . . ., vp−1, vp+1, . . ., vp+q−2,vp+q−1,vp} and let P′ be such a
path. By the assumption on C, S cannot contain all the vertices of C, since P∪P′ is a
cycle. Therefore, q < r. It is possible that q = 1 (Fig. 11.12 (c)). Now the lemma is
applicable for vp+q and P′. Therefore,

|{Vp+q, V (P′)}| ≤ k− r +q +1. (11.11.3)

Using (11.11.2) with i = q, we have

|{u,{v,vp+q}}| ≤ 2, for each u ∈V −C. (11.11.4)

Also, vp+q can be joined to and from any of the other r−q−1 vertices among

{vp+q+1 , . . . , vp+r−1}. (11.11.5)
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Fig. 11.12

Combining all these, we get

d(v)+d(vp+q) = |{v,C}|+ |{vp+q,V(P′)}|+ |{vp+q,{vp+q+1, . . ., vp+r−1}}|

+ ∑
u∈V−C

|{u,{v,vp+q}}|

≤ (k− r +2)+(k− r +q +1)+2(r−q−1)+2(n− k−1)

= 2n−q−1. q

Theorem 11.12 (Meyneil) If D is a strong digraph of order n such that for any pair of
non-adjacent vertices u and v, d(u)+d(v) ≥ 2n−1, then D is Hamiltonian.

Proof If such a D is non-Hamiltonian, by Theorem 11.11, there exists a pair of non-
adjacent vertices v and vp+q such that d(v)+d(vp+q) < 2n−1, contradicting the hypothesis.

q

Corollary 11.2 If D is a strong digraph such that for any vertex v, d(v) = d+(v)+d−(v) ≥
n, then D is Hamiltonian.

The direct proof of this result can be found in Berge [18].

11.6 Trees with Directed Edges

We know that a tree in undirected graphs is a connected graph without cycles. But in case
of digraphs, a structure similar to that of a tree needs absence of cycles as well as absence
of semi cycles. We have the following definition.
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A (directed) tree is a connected digraph without cycles, neither directed cycles nor semi
cycles. We observe that a tree with n vertices has n−1 directed edges, and has properties
analogous to those of trees with undirected edges. A digraph whose weak components are
trees is called a forest. For example, Figure 11.13 shows a tree.

Fig. 11.13

Arborescence: A (directed) tree is said to be an arborescence if it contains exactly one
vertex, called the root, with no arcs directed towards it and if all the arcs on any semipath
are directed away from the root. For example, the tree in Figure 11.14 is an arborescence.
That is, every vertex other than the root has indegree exactly one. Arborescence is also
called an out-tree. If the direction of every arc in an arborescence is reversed, we get a tree
called an in-tree.

Fig. 11.14

Theorem 11.13 In an arborescence, there is a directed path from the root v to every
other vertex. Conversely, a digraph D without cycles is an arborescence if there is a vertex
v in D such that every other vertex is reachable from v and v is not reachable from any other
vertex.

Proof In an arborescence, consider a directed path P starting from the root v and contin-
uing as far as possible. Clearly, P can end only at a pendant vertex, since otherwise, we get
a vertex whose indegree is two or more, which is a contradiction. Since an arborescence is
connected, every vertex lies on some directed path from the root v to each of the pendant
vertices.

Conversely, since every vertex in D is reachable from v and D has no cycle, D is a tree.
Further, since v is not reachable from any other vertex, d−(v) = 0. Every other vertex
is reachable from v and therefore indegree of each of these vertices is at least one. The
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indegree is not greater than one, because there are only n−1 arcs in D, n being the number
of vertices of D. q

Ordered trees: A tree in which the relative order of subtrees meeting at each vertex
is preserved is called an ordered tree or a planar tree (because the tree can be visualised
as rigidly embedded in the plane of the paper). In computer science, the term tree usually
means an ordered tree and by convention, a tree is drawn hanging down with the root at
the top.

Spanning trees: A spanning tree is an n-vertex connected digraph analogous to a
spanning tree in an undirected graph and consists of n− 1 directed arcs. A spanning ar-
borescence in a connected digraph is a spanning tree that is an arborescence. For example,
{a, b, c, g} is a spanning arborescence in Figure 11.15.

Fig. 11.15

Theorem 11.14 In a connected isograph D of n vertices and m arcs, let W =(a1, a2, . . ., am)
be an Euler line, which starts and ends at a vertex v (that is, v is the initial vertex of a1 and
the terminal vertex of am). Among the m arcs in W there are n− 1 arcs that enter each of
n−1 vertices, other than v, for the first time. The subdigraph D1 of these n−1 arcs together
with the n vertices is a spanning arborescence of D, rooted at vertex v.

Proof In the subdigraph D1, vertex v is of indegree zero, and every other vertex is of
indegree one, for D1 includes exactly one arc going to each of the n−1 vertices and no arc
going to v. Further, the way D1 is defined in W , implies that D1 is connected and contains
n−1 arcs. Therefore D1 is a spanning arborescence in D and is rooted at v. q

Illustration: In Figure 11.16, W = (b d c e f g h a) is an Euler line, starting and ending
at vertex 2. The subdigraph {b, d, f } is a spanning arborescence rooted at vertex 2.

Fig. 11.16
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The following result is due to Van Aardenne-Ehrenfest and N.G. de Bruijn [257].

