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From 3D descriptors to monocular 6D pose:
what have we learned?
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A new generation of cheaper, smaller, denser LIDARs?
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Hand-crafted Local 3D descriptors
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3D representations and deep learning

Point Clouds: . 3D Mesh: |
Unorganized, no topology s Unorganized, with
topology

Range (depth) map:

Voxel map:
Organized, no topology

Organized, no topology

Unorganized 3D representations such as point clouds and meshes are not naturally suited to convolutions




Learned 3D descriptors — state of the art

3DMatch [Zengl7] Voxel Local Training Contrastive

Compact Geometric Point clouds Local Hand-crafted LRF Triplet
Features [Khoury17] (via histograms)

PPFNet [Dengl8] Point clouds Local Hand-crafted LRF N-tuple

Pointnet [Qil7] Point clouds Global T-net Classification
Segmentation
Pointnet++ [Qil17] Point clouds Global T-net Classification
Segmentation

Dynamic Graph CNN Point clouds Global T-Net Classification
[Wang18] Segmentation
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Fully Convolutional Point Network

e Hybrid: Unorganized input, organized internal

| | SPATIALLY WEIGHTED
3D CONV POOLING

representation and output ‘POINTNET 3D DECONV | | 3D DECONV
e End-to-end, general-purpose, hierarchical learning L
on unordered 3D data Ly

e Processing of large scale point clouds in one single

pass
Point Count Surface Area Forward Pass Memory . .
TS0k o 1 5033 1D Semantic Segmentation
36k 36m” 2.9s 8515 MB on ScanNet Sequences
15k 16m* 0.57s 6481 MB

D. Rethage, J. Wald, J. Sturm, N. Navab, F. Tombari, “Fully Convolutional Point Networks for Large-Scale Point Clouds”, ECCV 2018



Can we “learn” 6D pose without a 3D sensor?




2D vs. 3D object detection and pose estimation

“2D” object detection




Monocular 6D object pose estimation — state of the art

VGG 16 8 corners of the projected 3D Bounding Box PnP / VGG

YOLO V2 8 corners of the projected 3D Bounding Box PnP
+ 3D centroid projection

VGG 16 Semantic Labeling + Regression of 6D pose
Mask R-CNN Object Instance Segmentation + Regression
of 6D pose
SSD 300 Viewpoint and In-Plane rotation classification Contour-based

J [Rad2017] Rad and Lepetit BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth, ICCV2017
o [Kehl2017] Kehl et al. SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again, ICCV 2017
o [Tekin2018] Tekin et al. Real-Time Seamless Single Shot 6D Object Pose Prediction, CVPR 2018

- J [D02018] Do et al. Deep-6DPose: Recovering 6D Object Pose from a Single RGB Image, Arxive 2018

‘ J [Xiang2018] Xiang et al. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes, RSS 2018




SSD-6D: monocular object detection and 6DoF pose estimation [Kehl17]
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Bounding box location (4 values)
C: Probability for each class

Single Shot Detector (SSD) network from [Liul6]




SSD-6D: monocular object detection and 6DoF pose estimation [Kehl17]
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C: Probability for each class

V: Probability for each viewpoint
R: Probability for each in-plane rotation

W. Kehl, F. Manhardt, F. Tombari, S. llic, N. Navab, “SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again”, ICCV 2017




From pose regression to pose classification
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6D Pose estimation

2D Detections (not refined)




Deep monocular 6D pose refinement
Low-Level
N e Feature Extraction

Tl
Scene patch S

High-Level Feature Extraction
3x3 Stride 2

12x12x192

Max—PooI

12x12x768

25 x 25 x 384 25 x 25 x 768 12 x 12 x 384

Rotation Branch Translation Branch
3x3 Stride 2 3x3 Stride 2
25 x 25 x 384 5 ptin, 1
Trained on 6x6 Pad ‘Valid’ 6x6 Pad ‘Valid’ ==
Registering . Reinitializing Render patch . 'Q‘;‘f’;’:ﬁt et
Deep-learned 6D pose refinement method that: Provided a 3D CAD model, input scene image and 6D pose hypothesis, we
* uses RGB data only * render the model in a patch
* trained purely on synthetic data * cut out a scene patch around the pose hypothesis
* agnostic to geometrical symmetry and visual « feed both to a pre-trained feature extractor
ambiguities  regress a rotational and translational pose update

