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Throwback to BOP’18
Hodaň, Michel et al., BOP: Benchmark for 6D Object Pose Estimation, ECCV 2018

Goal: To capture SOTA in 6D object pose estimation in RGB-D images.

The SiSo task: 6D localization of a Single instance of a Single object,
at least one instance of the object is guaranteed to be visible in the image.

Evaluation: Visible Surface Discrepancy (VSD).

Results: Methods based on Point Pair Features (PPF) perform best.

Methods based on point pair features, Template matching methods,
Learning-based methods, Methods based on 3D local features



6D localization of a Varying number of instances of a Varying number 
of objects in a single RGB-D image, the number of instances is known.
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The ViVo task for BOP’19



6D localization of a Varying number of instances of a Varying number 
of objects in a single RGB-D image, the number of instances is known.

6D localization - A list of instances to localize provided with the image.
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The ViVo task for BOP’19
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multiple instances
of a single object

MiMo
multiple instances
of multiple objects



6D localization of a Varying number of instances of a Varying number 
of objects in a single RGB-D image, the number of instances is known.

6D localization - A list of instances to localize provided with the image.
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The ViVo task for BOP’19
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of a single object

SiMo
a single instance

of multiple objects

MiSo
multiple instances
of a single object

MiMo
multiple instances
of multiple objects

ViVo



6D localization of a Varying number of instances of a Varying number 
of objects in a single RGB-D image, the number of instances is known.

6D localization - A list of instances to localize provided with the image.

6D detection (not tested in BOP’19) - The number of instances unknown.

Practical limitation - computationally expensive evaluation as many more 
hypotheses need to be evaluated to calculate the precision/recall curve.
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The ViVo task for BOP’19
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6D localization of a Varying number of instances of a Varying number 
of objects in a single RGB-D image, the number of instances is known.
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The ViVo task for BOP’19

Estimated 6D poses
of the present object 

instances

Method

Training input

Test input
a) A single RGB-D image

a) Number of present instances of each object oi

Object m
Object 2

3D model Synt./real training images

OR ...

Object 1



● Texture-mapped 3D models of 171 objects.
● >350K training RGB-D images (mostly synthetic of isolated objects).
● >100K test RGB-D images of scenes with graded complexity.
● Images annotated with ground-truth 6D object poses.
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11 datasets in a unified format

LM LM-O T-LESS

RU-APCIC-BIN IC-MI

TUD-L

TYO-L

ITODD HB YCB-Video

NEW IN
BOP’19



● Texture-mapped 3D models of 171 objects.
● >350K training RGB-D images (mostly synthetic of isolated objects).
● >100K test RGB-D images of scenes with graded complexity.
● Images annotated with ground-truth 6D object poses.
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11 datasets in a unified format

LM LM-O T-LESS

RU-APCIC-BIN IC-MI

TUD-L

TYO-L

ITODD HB YCB-Video

NEW IN
BOP’19

Non-public GT Non-public GT
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Pose error functions

Estimated pose

Method



11

Pose error functions

Estimated pose

Method

GT pose

How good is the 
estimated pose?
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Pose error functions

The error of an estimated pose w.r.t. the GT pose is measured by
three pose error functions:

1. VSD: Visible Surface Discrepancy
2. MSSD: Maximum Symmetry-Aware Surface Distance
3. MSPD: Maximum Symmetry-Aware Projection Distance

Estimated pose

Method

GT pose

How good is the 
estimated pose?



VSD: Visible Surface Discrepancy
Test image

RGB Depth

13



VSD: Visible Surface Discrepancy
Test image Estimated pose GT pose

RGB Depth Depth Depth
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VSD: Visible Surface Discrepancy

Visibility masks are obtained by comparing     and     with

Test image Estimated pose GT pose

RGB Depth Depth Visibility VisibilityDepth
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VSD: Visible Surface Discrepancy

Visibility masks are obtained by comparing     and     with

Test image Estimated pose GT pose

RGB Depth Depth Visibility VisibilityDepth
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VSD: Visible Surface Discrepancy

Visibility masks are obtained by comparing     and     with

Pose error is calculated over the visible part
⇒ indistinguishable poses are equivalent.