Theorem 11.15 Let D be an Euler digraph and T be a spanning in-tree in D, rooted
at a vertex v. Let a1 be an arc in D incident out of the vertex v. Then a directed walk
W = (a1, a2, . . ., am) is a directed Euler line, if it is constructed as follows.

i. No arc is included in W more than once.

ii. In exiting a vertex the one arc belonging to T is not used until all other outgoing arcs
have been traversed.

iii. The walk is terminated only when a vertex is reached from which there is no arc left
on which to exit.

Proof The walk W terminates at v, since all vertices have been entered as often as they
have been left (because D is an isograph). Now assume there is an arc a in D that has not
been included in W . Let u be the terminal vertex of a. Since D is an isograph, u is also the
initial vertex of some arc b not included in W . Arc b going out of vertex u is in T , according
to (i). This omitted arc leads to another omitted arc c in T , and so on. Finally we arrive at
v and find an outgoing arc not included in W . This contradicts (iii). q

Theorem 11.14 provides a method of obtaining a spanning arborescence rooted at any
specified vertex, provided the digraph is Eulerian. Conversely, given a spanning arbores-
cence in an Euler digraph, an Euler line can be constructed using Theorem 11.15.

The number of distinct Euler lines formed from a given in-tree T and starting with arc
a1 at v, can be computed by considering all the choices available at each vertex, after
starting with a1. Since there is exactly one outgoing arc in T at each vertex and this arc
is to be selected last ((ii), Theorem 11.15), the remaining d+(vi)− 1 arcs at vertex vi can
be chosen in (d+(vi)−1)! ways. Since these are independent choices, we have altogether

n

Π
i=1

(d+(vi)−1)! different Euler lines that meet (i), (ii) and (iii) of Theorem 11.15.

Illustration: Consider Figure 11.17. We apply (i), (ii) and (iii) of Theorem 11.15 to ob-
tain different Euler lines from the in-tree {a2, a3, a7, a10,a11}, starting with arc a1. The two
Euler lines obtained are (a1 a12 a5 a6 a7 a8 a9 a10 a11 a2 a4 a3) and (a1 a12 a8 a9 a10 a11 a5 a6 a7

a2 a4 a3).

Fig. 11.17
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Here,
n

Π
i=1

(d+(vi)−1)! = 2.

Note that these are not all the Euler lines in the digraph, but only those that are generated
by the specific in-tree in accordance with (i), (ii) and (iii) of Theorem 11.15.

Fundamental cycles in digraphs:
The arcs of a connected digraph not included in a specified spanning tree T are called

the chords with respect to T . As in undirected graphs, every chord ci added to the spanning
tree T produces a fundamental cycle, which is a directed cycle or a semi cycle.

A cut-set in a connected digraph D induces a partitioning of the vertices of D into two
disjoint subsets V1 and V2 such that the cut-set consists of all those arcs that have one end
vertex in V1 and the other in V2. All arcs in the cut-set can be directed from V1 to V2, or from
V2 to V1, or some arcs can be directed from V1 to V2 and others from V2 to V1. A cut-set in
which all arcs are oriented in the same direction is called a directed cut-set.

Consider the digraph of Figure 11.18. A spanning tree T = {a, d, f , h, k} is shown by
bold lines. Here, rank = 5, nullity = 4. The chord set with respect to T is {b, c, e, g}.
Fundamental cycles with respect to T are d f e (semi cycle), dkhc (semi cycle), khg (semi
cycle) and adkhb (directed cycle). The fundamental cut-sets with respect to T are ab, bcde,
e f , bcgk and bcgh.

Fig. 11.18

11.7 Matrices A, B and C of Digraphs

The matrices associated with a digraph are almost similar to those discussed for an undi-
rected graph, with the difference that in matrices of digraphs consist of 1, 0, −1 instead of
only 0 and 1 for undirected graphs. The numbers 1, 0, −1 are real numbers and their addi-
tion and multiplication are interpreted as in ordinary arithmetic, not modulo 2 arithmetic
as in undirected graphs. Thus the vectors and vector spaces associated with a digraph and
its subdigraphs are over the field of all real numbers, but not modulo 2.

Incidence matrix:
The incidence matrix of a digraph with n vertices, m arcs and no self-loops is an n×m

matrix A = [ai j], whose rows correspond to vertices and columns correspond to arcs, such
that
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ai j =







1, i f jth arc is incident out o f ith vertex ,
−1, i f jth arc is incident into ith vertex ,
0, i f jth arc is not incident on ith vertex .

For example, consider the digraph of Figure 11.19.

Fig. 11.19

The incidence matrix is given by

a b c d e f g h

A =

v1

v2

v3

v4

v5













1 1 0 1 1 0 0 0

−1 −1 −1 0 0 0 0 0

0 0 1 −1 0 −1 1 0

0 0 0 0 −1 1 −1 1

0 0 0 0 0 0 0 −1













Now, since the sum of each column is zero, the rank of the incidence matrix of a digraph
of n vertices is less than n. The proof of the following result is almost similar to the result
in undirected graphs.

Theorem 11.16 If A(D) is the incidence matrix of a connected digraph of n vertices,
then rank of A(D) = n−1.

We further note that after deleting any row from A, we get A f , the (n− 1)×m reduced
incidence matrix. The vertex corresponding to the deleted row is called the reference
vertex.

We now have the following result.

