BOP Challenge 2019

Tomáš Hodaň, CTU in Prague **Eric Brachmann**, Heidelberg Uni **Bertram Drost**, MVTec Software **Frank Michel**, TU Dresden **Martin Sundermeyer**, DLR **Jiří Matas**, CTU in Prague **Carsten Rother**, Heidelberg Uni

5th International Workshop on Recovering 6D Object Pose ICCV 2019, October 28, Seoul, Korea

Throwback to BOP'18

Hodaň, Michel et al., BOP: Benchmark for 6D Object Pose Estimation, ECCV 2018

Goal: To capture SOTA in 6D object pose estimation in RGB-D images.

The SiSo task: 6D localization of a **Single instance** of a **Single object**, at least one instance of the object is guaranteed to be visible in the image.

Evaluation: Visible Surface Discrepancy (VSD).

	$#$ Method	LM	$LM-O$	$IC-MI$	IC-BIN	T-LESS	$RU-APC$	TUD-L	Average	Time (s)
	\bullet 1. Vidal-18	87.83	59.31	95.33	96.50	66.51	36.52	80.17	74.60	4.7
	\bullet 2. Drost-10-edge	79.13	54.95	94.00	92.00	67.50	27.17	87.33	71.73	21.5
	\bullet 3. Drost-10	82.00	55.36	94.33	87.00	56.81	22.25	78.67	68.06	2.3
\bullet 4.	$Hodan-15$	87.10	51.42	95.33	90.50	63.18	37.61	45.50	67.23	13.5
	\bullet 5. Brachmann-16	75.33	52.04	73.33	56.50	17.84	24.35	88.67	55.44	4.4
	\bullet 6. Hodan-15-nopso	69.83	34.39	84.67	76.00	62.70	32.39	27.83	55.40	12.3
	\bullet 7. Buch-17-ppfh	56.60	36.96	95.00	75.00	25.10	20.80	68.67	54.02	14.2
	\bullet 8. Kehl-16	58.20	33.91	65.00	44.00	24.60	25.58	7.50	36.97	1.8
	\bullet 9. Buch-17-si	33.33	20.35	67.33	59.00	13.34	23.12	41.17	36.81	15.9
	\bullet 10. Brachmann-14	67.60	41.52	78.67	24.00	0.25	30.22	0.00	34.61	1.4
	\bullet 11. Buch-17-ecsad	13.27	9.62	40.67	59.00	7.16	6.59	24.00	22.90	5.9
	\bullet 12. Buch-17-shot	5.97	1.45	43.00	38.50	3.83	0.07	16.67	15.64	6.7
	\bullet 13. Tejani-14	12.10	4.50	36.33	10.00	0.13	1.52	0.00	9.23	1.4
	\bullet 14. Buch-16-ppfh	8.13	2.28	20.00	2.50	7.81	8.99	0.67	7.20	47.1
	\bullet 15. Buch-16-ecsad	3.70	0.97	3.67	4.00	1.24	2.90	0.17	2.38	39.1

Results: Methods based on Point Pair Features (PPF) perform best.

Methods based on point pair features, Template matching methods, Learning-based methods, Methods based on 3D local features

6D localization of a **Varying number of instances** of a **Varying number of objects** in a single RGB-D image, the number of instances is known.

6D localization of a **Varying number of instances** of a **Varying number of objects** in a single RGB-D image, the number of instances is known.

6D localization - A list of instances to localize provided with the image.

6D localization of a **Varying number of instances** of a **Varying number of objects** in a single RGB-D image, the number of instances is known.

6D localization - A list of instances to localize provided with the image.

6D localization of a **Varying number of instances** of a **Varying number of objects** in a single RGB-D image, the number of instances is known.

6D localization - A list of instances to localize provided with the image.

6D detection (not tested in BOP'19) - The number of instances unknown.

Practical limitation - computationally expensive evaluation as many more hypotheses need to be evaluated to calculate the precision/recall curve.

6D localization of a **Varying number of instances** of a **Varying number of objects** in a single RGB-D image, the number of instances is known.

11 datasets in a unified format

- Texture-mapped 3D models of **171 objects.**
- **>350K training RGB-D images** (mostly synthetic of isolated objects).
- **>100K test RGB-D images** of scenes with graded complexity.
- Images annotated with **ground-truth 6D object poses.**

11 datasets in a unified format

- Texture-mapped 3D models of **171 objects.**
- **>350K training RGB-D images** (mostly synthetic of isolated objects).
- **>100K test RGB-D images** of scenes with graded complexity.
- Images annotated with **ground-truth 6D object poses.**

Pose error functions

Estimated pose

Pose error functions

Estimated pose

GT pose

How good is the estimated pose?