Test image Estimated pose GT pose

RGB Depth Depth Visibility VisibilityDepth

-15° 0° 15°

Front view:

Top view:

Indistinguishable poses
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VSD: Visible Surface Discrepancy

Visibility masks are obtained by comparing     and     with

Pose error is calculated over the visible part
⇒ indistinguishable poses are equivalent.

Color not considered.

Test image Estimated pose GT pose

RGB Depth Depth Visibility VisibilityDepth

-15° 0° 15°

Front view:

Top view:

Indistinguishable poses

18



Max is less dependent on sampling of the model surface
(avg. in ADD/ADI [Hinterstoisser’12] is dominated by finer parts).

Max strongly indicates the chance of a successful grasp.

Symmetric and asymmetric objects treated in the same way.

Only pose ambiguities induced by the global object symmetries are 
considered, not pose ambiguities induced by occlusion/self-occlusion.
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MSSD: Maximum Symmetry-Aware Surface Distance

Est.
pose

GT
pose

A set of symmetry 
transformations

Vertices of
3D object model



Max is less dependent on sampling of the model surface
(avg. in “2D Projection” [Brachmann’16] is dominated by finer parts).

Measures the perceivable discrepancy (not misalignment along Z)
⇒ Suitable for AR applications and evaluation of RGB-only methods.

Only pose ambiguities induced by the global object symmetries are 
considered, not pose ambiguities induced by occlusion/self-occlusion.
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MSPD: Maximum Symmetry-Aware Projection Dist.

Est.
pose

GT
pose

A set of symmetry 
transformations

Vertices of
3D object model



The set of potential symmetry transformations:

Includes discrete and continuous rotational symmetries.

The continuous rotational symmetries are discretized such as the 
vertex which is the furthest from the rotational axis travels not more than 
1% of the object diameter.

The final set of symmetry transformations        (used in MSSD and MSPD)        
is a subset of        and consists of those transformations which cannot be 
resolved by the model texture (decided subjectively).
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Identifying object symmetries

Hausdorff distance Vertices of 3D 
object model

Object
diameter

Avoids breaking the 
symmetries by too 

small details
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Examples of identified discrete symmetries
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Examples of identified continuous symmetries

...

...

...



BOP’18:

● Performance measured by recall, i.e. the fraction of object instances 
with correctly estimated pose.

● Pose estimate P is considered correct if VSD(P) < θ = 0.3.

BOP’19:

● The performance w.r.t. each pose error function (VSD, MSSD or MSPD) 
measured by the Average Recall (AR), i.e. the average of the recall 
rates calculated for multiple threshold settings.

● The performance score on a dataset:

● The overall score is calculated as the average of the per-dataset 
scores ⇒ each dataset is treated as a separate sub-challenge which 
avoids the overall score being dominated by larger datasets.
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Performance score
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Challenge rules
1. For training, a method could use the provided 3D object models and 

training images and could render extra training images.
2. Not a single pixel of test images might be used in training, nor the 

individual ground-truth poses.
3. The range (not a probability distribution) of all GT poses in the 

test images, is the only information about the test set which could be 
used during training.

4. A fixed set of hyper-parameters required for all objects and 
datasets.

5. To be considered for the awards, authors had to provide an 
implementation of the method (source code or a binary file) which was 
validated. Methods were not required to be public domain or open 
source.
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BOP Toolkit
Scripts for reading the standard dataset format, rendering, evaluation etc.
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Online evaluation system at bop.felk.cvut.cz



Submission deadline: October 21, 2019
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Online evaluation system at bop.felk.cvut.cz



Submission deadline: October 21, 2019

197 submission
(one submission = results of one method on one dataset)
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Online evaluation system at bop.felk.cvut.cz



Submission deadline: October 21, 2019

197 submission
(one submission = results of one method on one dataset)

11 methods evaluated on all 7 core datasets
(LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V)
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Online evaluation system at bop.felk.cvut.cz