Theorem 11.17 The determinant of every square submatrix of A, which is the incidence
matrix of a digraph, is −1, or 1, or 0.

Proof Consider a k × k submatrix M of A. If M has any column or row consisting of
all zeros, then clearly det M = 0. Also, det M = 0, if every column of M contains the two
non-zero entries, 1 and −1.
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Now let det M 6= 0. Then the sum of entries in each column of M is not zero. Therefore
M has a column in which there is a single non-zero element that is either 1 or − 1. Let this
single element be in the (i, j)th position in M. Thus,

det M = ±1 det Mi j,

where Mi j is the submatrix of M with its ith row and jth column deleted. The (k − 1) ×
(k−1) submatrix Mi j is non-singular (because M is non-singular), therefore Mi j also has at
least one column with a single non-zero entry, say in the (p, q)th position. Expanding det
Mi j about this element in the (p, q)th position, we obtain

det Mi j = ± [det of non-singular (k−2)× (k−2) submatrix of M].

Repeated application of this procedure gives

det M = ±1. q

Unimodular matrix: A matrix is said to be unimodular if the determinant of its every

square submatrix is 1, −1, or 0.

Cycle matrix of a digraph: Let D be a digraph with m arcs and q cycles (directed cycles
or semi cycles). An arbitrary orientation (clockwise or counter clockwise) is assigned to
each of the q cycles. Then a cycle matrix B = [bi j] of the digraph G is a q×m matrix defined
by

bi j =























1 , i f the ith cycle includes the jth arc , and the orientations o f the arc

and cycle coincide ,
−1 , i f the ith cycle includes the jth arc , and the orientations o f the two

are opposite ,
0 , i f the ith cycle does not include the jth arc .

Example Consider the digraph D given in Figure 11.20. The cycle matrix of D is

a b c d e f g h

B =









0 0 0 1 0 1 1 0

0 0 1 0 −1 0 1 0

0 0 1 −1 −1 −1 0 0

−1 1 0 0 0 0 0 0









.
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Fig. 11.20

We note that the orientation assigned to each of the four cycles is arbitrary. The cycle
in the first row is assigned clockwise orientation, in the second row counter-clockwise, in
the third counter-clockwise, and in the fourth clockwise. Changing the orientation of any
cycle will simply change the sign of every non-zero entry in the corresponding row. Also
we observe that if first row is subtracted from second, the third is obtained. Thus the rows
are not all linearly independent (in the real field).

The next result gives the relation between incidence matrix and cycle matrix.

Theorem 11.18 Let B and A be respectively, the cycle matrix and the incidence matrix
of a digraph (without loops) such that the columns are arranged using the same order of
arcs. Then,

ABT = BAT = 0,

where T denotes the transposed matrix.

Proof Consider the pth row of A and the rth row of B. The rth cycle, say Zr, either (a)
does not, or (b) does possess an arc incident with vertex, say vp, represented by the pth row
of A. If (a), the product of the two rows is zero. If (b), there are exactly two arcs, say ai and
a j, of the rth cycle incident with vp.

We have the following four possibilities.

i. ai and a j are both incident towards vp,

ii. ai and a j are both incident away from vp,

iii. the directions of both ai and a j coincide with the orientation of Zr and

iv. the directions of both ai and a j do not coincide with the orientation of Zr.

It can be easily verified that in all these four cases, the product of the pth row of A and
the rth row of B is zero. q
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Figure 11.21 illustrates these four cases.

Fig. 11.21

Now, using Sylvester’s theorem and Theorem 11.18, we can show that

rank B+ rank A = m.

If the digraph is connected, then rank A = n−1.

Therefore, rank B = m−n +1.

The following two results can be easily established.

Theorem 11.19 The non-singular submatrices of order n−1 of A are in one-one corre-
spondence with spanning trees of a connected digraph of n vertices.

Theorem 11.20 The non-singular submatrices of B of order µ = m− n + 1 are in one-
one correspondence with the chord set (complement of the spanning tree) of the connected
digraph of n vertices and m edges.

Sign of a spanning tree: For a digraph, the determinant of the non-singular submatrix
of A corresponding to a spanning tree T has a value either 1 or −1. This is referred to as
the sign of T .

We note that the sign of a spanned tree is defined only for a particular ordering of vertices
and arcs in A, because interchanging two rows or columns in a matrix changes the sign of
its determinant. Thus the sign of a spanning tree is relative. Once the sign of one spanning
tree is arbitrarily chosen, the sign of every other spanning tree is determined as positive or
negative with respect to this spanning tree.

Number of spanning trees: The following result determines the number of spanning
trees in a connected digraph.

Theorem 11.21 If A f is the reduced incidence matrix of a connected digraph, then the
number of spanning trees in the graph is equal to det (A f . AT

f ).

Proof According to Binet-Cauchy theorem,
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det (A f . AT
f ) = sum of the products of all corresponding majors of A f and AT

f .

Every major of A f or AT
f is zero unless it corresponds to a spanning tree, in which case

its value is 1 or − 1. Since both majors of A f and AT
f have the same value 1 or −1, the

product is 1 for each spanning tree. q

Fundamental cycle matrix: The µ fundamental cycles each formed by a chord with
respect to some specified spanning tree, define a fundamental cycle matrix B f for a digraph.
The orientation assigned to each of the fundamental cycles is chosen to coincide with that
of the chord. Therefore B f , a µ ×m matrix can be expressed exactly in the same form as in
the case of an undirected graph,

B f = [Iµ : Bt ],

where Iµ is the identity matrix of order µ and the columns of Bt correspond to the arcs in a
spanning tree. This is illustrated in Figure 11.22.