Pose error functions

How good is the estimated pose?

The error of an estimated pose w.r.t. the GT pose is measured by **three pose error functions**:

- 1. **VSD:** Visible Surface Discrepancy
- 2. **MSSD:** Maximum Symmetry-Aware Surface Distance
- 3. **MSPD:** Maximum Symmetry-Aware Projection Distance

Test image

RGB Depth

Test image Estimated pose GT pose \hat{S} \bar{S} S_I RGB Depth Depth Depth

Visibility masks are obtained by comparing \hat{S} and \bar{S} with S_I

$$
e_{\text{VSD}}(\hat{S}, \bar{S}, S_I, \hat{V}, \bar{V}, \tau) = \underset{p \in \hat{V} \cup \bar{V}}{\text{avg}} \begin{cases} 0 & \text{if } p \in \hat{V} \cap \bar{V} \land |\hat{S}(p) - \bar{S}(p)| < \tau \\ 1 & \text{otherwise.} \end{cases}
$$

Visibility masks are obtained by comparing \hat{S} and \bar{S} with S_I

$$
e_{\text{VSD}}(\hat{S}, \bar{S}, S_I, \hat{V}, \bar{V}, \tau) = \underset{p \in \hat{V} \cup \bar{V}}{\text{avg}} \begin{cases} 0 & \text{if } p \in \hat{V} \cap \bar{V} \land |\hat{S}(p) - \bar{S}(p)| < \tau \\ 1 & \text{otherwise.} \end{cases}
$$

Pose error is calculated over the visible part ⇒ **indistinguishable poses are equivalent.**

Visibility masks are obtained by comparing \hat{S} and \bar{S} with S_I

$$
e_{\text{VSD}}(\hat{S}, \bar{S}, S_I, \hat{V}, \bar{V}, \tau) = \underset{p \in \hat{V} \cup \bar{V}}{\text{avg}} \begin{cases} 0 & \text{if } p \in \hat{V} \cap \bar{V} \land |\hat{S}(p) - \bar{S}(p)| < \tau \\ 1 & \text{otherwise.} \end{cases}
$$

Pose error is calculated over the visible part ⇒ **indistinguishable poses are equivalent.**

-15° 0° 15° Front view: Top view: Indistinguishable poses

MSSD: Maximum Symmetry-Aware Surface Distance

Max is **less dependent on sampling** of the model surface (avg. in ADD/ADI [Hinterstoisser'12] is dominated by finer parts).

Max strongly indicates **the chance of a successful grasp.**

Symmetric and **asymmetric** objects treated in the same way.

Only pose ambiguities induced by the global object symmetries are considered, not pose ambiguities induced by **occlusion/self-occlusion**.

MSPD: Maximum Symmetry-Aware Projection Dist.

Max is **less dependent on sampling** of the model surface (avg. in "2D Projection" [Brachmann'16] is dominated by finer parts).

Measures **the perceivable discrepancy** (not misalignment along Z) ⇒ Suitable for **AR applications** and evaluation of **RGB-only methods.**

Only pose ambiguities induced by the global object symmetries are considered, not pose ambiguities induced by **occlusion/self-occlusion**.

Identifying object symmetries

The set of **potential** symmetry transformations:

Includes **discrete** and **continuous rotational symmetries.**

The **continuous rotational symmetries are discretized** such as the vertex which is the furthest from the rotational axis travels not more than 1% of the object diameter.

The final set of symmetry transformations S_O (used in MSSD and MSPD) is a subset of S'_{Ω} and consists of those transformations which **cannot be resolved by the model texture** (decided subjectively).

Examples of identified discrete symmetries

Examples of identified continuous symmetries

23

Performance score

BOP'18:

- Performance measured by **recall**, i.e. the fraction of object instances with correctly estimated pose.
- **•** Pose estimate *P* is **considered correct** if $VSD(P) < \theta = 0.3$.

BOP'19:

- The performance w.r.t. each pose error function (VSD, MSSD or MSPD) measured by the **Average Recall (AR)**, i.e. the average of the recall rates calculated for multiple threshold settings.
- **The performance score on a dataset:**

$$
AR = (AR_{VSD} + AR_{MSSD} + AR_{MSPD})/3
$$

The overall score is calculated as the average of the per-dataset scores ⇒ each dataset is treated as a separate sub-challenge which avoids the overall score being dominated by larger datasets.

Challenge rules

- 1. **For training**, a method could use the provided 3D object models and training images and could render extra training images.
- 2. **Not a single pixel of test images** might be used in training, nor the individual ground-truth poses.
- 3. **The range (not a probability distribution) of all GT poses in the test images**, is the only information about the test set which could be used during training.
- 4. **A fixed set of hyper-parameters** required for all objects and datasets.
- 5. **To be considered for the awards**, authors had to provide an implementation of the method (source code or a binary file) which was validated. Methods were not required to be public domain or open source.