31

Evaluation

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

AR score

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.569 0.582 0.538 0.876 0.393 0.435 0.706 0.450 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.500 0.469 0.404 0.852 0.373 0.462 0.623 0.316 80.055
4 Drost-CVPR10-3D-Only [2] D 0.487 0.527 0.444 0.775 0.388 0.316 0.615 0.344 7.704
5 Drost-CVPR10-3D-Only-Faster [2] D 0.454 0.492 0.405 0.696 0.377 0.274 0.603 0.330 1.383
6 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510 55.780
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.398 0.237 0.487 0.614 0.281 0.158 0.506 0.505 0.865
8 Zhigang-CDPN-ICCV19 [6] RGB 0.353 0.374 0.124 0.757 0.257 0.070 0.470 0.422 0.513
9 Sundermeyer-IJCV19 [5] RGB 0.270 0.146 0.304 0.401 0.217 0.101 0.346 0.377 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.205 0.077 0.275 0.349 0.215 0.032 0.200 0.290 0.793
11 DPOD (synthetic) [8] RGB 0.161 0.169 0.081 0.242 0.130 0.000 0.286 0.222 0.231

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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Evaluation

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

AR score

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.569 0.582 0.538 0.876 0.393 0.435 0.706 0.450 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.500 0.469 0.404 0.852 0.373 0.462 0.623 0.316 80.055
4 Drost-CVPR10-3D-Only [2] D 0.487 0.527 0.444 0.775 0.388 0.316 0.615 0.344 7.704
5 Drost-CVPR10-3D-Only-Faster [2] D 0.454 0.492 0.405 0.696 0.377 0.274 0.603 0.330 1.383
6 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510 55.780
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.398 0.237 0.487 0.614 0.281 0.158 0.506 0.505 0.865
8 Zhigang-CDPN-ICCV19 [6] RGB 0.353 0.374 0.124 0.757 0.257 0.070 0.470 0.422 0.513
9 Sundermeyer-IJCV19 [5] RGB 0.270 0.146 0.304 0.401 0.217 0.101 0.346 0.377 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.205 0.077 0.275 0.349 0.215 0.032 0.200 0.290 0.793
11 DPOD (synthetic) [8] RGB 0.161 0.169 0.081 0.242 0.130 0.000 0.286 0.222 0.231

Methods using depth

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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Evaluation

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

AR score

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.569 0.582 0.538 0.876 0.393 0.435 0.706 0.450 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.500 0.469 0.404 0.852 0.373 0.462 0.623 0.316 80.055
4 Drost-CVPR10-3D-Only [2] D 0.487 0.527 0.444 0.775 0.388 0.316 0.615 0.344 7.704
5 Drost-CVPR10-3D-Only-Faster [2] D 0.454 0.492 0.405 0.696 0.377 0.274 0.603 0.330 1.383
6 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510 55.780
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.398 0.237 0.487 0.614 0.281 0.158 0.506 0.505 0.865
8 Zhigang-CDPN-ICCV19 [6] RGB 0.353 0.374 0.124 0.757 0.257 0.070 0.470 0.422 0.513
9 Sundermeyer-IJCV19 [5] RGB 0.270 0.146 0.304 0.401 0.217 0.101 0.346 0.377 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.205 0.077 0.275 0.349 0.215 0.032 0.200 0.290 0.793
11 DPOD (synthetic) [8] RGB 0.161 0.169 0.081 0.242 0.130 0.000 0.286 0.222 0.231

Methods based on Point Pair Features [2]

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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Evaluation

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

AR score

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.569 0.582 0.538 0.876 0.393 0.435 0.706 0.450 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.500 0.469 0.404 0.852 0.373 0.462 0.623 0.316 80.055
4 Drost-CVPR10-3D-Only [2] D 0.487 0.527 0.444 0.775 0.388 0.316 0.615 0.344 7.704
5 Drost-CVPR10-3D-Only-Faster [2] D 0.454 0.492 0.405 0.696 0.377 0.274 0.603 0.330 1.383
6 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510 55.780
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.398 0.237 0.487 0.614 0.281 0.158 0.506 0.505 0.865
8 Zhigang-CDPN-ICCV19 [6] RGB 0.353 0.374 0.124 0.757 0.257 0.070 0.470 0.422 0.513
9 Sundermeyer-IJCV19 [5] RGB 0.270 0.146 0.304 0.401 0.217 0.101 0.346 0.377 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.205 0.077 0.275 0.349 0.215 0.032 0.200 0.290 0.793
11 DPOD (synthetic) [8] RGB 0.161 0.169 0.081 0.242 0.130 0.000 0.286 0.222 0.231