Fig. 11.22

b d g a c e f h

Here B f =





1 0 0 −1 0 0 0 0

0 1 0 0 −1 1 1 0

0 0 1 0 1 −1 0 0



= [Iµ : Bt ].

Cut-set matrix: Let D = (V, A) be a connected digraph with q cut-sets. The cut-set
matrix C = [ci j] of D is a q×m matrix in which the rows correspond to the cut-sets of D and
the columns to the arcs of D. Each cut-set is given an arbitrary orientation. Let Ri be the
ith cut-set of D and let Ri partition V into nonempty vertex sets V ′

i and V ′′
i . The orientation

can be defined to be either from V ′
i to V ′′

i or from V ′′
i to V ′

i . Suppose that the orientation
is chosen to be from V ′

i to V ′′
i . Then the orientation of an arc a j of cut-set Ri is said to be

the same as that of Ri if a j is of the form va vb, where va ∈ V ′
i and vb ∈ V ′′

i and opposite,
otherwise. Then,

ci j =







1 , i f arc a j o f cut − set Ri has the same orientation as Ri ,
−1 , i f arc a j has the opposite orientation to Ri ,
0 , otherwise .
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We have the following observations.

1. A permutation of the rows or columns corresponds to a relabelling of the cut-sets and
arcs of D respectively.

2. Rank C ≥ rank A.

3. Rank C ≥ n−1, by observation 2.

4. If the arcs of D are arranged in the same column order in B and C, then BCT =CBT = 0.

5. Rank B+ rank C ≤ m.

6. If D is weak, rank B = m−n +1 and rank C ≤ n−1.

7. Rank C = n−1, because of (3) and (4).

We observe that the removal of an arc, say a = vsvt (also called a branch) of a spanning
directed tree of D, partitions the vertices of a digraph D into two disjoint sets, say V1 and
V2.

The cut-set created by the removal of a is said to be either (i) directed away from V1 and
towards V2 if vs ∈ V1 and vt ∈V2, or (ii) directed away from V1 and towards V2 if vs ∈V2 and
vt ∈V1.

This type of cut-set is called fundamental cut-set. Clearly, not all the chords in Ri nec-
essarily have the same orientation as vsvt . If vsvt is directed away from a vertex in V1, there
may exist a chord in Ri which is directed towards a vertex in V1. The orientation of a cut-
set on the basis of the direction of the branch giving rise to it constitutes a natural way of
orienting cut-sets. If all the chords of Ri are oriented as is vsvt , then Ri is said to be directed.
Consider the graph shown in Figure 11.23 with T shown by bold lines. The fundamental
cut-sets with respect to T are

branch cut-set
a3 {a3, a2}
a5 {a5, a4}
a6 {a6, a1, a4}
a7 {a7, a1, a2}

Fig. 11.23

A fundamental cut-set is created from C, the cut-set matrix of a connected digraph with
the given directed spanning tree T , by deleting from C, all rows which do not correspond
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to fundamental cut-sets with respect to T . Therefore C f is an (n− 1) × m submatrix of C

such that each row represents a unique fundamental cut-set with respect to T .
The rows of any fundamental cut-set C f can be permuted to create a matrix of the form

C f = [Cc : In−1], where Cc is an (n−1) × (m−n+1) matrix whose columns correspond to the
chords of T and In−1 is the identity matrix of order n−1 whose columns correspond to the
branches of T .

Relation between B f , C f and Ar Ar is the reduced incidence matrix in which an arbi-
trary row has been removed in order to make its rows linearly independent.

We have B f = [Iµ : Bt ] (11.7.i)

and C f = [Cc : In−1], (11.7.ii)

where t corresponds to the branches of T and c to the chords of T . Let the arcs be arranged
in the same order in (11.7.i) and (11.7.ii) and in Ar. Partition Ar as

Ar = [Ac : At ],

where Ac is an (n−1)× (m−n +1) submatrix whose columns correspond to the chords of
T and At is an (n−1)× (n−1) submatrix whose columns correspond to the branches of T .

Since ABT = 0, therefore Ar BT
f = 0.

Thus, [Ac : At ]





Iµ

..
BT

t



 = 0, so that Ac +AtB
T
t = 0.

Since At is non-singular, we have A−1
t [Ac +At B

T
t ] = 0.

Therefore, A−1
t Ac +BT

t = 0 and so A−1
t Ac = −BT

t . Also, C f B
T
f = 0.

Therefore, [Cc : In−1]





Iµ

..
BT

t



 = 0, and so Cc +BT
t = 0.

Thus, Cc = −BT
t and so Cc = A−1

t Ac.

Example Consider the digraph given in Figure 11.24, with spanning tree shown in bold
lines.