BOP Toolkit

Scripts for reading the standard dataset format, rendering, evaluation etc.

图 README.md

BOP Toolkit

A Python toolkit of the BOP benchmark for 6D object pose estimation (http://bop.felk.cvut.cz).

- bop_toolkit_lib The core Python library for i/o operations, calculation of pose errors, Python based rendering etc.
- · docs Documentation and conventions.
- scripts Scripts for evaluation, rendering of training images, visualization of 6D object poses etc.

BOP: Benchmark for 6D Object Pose Estimation

HOME CHALLENGES DATASETS LEADERBOARDS SUBMIT RESULTS

BOP Challenge 2019: Core datasets LM LM-O T-LESS ITODD HB YCB-V RU-APC IC-BIN IC-MI TUD-L TYO-L

BOP Challenge 2019 - core datasets

This leaderbord shows overall ranking on the core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V). The date of the latest considered submission is reported. If more submissions of a method are available for a dataset, the submission with the best AR score is considered. The performance scores are defined in the challenge description. The reported time is the average of the per-image average estimation times for the core datasets.

Sign in

BOP: Benchmark for 6D Object Pose Estimation

HOME CHALLENGES DATASETS LEADERBOARDS SUBMIT RESULTS

BOP Challenge 2019: Core datasets LM LM-O T-LESS ITODD HB YCB-V RU-APC IC-BIN IC-MI TUD-L TYO-L

BOP Challenge 2019 - core datasets

This lear**s in the average of the per-image average estimation times for the core datasets.**
reported time is the average of the per-image average estimation times for the core datasets.

BOP: Benchmark for 6D Object Pose Estimation

HOME CHALLENGES DATASETS LEADERBOARDS SUBMIT RESULTS

BOP Challenge 2019: Core datasets LM LM-O T-LESS ITODD HB YCB-V RU-APC IC-BIN IC-MI TUD-L TYO-L

BOP Challenge 2019 - core datasets

This lear**s in the average of the per-image average estimation times for the core datasets.**
reported time is the average of the per-image average estimation times for the core datasets.

BOP: Benchmark for 6D Object Pose Estimation

HOME CHALLENGES DATASETS LEADERBOARDS SUBMIT RESULTS

BOP Challenge 2019: Core datasets LM LM-O T-LESS ITODD HB YCB-V RU-APC IC-BIN IC-MI TUD-L TYO-L

BOP Challenge 2019 - core datasets

This lear**s in the average of the per-image average estimation times for the core datasets.**
reported time is the average of the per-image average estimation times for the core datasets.

AR score

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

AR score

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

AR score

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

AR score

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

AR score

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

Evaluation AR_{MSPD} score (friendly to RGB-only methods)

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

Evaluation AR_{MSPD} score (friendly to RGB-only methods)

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.

[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, Healthcare Technology Letters 2019.

[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017. [5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019. [6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

LM-O, T-LESS, HB, IC-BIN, TUD-L:

Vidal-Sensors18: *Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, Robert Martí,*

A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.

LM, IC-MI, ITODD, TYO-L:

Drost-CVPR10-3D-Only / Drost-CVPR10-Edges: *Bertram Drost, Markus Ulrich, Nassir Navab, Slobodan Ilic, Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.*

YCB-V, RU-APC:

Pix2Pose-BOP_w/ICP-ICCV19: *Kiru Park, Timothy Patten, Markus Vincze, Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.*

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V) whose source code is publicly available.

Sundermeyer-IJCV19+ICP: *Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, Rudolph Triebel, Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.*

https://github.com/DLR-RM/AugmentedAutoencoder

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V) with the average running time per image below 1s.

Sundermeyer-IJCV19+ICP: *Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, Rudolph Triebel, Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.*

Average time per image: 0.865 s

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V) which uses only RGB channels of the test images.

Zhigang-CDPN-ICCV19: *Zhigang Li, Gu Wang, Xiangyang Ji, CDPN:*

Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation, ICCV 2019.

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V).

Vidal-Sensors18: *Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, Robert Martí, A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, Sensors 2018.*

Conclusions

- **New evaluation protocol:**
	- ViVo task.
	- Pose error functions VSD, MSSD, MSPD.
	- Performance score measured by the average recall.
- **New datasets in the BOP format** (ITODD, HomebrewedDB, YCB-V).
- **●** PPF-based methods **still perform best.**
- **●** The submission form for the BOP Challenge 2019 **stays open!**