
THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY, 2010, 9(1):45-54 1

Refinement of Surface Mesh for Accurate
Multi-View Reconstruction
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Abstract—In this paper we propose a pipeline for accurate 3D
reconstruction from multiple images that deals with some of the
possible sources of inaccuracy present in the input data. Namely,
we address the problem of inaccurate camera calibration by
including a method adjusting the camera parameters in a global
structure-and-motion problem, which is solved with a depth map
for representation that is suitable to large scenes.

Secondly, we take the triangular mesh and calibration im-
proved by the global method in the first phase to refine the
surface both geometrically and radiometrically. Here we propose
surface energy which combines photoconsistency with contour
matching and minimize it with a gradient descent method. Our
main contribution lies in effective computation of the gradient
that naturally regularization and data terms by employing scale
space approach. The results are demonstrated on standard high-
resolution datasets and a complex outdoor scene.

Index Terms—Structure from motion, dense 3D reconstruction,
multi-view, mesh refinement

I. INTRODUCTION

The development of methods for 3D reconstruction from
multiple images has led to a number of successful methods,
which can be used to construct virtual worlds. They belong
to the group of multi-view stereo (MVS) algorithms [1], [2],
[3], [4]. Despite the effort and availability of high-resolution
images, their performance is still not satisfying when we
compare them to laser range measurement systems [5]. The
fact that high-resolution images can be easily obtained by
consumer cameras or downloaded from the web is a motivation
for improving the results of MVS algorithms, especially when
the time and hardware costs of range scanning are considered.

Traditionally, evaluation is performed in the terms of com-
pleteness and accuracy [6]. Keeping in mind that these two
views still share a wide base, we will focus on the second one
in this paper, and propose a pipeline that deals with some of the
possible sources of inaccuracy in image-based reconstruction.

The paper is organized as follows. First, sources of inac-
curacy and related work are analyzed in Section II. Then the
proposed reconstruction pipeline is presented in Section III and
its two parts, depth map fusion and subsequent mesh refine-
ment, are detailed in Sections IV and V. Finally, experimental
validation is given in Section VI. One of the results of our
pipeline is displayed in Figure 1.
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Fig. 1. A replica of the Asia statue produced with rapid prototyping from a
3D model created by our pipeline from 238 input images.

II. ANALYSIS AND RELATED WORK

What are the possible sources of inaccuracy in the results
of image-based reconstruction methods? How can they be
handled? We will offer answers to such questions in the light
of existing attempts and include our proposals.

First, we will deal with the representation used in the
reconstruction process. Accuracy of volumetric [7] and related
level-set [8] representations is limited by voxel size, with
computational cost increasing typically with O(N3), which is
a high price even when reduced with quad-tree optimizations.
Although depth map representations [9] live in the data domain
and naturally use the scale of the scene defined by the input
images, they have difficulties in modeling parts of surfaces
which are observed under small angles. This is a consequence
of non-intrinsicity of such representation. Sampling the image
space with non-regular image grid could compensate this
effect. The representation with rectangular patches [10] does
not posses the limitations above, but the connectivity of the
surface must be modeled explicitly, i.e. in image space. Finally,
triangular mesh representation is often required as the output
for visualization or realization, therefore all of the above
alternatives are converted to it at some point. The knowledge
of connectivity allows direct computation of geometric surface
properties, like curvature. In this light the mesh representation
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turns out to be the most useful for final improvements of
accuracy. We can also benefit from the experience of computer
graphics with this representation [11].

Triangular mesh as a discrete implementation of a contin-
uous surface requires proper topology to effectively sample
it, including both density of vertices and the triangulation.
Without adaptation of the topology to geometry of the surface,
further improvement of accuracy can be impossible: details
require a fine mesh. In contrary, for flat regions this would
be not efficient. While the problem has been studied from the
geometrical point of view [12], [13], image-based optimization
of the topology could improve the efficiency even further.

We will turn to the inaccuracy present in the data, in our
case images and camera calibration. The camera parameters
provided have been typically estimated with algorithms that
work with sparse correspondences [14] and can be further
improved with dense data by one of the following methods.
Furukawa [1] has recently applied this approach, when he
iteratively switches between the camera calibration with a
standard bundle adjustment and running MVS with the refined
camera parameters. MVS used in [10] performs final mesh
refinement in order to overcome the change of representation
from patch-based. Tylecek [15] incorporated this problem
differently by solving jointly for both depths and camera
centers in depth map framework. Both papers show that the
calibration refinement is essential for recovery of fine details,
therefore we include this step in our refinement pipeline.
Turning back to representation, these methods demonstrate
that camera calibration update is easily tractable with image
based (depth maps or patches) representations, while other
are not suitable for this purpose, i.e. with volumetric or mesh
representations the update would be difficult. We have chosen
the second method because it is more compact.

Camera lenses, especially on the consumer level, introduce
a number of distortions in the image, which should be
compensated when thinking of accuracy. For example, the
strongest radial distortion can reach 20 pixels for 10 Mpix
camera with a zoom lens. Compensation of radial distortion is
possible with commercial software based on the lens model,
but still there can be variations among different exemplars
and individual calibration is desirable. Also the level when
the standard pin-hole and radial distortion models are limiting
the accuracy might be reached soon, resulting in the need for
replacing it with a more complex one.

The last group of accuracy limits is related to photometry
and the acquisition of the images. The Lambertian reflectance
model performs well with a number of surfaces, but its
deviations become important when comparing different views
in detail. While the sources of light are unknown in most
situations, explicit modeling with BRDF has too many free
parameters. Existing methods extending the reflectance model
therefore compensate non-Lambertian effects indirectly, either
on the surface [16] or in the image domain [17]. Such
approximations can also compensate the effect of different
lighting or exposure conditions. We propose a simple image
correction which handles them.