Fig. 11.24
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We have a1 a4 a2 a5 a6 a7 a3

Ar = [Ac : At] =















−1 0 0
... −1 1 0 0

−1 0 0
... 0 0 −1 0

0 0 −1
... 0 0 0 1

0 1 0 0 −1 1 −1















a1 a4 a2 a5 a6 a7 a3

B f = [I3 : Bt ] =











1 0 0
... 0 −1 −1 0

0 1 0
... 1 1 0 0

0 0 1
... 0 0 1 1











a1 a4 a2 a5 a6 a7 a3

C f = [Cc : I4] =

















0 −1 0
... 1 0 0 0

1 −1 0
... 0 1 0 0

1 0 −1
... 0 0 1 0

0 0 −1
... 0 0 0 1

















Note that the last row of A, corresponding to vertex v5, has been removed to form A f . We
form linear combinations of the rows of C f to create 10 rows of C, representing all of the
cut-sets of the digraph in Figure 11.24.

a1 a4 a2 a5 a6 a7 a3

C =

































0 −1 0 1 0 0 0

1 −1 0 0 1 0 0

1 0 −1 0 0 1 0

0 0 −1 0 0 0 1

−1 0 0 1 −1 0 0

0 −1 0 0 1 −1 1

0 0 1 −1 1 −1 0

0 0 0 1 1 1 −1

0 −1 1 0 1 −1 0

1 0 0 0 0 1 1

































c1

c2

c3

c4

c1 − c2

c2 − c3 + c4

c2 − c1 − c3

c1 − c2 + c3 − c4

c2 − c3

c3 − c4

The above facts lead to the following observations.

1. Given Ar , we can construct B f and C f .

2. Given Br , we can construct C f .
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3. Given C f , we can construct B f .

Semipath matrix: The semipath matrix P(u, v) = [pi j], of a digraph D = (V, A), where
u, v ∈ V , is the matrix with each row representing a distinct semipath from u to v and the
columns representing the arcs of D, in which pi j = 1, if the ith semipath contains the jth
arc, pi j = −1 if the ith semipath contains the converse of the jth arc, and pi j = 0 otherwise.

The matrix P(v3 , v5) for the digraph of Figure 11.25 is

a1 a2 a3 a4 a5 a6

P(v3, v5) =





0 0 1 0 0 0

0 1 0 0 −1 0

1 0 0 1 0 1





Fig. 11.25

We have the following observations about P.

1. If P(u, v) contains a column of all zeros, then the vertex that it represents does not
belong to any of the semipaths between u and v.

2. If P(u, v) contains a column of all unit entries, then the vertex that it represents be-
longs to every semipath between u and v.

3. The number of non-zero entries in any row of P(u, v) equals the number of arcs in the
semipath represented by the row.

Adjacency matrix of a digraph: Let G be a digraph with n vertices and with no
parallel arcs. The adjacency matrix X = [xi j] of the digraph G is an n × n (0, 1)-matrix
defined by

xi j =

{

1 , i f there is an arc directed f rom ith vertex to jth vertex ,
0 , otherwise .

Example Consider the digraph D of Figure 11.26.
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Fig. 11.26

The adjacency matrix of D is

v1 v2 v3 v4 v5

X =

v1

v2

v3

v4

v5













0 0 1 1 0

1 1 0 0 0

0 0 0 0 1

0 0 0 0 0

0 1 1 0 0













We have the following observations about the adjacency matrix X of a digraph D.

1. X is a symmetric matrix if and only if D is a symmetric digraph.

2. Every non-zero element on the main diagonal element represents a loop at the corre-
sponding vertex.

3. The parallel arcs cannot be represented by X and therefore X is defined only for a
digraph without parallel arcs.

4. The sum of each row equals the outdegree of the corresponding vertex and the sum
of each column equals the indegree of the corresponding vertex. The number of
non-zero entries of X equals the number of arcs in D.

5. Permutation of any rows together with a permutation of the corresponding columns
does not alter the digraph and thus the permutation corresponds to a reordering of
the vertices. Therefore two digraphs are isomorphic if and only if their adjacency
matrices differ only by such permutations.

6. If X is the adjacency matrix of a digraph D, then the transposed matrix XT is the
adjacency matrix of a digraph D∗ obtained by reversing the direction of every arc in
D.

7. For any (0−1)-matrix Q of order n, there exists a unique digraph D of n vertices such
that Q is the adjacency matrix of D.
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Connectedness and adjacency matrix: A digraph is disconnected if and only if its
vertices can be ordered in such a way that its adjacency matrix X can be expressed as the
direct sum of two square submatrices X1 and X2 as

X =





X1 : O

. . : . .
O : X2



. (11.7.iii)

This partitioning is possible if and only if the vertices in the submatrix X1 have no arc going
to or coming from the vertex of X2.

Similarly, a digraph is weakly connected if and only if its vertices can be ordered in such
a way that its adjacency matrix can be expressed as

X =





X1 : O

. . : . .
X21 : X2



 (11.7.iv)

or X =





X1 : X12

. . : . .
O : X2



, (11.7.v)

where X1 and X2 are square submatrices.

Form (11.7.iv) represents the case when there is no arc going from the subdigraph corre-
sponding to X1 to the one corresponding to X2. Form (11.7.v) represents the case when there
is no arc going from the subdigraph corresponding to X2 to the subdigraph corresponding
to X1.

Since a strongly connected digraph is neither disconnected nor weakly connected, a
digraph is strongly connected if and only if the vertices of D cannot be ordered such that
its adjacency matrix X is expressible in the form (11.7.iii), or (11.7.iv), or (11.7.v).

Theorem 11.22 [Xk]i j is the number of different arc sequences of k arcs from the ith vertex
to the jth vertex.