F. Manhardt, W. Kehl, N. Navab, F. Tombari, “Deep Model-Based 6D Pose Refinement in RGB", ECCV 2018




Proxy loss with distance transform

.
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Synthetic Input Image 6D Pose Hypothesis Pose Estimation at Pose Estimation after
Initial State convergence
L(qga:ta,Ds, V) == > Ds|m(qa-v-q5 +ta) L:=L Ds, V) + L(g," Dy, V.
? ’ »VH) A - (QA,tA; Sy H)+ (QA 3_t.ﬂ: H > 8)
veEVy
Sum over all sampled points projected on the Extension of the loss to both directions, since sampled

-

~ distance transform of the target. contour points do not originate from target contours.
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Results — deep monocular 6D pose refinement

FPS: 12

Rot. Error [°]

Transl. Error [mm]

No Ref. 27.96
3D ICP 17.62
Ours 16.17

-

Tracking of unseen class instances

9.75, 9.33, 71.09
10.42, 10.56, 27.31
4.9, 5.87, 42.69

Pose Errors on LineMOD with Poses initialized
from SSD-6D

Robotic grasping application



Combining learners and optimizers — RGBD tracking
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D.J.Tan, N. Navab, F. Tombari, “Looking Beyond the Simple Scenarios: Combining Learners and Optimizers in 3D Temporal Tracking”, ISMAR 2017 (Best Demo Award)




Comparison — monocular vs RGBD 6D pose tracking

Monocular pose refinement [Manhardt18] RGB-D pose refinement [Tan17]




Car

Pedestrian

Pose estimation for Autonomous Driving Cyclist

e State of the art techniques mostly rely on LIDAR (or LIDAR+RGB)

e State of the art accuracy around 50% - 70%

e Current Contenders (Multimodal, Lidar only):

— VoxelNet: Zhou and Touzel, 2017 R 4

— AVOD-FPN: J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D
Proposal Generation and Object Detection from View Aggregation. IROS 2018.

— F-PointNet: C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D
Object Detection from RGB-D Data. arXiv 2017.

— MV3D: X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object

R — SN

Detection Network for Autonomous Driving. CVPR 2017. VoxelNet Detections (courtesy of Zhou and Touzel)




Monocular 6D pose also for AD?

* Extend 2D detection to predict 3D bounding boxes/6D

pose for AD classes (e.g. vehicles)

» Still very open problem (between 3 and 6% accuracy for KITTI

3D detection with loU=0.7)

* Related work (Mono, Stereo):

— Mono3D: X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun.
Monocular 3d object detection for autonomous driving. In CVPR, 2016

— 3DOP: X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, and R.
Urtasun. 3d object proposals for accurate object class detection. In NIPS,
2015

Mono3D Detections (courtesy of Chen et al.)




Qualitative Results

Lidar for visualization only
- Green Boxes: Ground Truth
s Red Boxes: Our predictions
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RGB vs. RGB+Lidar

Left: Ours (fully monocular) Right: MV3D [Chen17] (RGB+Lidar)
Green Boxes: Ground Truth, Red Boxes: Predictions




CNN-SLAM: monocular dense SLAM

Monocular SLAM

Accurate on depth borders but

cparse . CNN-SLAM [Tateno17]
O = takes the best of both world
< e by fusing monocular SLAM

FPS:32.634583 M:Floor M:Vertical structure/Wall

:Large structure/furniture [:Small structure

with depth prediction in real
time

-]
RefinediDepith
CNN Depth Prediction 1. can learn the absolute scale Result of dense 3D reconstruction
Dense but imprecise along 2. dense maps and semantic label fusion
depth borders 3. can deal with pure

rotational motion

K. Tateno, F. Tombari, I. Laina, N. Navab, “CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction"”, CVPR 2017



CNN-SLAM for AD

M road M Trees MBuilding  Sky M Person sidewalk

KITTI dataset Cityscapes dataset




What have we learned?

6D pose estimation can use deep learning to overcome the limitations of the sensing modality

3D learned descriptors generally report better performance in matching compared to hand-crafted

Monocular pose estimation can be carried out via deep learning (although not yet as accurately as with a depth sensor)

Open issues:

* Generalizability

* Geometric invariance

* Runtime/hardware limitations

Fusion of SLAM/real-time reconstruction with detection and pose estimation

New sensing technologies could be the next game changer
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