

A Hybrid Approach for 6DoF Pose Estimation

Rebecca König, Bertram Drost, MVTec Research – 6th International Workshop on Recovering 6D Object Pose – ECCV 2020

© 2003-2020 MVTec Software GmbH | Any use of content and images outside of this presentation or their extraction is not allowed without prior permission by MVTec Software GmbH

Motivation and Overview

Takeaway from BOP 2019:

- Deep Learning-based methods: Fast, good in separating clutter from data, not-so-good pose estimation (yet)
- Voting with Point Pairs: Locally optimal pose estimation, slow global search
- DL-based methods are often two-stage methods: Object detector followed by pose estimation
- Our approach: Use DL-based instance segmentation to localize objects, followed by PPF-Voting for pose estimation

Instance Segmentation

- **High variance in datasets** (regarding training data, sensors, objects)
- Train multiple networks, use the one with better validation error
 - We use RetinaMask and MaskRCNN [2,3]
- The main challenge is the training set
 - Partially large domain gap between training and test data for some datasets
 - Different types of training data provided (none / CAD only, model cut-outs, synthetic images, real images)
 - PBR is a large step forward but does not fully close the domain gap

Our Approach

- Use real training images where available
- Otherwise, augment validation / synthetic training images
 - Cut out objects, paste objects on COCO images, random scale / rotation / position
- Use PBR images if it improves validation mAP
- Online augmentation during training: Color variation, mirroring

Pose Estimation

- Restrict search by using segmented instances and predicted classes
- Implementation of vanilla point pair voting [1] (HALCON 20.05 progress)
 - Finds the locally best pose (largest geometric overlap)
 - Trained using CAD model only

- Robust ICP, scoring and verification (on depth data only)
- Feature-point matching to resolve symmetries using texture [4]

Results

Results

At time of submission (1 pm)...

	Date (UTC)	Method	Test image 🔷	AR _{Core}	ARLM-0	AR _{T-LESS}	ARTUD-L	ARIC-BIN	ARITODD	AR _{HB}	AR _{YCB-V}	Time (s)
1	2020-08-19 10:19	Koenig-Hybrid-DL-PointPairs	RGB-D	0.639	0.631	0.655	0.920	0.430	0.483	0.651	0.701	0.633
2	2019-10-22 07:57	Vidal-Sensors18	D	0.569	0.582	0.538	0.876	0.393	0.435	0.706	0.450	3.220

...10 hours later

	Date (UTC) 🔶	Method	Test image 🗍	AR _{Core} 🔻	AR _{lm-0} 🔶	AR _{T-LESS} 🔶	AR _{TUD-L} 🔶	AR _{IC-BIN} 🔶	AR _{itodd} 🔶	AR _{HB} 🔶	AR _{YCB-V} 🔶	Time (s) 🔷
1	2020-08-19	CosyPose-ECCV20-SYNT+REAL-1VIEW-ICP	RGB-D	0.698	0.714	0.701	0.939	0.647	0.313	0.712	0.861	13.743
2	2020-08-19	Koenig-Hybrid-DL-PointPairs	RGB-D	0.639	0.631	0.655	0.920	0.430	0.483	0.651	0.701	0.633
3	2020-08-18	CosyPose-ECCV20-SYNT+REAL-1VIEW	RGB	0.637	0.633	0.728	0.823	0.583	0.216	0.656	0.821	0.449

Conclusion

- Good training data is vital
 - Mind the (domain) gap!
 - Practicability: from CAD model to training data?

Automatic selection of method parameters based on validation error works

and avoids dataset-specific parameters

Hybrid approaches that leverage advantages of learning and geometric approaches can (still?) reach state-of-the-art

[1] Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: Efficient and robust 3d object recognition. In: CVPR (2010)
[2] Fu, C. Y., Shvets, M., & Berg, A. C. RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free. arXiv:1901.03353
[3] He, K., Gkioxari, G., Dollár, P., & Girshick, R.: Mask R-CNN. ICCV 2017.
[4] Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. T-PAMI 2006.