Proof Induct on k. The result is trivially true for k = 1. Assume the result holds for
[Xk−1]i j. Now,

[Xk]i j = [Xk−1X ]i j =
n

∑
r=1

[Xk−1]ir[X ]r j =
n

∑
r=1

[Xk−1]irxr j
(11.22.1)

=
n

∑
r=1

(number of all directed arc sequences of length k−1 from

vertex i to r ) xr j,

by induction hypothesis.
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In (11.22.1), xr j = 1 or 0, according as there is an arc from r to j. Therefore a term in the
sum (11.22.1) is non zero if and only if there is an arc sequence of length k from i to j,
whose last arc is from r to j. If the term is non-zero, its value equals the number of such
arc sequences from i to j through r. This holds for every vertex r, 1 ≤ r ≤ n. Thus (11.22.1)
is equal to the number of all possible arc sequences from i to j. q

It is to be noted that [Xk]i j gives the number of all arc sequences from vertex i to j and
these arc sequences can be of the following types.

1. Directed paths from i to j, that is, those arc sequences in which no vertex is traversed
more than once.

2. Directed walks from i to j, that is, those directed arc sequences in which a vertex may
be traversed more than once, but no arc is traversed more than once.

3. Those arc sequences in which an arc may also be traversed more than once.

11.8 Number of Arborescences

We now give a formula for counting the number of spanning arborescence in a labeled,
connected digraph (which of course is simple). First, we have the following definition.

Kirchoff matrix: For a digraph (simple) D of n vertices, the Kirchoff matrix is an n×n

matrix K(D) = [ki j] defined by

ki j =

{

d−(vi) , i = j, in degree o f the ith vertex ,
−xi j , i 6= j (i, j)th entry in the ad jacency matrix , with a negative sign .

Example Consider the digraph D given in Figure 11.27.
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Fig. 11.27

The Kirchoff matrix of D is
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v1 v2 v3 v4

K(D) =

v1

v2

v3

v4









1 0 −1 0

−1 2 0 −1

0 −1 2 −1

0 −1 −1 2









Clearly, the sum of the entries in each column in K is equal to zero, so that the n rows
are linearly independent. Thus, det K = 0.

Theorem 11.23 A digraph (simple) D of n vertices and n− 1 arcs is an arborescence
rooted at v1 if and only if the (1, 1) cofactor of K(D) is equal to 1.

Proof

a. Let D be an arborescence with n vertices and rooted at vertex v1. Relabel the vertices
as v1, v2, . . .,vn such that vertices along every path from the root v1 have increasing
indices. Permute the rows and columns of K(D) to conform with this relabelling.

Since the indegree of v1 equals zero, the first column contains only zeros. Other
entries in K(D) are

ki j =











0 , i > j,

−xi j , i < j,

1 , i = j, i > 1.

Then the K matrix of an arborescence rooted at v1 is of the form

K(D) =

















0 −x12 −x13 −x14 . . −x1n

0 1 −x23 −x24 . . −x2n

0 0 1 −x34 . . −x3n

0 0 0 1 . .
: . .
0 0 0 0 . . 1

















.

Clearly, the cofactor of the (1, 1) entry is 1, that is, det K11 = 1.

b. Conversely, let D be a digraph of n vertices and n−1 arcs, and let (1, 1) cofactor of
its K matrix be equal to 1, that is, det K11 = 1.

Since det K11 6= 0, every column in K11 has at least one non-zero entry. Therefore,

d−(vi) ≥ 1, for i = 2,3, . . .,n.

There are only n−1 arcs to go around, therefore
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d−(vi) = 1, for i = 2,3, . . .,n, and d−(v1) = 0.

Since no vertex in D has an indegree of more than one, if D can have any cycle at all, it
has to be a directed cycle. Suppose that such a directed cycle exists, which passes through
vertices vi1 ,vi2, ...,vir. Then the sum of the columns i1, i2, . . ., ir in K11 is zero. This is because
each of these columns contains exactly two non-zero entries, as 1 on the main diagonal
and −1 for the incoming arc from the vertex preceding it in the directed cycle. Thus the r

columns in K11 are linearly dependent. So, det K11 = 0, a contradiction. Therefore, D has
no cycles.

If D has n− 1 arcs and no cycles, it must be a tree. Since in this tree d−(v1) = 0 and
d−(vi) = 1, for i = 2, 3, . . ., n, D is an arborescence rooted at vertex v1.

The arguments in (a) and (b) are valid for an arborescence rooted at any vertex vq. Any
reordering of the vertices in D corresponds to identical permutations of rows and columns
in K(D). Such permutations do not alter the value or sign of the determinant. q

Theorem 11.24 If K(D) is the Kirchoff matrix of a (simple) digraph D, then the value of
the (q, q) cofactor of K(D) is equal to the number of arborescences in D rooted at the vertex
vq.

Proof The proof depends on the result of Theorem 11.23 and on the fact that the deter-
minant of a square matrix is a linear function of its columns. In particular, if P is a square
matrix consisting of n column vectors, each of dimension n, that is

P = [p1, p2, . . ., (pi + p′i), . . ., pn],

then det P = det [p1, p2, . . ., pi, . . ., pn]+ det [p1, p2, . . ., p′i, . . ., pn]. (11.24.1)

In digraph D, suppose that vertex v j has indegree d j. The jth column of K(D) can be
regarded as the sum of d j different columns, each corresponding to a digraph in which v j

has indegree one. And then (11.24.1) can be repeatedly applied. After this, splitting of
columns can be carried out for each j, j 6= q and det Kqq(D) can be expressed as a sum of
determinants of subdigraphs, that is

detKqq(D) = ∑
D′

detKqq(D
′), (11.24.2)

where D′ is a subdigraph of D with the following properties.