CNN-based methods

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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Evaluation

[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

AR score

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.569 0.582 0.538 0.876 0.393 0.435 0.706 0.450 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.500 0.469 0.404 0.852 0.373 0.462 0.623 0.316 80.055
4 Drost-CVPR10-3D-Only [2] D 0.487 0.527 0.444 0.775 0.388 0.316 0.615 0.344 7.704
5 Drost-CVPR10-3D-Only-Faster [2] D 0.454 0.492 0.405 0.696 0.377 0.274 0.603 0.330 1.383
6 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510 55.780
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.398 0.237 0.487 0.614 0.281 0.158 0.506 0.505 0.865
8 Zhigang-CDPN-ICCV19 [6] RGB 0.353 0.374 0.124 0.757 0.257 0.070 0.470 0.422 0.513
9 Sundermeyer-IJCV19 [5] RGB 0.270 0.146 0.304 0.401 0.217 0.101 0.346 0.377 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.205 0.077 0.275 0.349 0.215 0.032 0.200 0.290 0.793
11 DPOD (synthetic) [8] RGB 0.161 0.169 0.081 0.242 0.130 0.000 0.286 0.222 0.231

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

Evaluation ARMSPD score (friendly to RGB-only methods)

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.563 0.647 0.574 0.907 0.322 0.434 0.708 0.347 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.543 0.569 0.518 0.881 0.293 0.596 0.670 0.275 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.491 0.511 0.420 0.872 0.294 0.478 0.626 0.233 80.055
4 Drost-CVPR10-3D-Only [2] D 0.483 0.581 0.480 0.791 0.320 0.320 0.627 0.263 7.704
5 Zhigang-CDPN-ICCV19 [6] RGB 0.448 0.558 0.170 0.895 0.319 0.115 0.569 0.512 0.513
6 Drost-CVPR10-3D-Only-Faster [2] D 0.446 0.542 0.436 0.709 0.305 0.275 0.611 0.244 1.383
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.431 0.285 0.514 0.710 0.286 0.215 0.533 0.475 0.865
8 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.395 0.430 0.213 0.889 0.251 0.073 0.523 0.384 55.780
9 Sundermeyer-IJCV19 [5] RGB 0.391 0.254 0.504 0.613 0.285 0.208 0.461 0.410 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.316 0.165 0.403 0.535 0.316 0.073 0.311 0.407 0.793
11 DPOD (synthetic) [8] RGB 0.225 0.278 0.139 0.341 0.185 0.000 0.379 0.256 0.231

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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[1] Joel Vidal et al., A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data, 
Sensors 2018.
[2] Bertram Drost et al., Model globally, match locally: Efficient and robust 3D object recognition, CVPR 2010.
[3] Pedro Rodrigues et al., Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty, 
Healthcare Technology Letters 2019.
[4] Carolina Raposo et al., Using 2 point+normal sets for fast registration of point clouds with small overlap, ICRA 2017.
[5] Martin Sundermeyer et al., Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection, IJCV 2019.
[6] Zhigang Li et al., CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose 
Estimation, ICCV 2019.
[7] Kiru Park et al., Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, ICCV 2019.
[8] Sergey Zakharov et al., DPOD: Dense 6D Pose Object Detector in RGB images, ICCV 2019.