1. Every vertex in D′ has an indegree of exactly one except vq.

2. D′ has n−1 vertices and hence n−1 arcs.

From Theorem 11.23,

detKqq(D
′) =

{

1, i f and only i f D′ is an arborescence rooted at q ,
0, otherwise .

Thus the summation in (11.24.2) carried over all D′’s equals the number of arborescences
rooted at vq. q
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11.9 Tournaments

A tournament is an orientation of a complete graph. Therefore in a tournament each pair of
distinct vertices vi and v j is joined by one and only one of the oriented arcs (vi , v j) or (v j, vi).
If the arc (vi , v j) is in T , then we say vi dominates v j and is denoted by vi → v j. The relation
of dominance thus defined is a complete, irreflexive, antisymmetric binary relation. Figure
11.28 displays all tournaments on three and four vertices.

Fig. 11.28

Definition: A triple in a tournament T is the subdigraph induced by any three vertices.
A triple (u, v, w) in T is said to be transitive if whenever (u, v) ∈ A(T ) and (v, w) ∈ A(T ),
then (u, w) ∈ A(T ). That is, whenever u → v and v → w, then u → w.

Definition: A bipartite tournament is an orientation of a complete bipartite graph. A
k-partite tournament is an orientation of a complete k-partite graph. Figure 11.29 displays
a bipartite and a tripartite tournament.

Fig. 11.29

Theorem 11.25 If v is a vertex having maximum outdegree in the tournament T , then
for every vertex w of T there is a directed path from v to w of length at most 2.
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Proof Let T be a tournament with n vertices and let v be a vertex of maximum outdegree
in T . Let d+(v) = m and let v1, v2, . . ., vm be the vertices in T such that there are arcs from v

to vi, 1 ≤ i≤m. Since T is a tournament, there are arcs from the remaining n−m−1 vertices,
say u1, u2,. . ., un−m−1 to v. That is, there are arcs from u j to v, 1 ≤ j ≤ n−m−1 (Fig. 11.30).

Fig. 11.30

Then for each i, 1 ≤ i ≤ m, the arc from v to vi gives a directed path of length 1 from
v to vi . We now show that there is a directed path of length 2 from v to u j for each j,
1 ≤ j ≤ n−m−1.

Given such a vertex u j, if there is an arc from vi to u j for some i, then vviu j is a directed
path of length 2 from v to u j. Now, let there be a vertex uk, 1 ≤ k ≤ n−m−1, such that no
vertex vi,1 ≤ i ≤ m, has an arc from vi to uk. Since T is tournament, there is an arc from uk

to each of the m vertices vi. Also, there is an arc from uk to v and therefore d+(uk) ≥ m+1.
This contradicts the fact that v has maximum outdegree with d+(v) = m. Thus each u j must
have an arc joining it from some vi and the proof is complete by using the directed path
vviu j. q

Let T be a tournament with n vertices and let v be any vertex of T . Then T − v is
the digraph obtained from T by removing v and all arcs incident with v. Clearly, any two
vertices of T −v are joined by exactly one arc, since these two vertices are joined by exactly
one arc in T . Thus T − v is again a tournament.

Definition: A directed Hamiltonian path of a digraph D is the directed path in D that
includes every vertex of D exactly once.

The following result, due to Redei [216], shows that a tournament contains a direct Hamil-
tonian path.

Theorem 11.26 (Redei) Every tournament T has a directed Hamiltonian path.

Proof Let T be a tournament with n vertices. We induct on n. When n = 1, 2, or 3, the
result is trivially true (Fig. 11.31).
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Fig. 11.31

Let n ≥ 4. Assume that the result is true for all tournaments with fewer than n vertices.
Let v be any vertex of T . Then T − v is a tournament with n−1 vertices and by induction
hypothesis has a directed Hamiltonian path, say P = v1v2 . . . vn−1.

In case there is an arc from v to v1, then P1 = vv1 v2 . . .vn−1 is a directed Hamiltonian
path in T . Similarly if there is an arc from vn−1 to v, then P2 = v1 v2 . . . vn−1v is a directed
Hamiltonian path in T .

Now, assume there is no arc from v to v1 and no arc from vn−1 to v. Then there is at least
one vertex w on the path P with the property that there is an arc from w to v and w is not
vn−1. Let vi be the last vertex on P having this property, so that the next vertex vi+1 does not
have this property. Then there is an arc from vi to v and an arc from v to vi+1, as shown in
Figure 11.32. Thus Q = v1v2 . . .viv vi+1 vi+2 . . . vn−1 is a directed Hamiltonian path in T . q

n

n n n nn
1 2 i + 1 n – 1i

Fig. 11.32

Definition: A directed Hamiltonian cycle in a digraph D is a directed cycle which in-
cludes every vertex of D. If D contains such a cycle, then D is called Hamiltonian.

The next two results are due to Camion [44].

Theorem 11.27 (Camion) A strongly connected tournament T on n vertices contains
cycles of length 3, 4,. . ., n.

Proof First we show that T contains a cycle of length three. Let v be any vertex of T . Let
W denote the set of all vertices w of T for which there is an arc from v to w. Let Z denote
the set of all vertices z of T for which there is an arc from z to v. We note that W

⋂

Z = ϕ,
since T is a tournament.

Since T is strongly connected, W and Z are both nonempty. For, if W is empty, then
there is no arc going out of v, which is impossible because T is strongly connected and the
same argument can be used for Z. Again, because T is strongly connected, there is an arc
in T going from some w in W to some z in Z. This gives the directed cycle v w z v of length
3 (Fig. 11.33).
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Fig. 11.33

Now induct on n. Assume T has a cycle C of length k, where k < n and k ≥ 3 and let this
cycle be v1 v2 . . . vk v1. We show that T has a cycle of length k+1.

Let there be a vertex v not on the cycle C, with the property that there is an arc from v

to vi and an arc from v j to v for some vi, v j on C. Then there is a vertex vi on C with an arc
from vi−1 to v and an arc from v to vi . Therefore, C1 = v1v2 . . . vi−1 vvivi+1 . . . vkv1 is a cycle
of length k+1 (Fig. 11.34).

Fig. 11.34

If no vertex exists with the above property, then the set of vertices not contained in the
cycle can be divided into two distinct sets W and Z, where W is the set of vertices w such
that for each i, 1 ≤ i ≤ k, there is an arc from vi to w and Z is the set of vertices z such that
for each i, 1 ≤ i ≤ k, there is an arc from z to vi. If W is empty then the vertices of C, and the
vertices of Z together make up all the vertices in T . But, by definition of Z, there is no arc
from a vertex on C to a vertex in Z, a contradiction, because T is strongly connected. Thus
W is nonempty. A similar argument shows that Z is nonempty. Again, since T is strongly
connected, there is an arc from some w in W to some z in Z. Then C1 = v1 w z v3 v4 . . . vk v1 is
a cycle of length k+1 (Fig. 11.35). This completes the proof. q
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Fig. 11.35

Theorem 11.28 (Camion) A tournament T is Hamiltonian if and only if it is strongly
connected.

Proof Let T have n vertices. If T is strongly connected, then by Theorem 11.27, T has a
cycle of length n. Such a cycle is a Hamiltonian cycle, since it includes every vertex of T .
Hence T is Hamiltonian.

Conversely, let T be Hamiltonian with Hamiltonian cycle C = v1 v2 . . .vn v1. Then given
any vi, v j with i ≥ j, in the vertex set of T , v jv j+1 . . . vi is a path P1 from v j to vi while

vivi+1 . . . vn−1vn v1 . . . v j−1 v j is a path P2 from vi to v j (Fig. 11.36). Thus each vertex is
reachable from any other vertex and so T is strongly connected. q

nn

n

n

n

n
n

j – 1i – 1

j + 1

j

1

2

2

1

n

P

P

Fig. 11.36

11.10 Exercises

1. Prove that the converse of a strong digraph is also strong.

2. Show that D∗, the condensation of any digraph D, is cyclic.

3. Prove that the converse of a unilateral digraph is unilateral.

4. Show that the transmitters, receivers and isolates of a digraph D retain their properties
in D∗.

5. Prove that the only acyclic digraph is K1
∼= K∗

1
.

6. Prove that an acyclic digraph without isolates has a transmitter and a receiver.
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7. Show that every vertex v of a non-trivial digraph D has total even degree if and only
if D is the union of arc-disjoint cycles.

8. Prove that every arc in a digraph belongs either to a directed cycle or a directed cut-
set.

9. Prove that the digraph D = (V,A) with d+
v > 0 for all v ∈V , has a cycle.

10. Prove that the digraph distance satisfies the triangle inequality.

11. Prove that every Eulerian digraph is strong. Is the converse true?

12. If E |G| is the number of Euler lines in an n-vertex Euler digraph D, show that
2n−1.E |G| is the number of Euler lines in L(D).

13. If D is a digraph with an odd number of vertices and if each vertex of D has an odd
outdegree, prove that there is an odd number of vertices of D with odd indegree.

14. Prove by induction on n that for each n ≥ 1, there is a simple digraph D with n vertices
v1,v2, . . ., vn such that d+

vi
= i−1 and d−

vi
= n− i for each i = 1, 2,. . ., n.

15. Prove that no strictly weak digraph contains a vertex whose removal results in a
strong digraph.

16. There exists a digraph with outdegree sequence [s1, s2, . . ., sn], where n−1 ≥ s1 ≥ s2

≥ . . .≥ sn and indegree sequences [t1, t2, . . ., tn] where every t j ≤ n− 1 if and only if

∑ si = ∑ti and for each integer k < n,

k

∑
i=1

si ≤
k

∑
i=1

min{k−1, ti}+
n

∑
i=k+1

min{k, ti} .

17. If X is the adjacency matrix of the edge digraph of a complete symmetric digraph,
then X2 +X has all entries 1.

18. Let T be any tournament. Prove that the converse of T and the complement of T are
isomorphic.

19. Prove that a tournament is transitive if and only if it has a unique Hamiltonian path.

20. Prove that if a simple digraph D has a cycle of length three, then it is not transitive.

21. Prove that a tournament is transitive if and only if it has no directed cycles.