Evaluation ARMSPD score (friendly to RGB-only methods)

# Method Image Average LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Time (s)
1 Vidal-Sensors18 [1] D 0.563 0.647 0.574 0.907 0.322 0.434 0.708 0.347 3.220
2 Drost-CVPR10-Edges [2] RGB-D 0.543 0.569 0.518 0.881 0.293 0.596 0.670 0.275 87.568
3 Drost-CVPR10-3D-Edges [2] D 0.491 0.511 0.420 0.872 0.294 0.478 0.626 0.233 80.055
4 Drost-CVPR10-3D-Only [2] D 0.483 0.581 0.480 0.791 0.320 0.320 0.627 0.263 7.704
5 Zhigang-CDPN-ICCV19 [6] RGB 0.448 0.558 0.170 0.895 0.319 0.115 0.569 0.512 0.513
6 Drost-CVPR10-3D-Only-Faster [2] D 0.446 0.542 0.436 0.709 0.305 0.275 0.611 0.244 1.383
7 Sundermeyer-IJCV19+ICP [5] RGB-D 0.431 0.285 0.514 0.710 0.286 0.215 0.533 0.475 0.865
8 Félix&Neves-ICRA17-IET19 [3,4] RGB-D 0.395 0.430 0.213 0.889 0.251 0.073 0.523 0.384 55.780
9 Sundermeyer-IJCV19 [5] RGB 0.391 0.254 0.504 0.613 0.285 0.208 0.461 0.410 0.186

10 Pix2Pose-BOP-ICCV19 [7] RGB 0.316 0.165 0.403 0.535 0.316 0.073 0.311 0.407 0.793
11 DPOD (synthetic) [8] RGB 0.225 0.278 0.139 0.341 0.185 0.000 0.379 0.256 0.231

Only a small change in the ranking suggests that
D is important not only for estimation of the object distance

(the distance is not directly evaluated by MSPD).

The scores were re-calculated on 27th January 2020.

https://github.com/thodan/bop_toolkit/blob/master/docs/bop_challenge_2019_re-evaluation_27-01-2020.md
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BOP Challenge 2019 Awards
The Best Method on Individual Datasets

LM-O, T-LESS, HB, IC-BIN, TUD-L:
 

Vidal-Sensors18: Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, Robert Martí,
A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair 
Features on Range Data, Sensors 2018.

LM, IC-MI, ITODD, TYO-L:
 

Drost-CVPR10-3D-Only / Drost-CVPR10-Edges: Bertram Drost, Markus 
Ulrich, Nassir Navab, Slobodan Ilic, Model globally, match locally: Efficient 
and robust 3D object recognition, CVPR 2010.

YCB-V, RU-APC:
  

Pix2Pose-BOP_w/ICP-ICCV19: Kiru Park, Timothy Patten, Markus Vincze, 
Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation, 
ICCV 2019.

BOP
2019
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BOP Challenge 2019 Awards
The Best Open Source Method

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V) 
whose source code is publicly available.

Sundermeyer-IJCV19+ICP: Martin Sundermeyer, Zoltan-Csaba Marton, 
Maximilian Durner, Manuel Brucker, Rudolph Triebel, Augmented 
Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection,
IJCV 2019.

https://github.com/DLR-RM/AugmentedAutoencoder

BOP
2019
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BOP Challenge 2019 Awards
The Best Fast Method

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V)
with the average running time per image below 1s.

Sundermeyer-IJCV19+ICP: Martin Sundermeyer, Zoltan-Csaba Marton, 
Maximilian Durner, Manuel Brucker, Rudolph Triebel, Augmented 
Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection,
IJCV 2019.

Average time per image: 0.865 s

BOP
2019
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BOP Challenge 2019 Awards
The Best RGB-Only Method

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V)
which uses only RGB channels of the test images.

Zhigang-CDPN-ICCV19: Zhigang Li, Gu Wang, Xiangyang Ji, CDPN: 
Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF 
Object Pose Estimation, ICCV 2019.

BOP
2019



42

BOP Challenge 2019 Awards
The Overall Best Method

The best method on the 7 core datasets (LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V).

Vidal-Sensors18: Joel Vidal, Chyi-Yeu Lin, Xavier Lladó, Robert Martí, A 
Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair 
Features on Range Data, Sensors 2018.

BOP
2019
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Conclusions
● New evaluation protocol:

○ ViVo task.
○ Pose error functions VSD, MSSD, MSPD.
○ Performance score measured by the average recall.

● New datasets in the BOP format (ITODD, HomebrewedDB, YCB-V).

● PPF-based methods still perform best.

● The submission form for the BOP Challenge 2019 stays open!