The following sections present a reconstruction pipeline
that takes into account the analysis above and includes the

fused depth map

pairwise disparity map

supporting camera

supporting camera

supporting camera

camera
reference

1
scene

3

2

4

2−3

1−2

2−4

Fig. 2. Idea of Depth Map Fusion. Information from pair-wise disparity
maps is fused in a set of reference cameras.

mentioned methods for improvement of the resulting accuracy.
The key idea is in first using a global method to improve
calibration and obtain possibly inaccurate estimate of the
surface, represented as a set of depth maps, which is followed
by change of representation to a 3D mesh that allows local
approach to variational correction of its vertices. We focus on
efficient computation of the surface flow that naturally bal-
ances regularization and data terms by employing scale space
approach to find the correct local minimum. Additionally, we
include novel formulation of contour matching term in our
measure of photoconsistency.

III. RECONSTRUCTION PIPELINE FOR HIGH ACCURACY

Taking the above analysis into account, our idea is first
to use a global structure-and-motion method [15] to obtain
inaccurate estimate of the surface, represented as a set of depth
maps and simultaneously improve the calibration. We revisit
this method in Section IV.

Once we have a fair estimate of the surface, we undergo
a change of representation to a 3D mesh that allows a local
approach to variational correction of vertices. This approach
allows us to introduce details by evaluating the photoconsis-
tency of the surface in Section V.

IV. DEPTH MAP FUSION

This section presents the main points of a method for
surface reconstruction based on depth map fusion, which
simultaneously refines camera positions [15].

The input to the algorithm is a set of images I ={
Iip | i = 1, . . . , N ; p = 1, . . . , N i

}
, where N is the number

of cameras and N i is the number of pixels in image i. The pos-
sibly inaccurate camera calibration P =

{
Pi | i = 1, . . . , c

}
is obtained by a robust structure and motion algorithm [14].
Once the geometry is obtained, camera pairs for pair-wise
stereo matching are automatically selected in a way that the
both cameras are close both in position and view direction, see
Figure 2. Disparities of rectified image pairs are then computed
with a publicly available dense matching stereo algorithm
GCS [18]. The resulting point cloud X is triangulated in the
form of pair-wise disparity maps back-projected to space.

Bayesian estimate of depth maps Λ ={
λip | i = 1, . . . , c; p = 1, . . . , ni

}
is then found, where
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λip ∈ R is a reconstructed depth in pixel p of image i, along
with visibility maps V =

{
vip | i = 1, . . . , c; p = 1, . . . , ni

}
,

where vip ∈ {0, 1, 2} is the visibility of pixel p of image i in
all cameras i = 1, . . . , c such that vip = 0 marks invisible and
non-zero vip visible pixels. The task leads to the maximization
of the posterior probability, which can be formally written as

(Λ∗, V ∗, C∗) = arg max
Λ,V,C

P (Λ, V, C | X , I). (1)

The output of the algorithm is the structure Λ∗, V ∗ together
with adjusted camera calibration C∗. The algorithm alternates
between two sub-problems conditioned on each other: estima-
tion of (Λ, C) and V . The output of the first subproblem is
used as the input to the second, and vice versa.

Firstly, a subset of cameras where the depth and visibility
maps will be estimated is manually chosen. Then visibility
maps V (0) and depths maps Λ(0) are initialized from projec-
tion of input data X to the images i = 1, 2, . . . , c.

The procedure of visibility and depth estimation alternates
the following steps.

1) In the visibility estimation task the estimate of visibility
V ∗ is obtained from

V ∗ = arg max
V

P (I | V,Λ,X )P (Λ | V,X )P (V ), (2)

where the image likelihood P (I | V,Λ,X ) makes a non
photoconsistent surface less probable, i.e. where the im-
age intensities of projections to corresponding cameras
do not match. The depth map probability P (Λ | V,X )
assumes locally flat surface and penalizes visibility
of high depth variations (outliers, discontinuities). The
prior on P (V ) favors compact visible regions in images.
The solution of this task is found by a minimum cut
algorithm.

2) In the depth estimation task the estimate of depths is
obtained from

(Λ∗, C∗) = arg max
Λ,C

P (X | Λ, C, V )P (Λ, C, V ), (3)

where P (X | Λ, C, V ) builds projection constraints to
minimize distance between visible data points X and
points corresponding to the depth maps Λ, while camera
centers C are also free parameters. The prior P (Λ, C, V )
is represented by a second-order surface model enforc-
ing curvature consistency. This task leads to a system
of linear equations, which is solved by quasi-minimal
residual method. The solver can use two ways to reduce
the discrepancy in data: either by adjusting the estimated
depths Λ or moving the camera centers C. Bundle
adjustment methods [1] apply a similar approach, but
this solution goes further by exploiting dense data and
including a surface model.

When the iterative procedure converges and a consistent set
of depth maps is obtained, depth maps are projected to 3D
space to obtain a cloud of points with normals estimated from
points neighboring in the image.

Finally, the points are merged into continuous surface with
PSR [19] and the result is filtered to remove introduced big
triangles based on average edge size.

V. MESH REFINEMENT

While the depth map representation in image space is useful
for large scenes and natural to the input data, it has limits for
modeling arbitrary surfaces as it is not intrinsic to them. A
change of representation is thus required for further improve-
ment of the surface accuracy. The global method [15] provides
us with a good initial estimate of the surface, represented by
a discrete triangular mesh, and a refined camera calibration.
We choose this mesh as a surface model and represent it as
a set of vertices Xi ∈ R3, i = 1, . . . , nX and triangle indices
Tj ∈ {1, . . . ,m}3, j = 1, . . . , nT .

For the purpose of deriving our method, we will start with
continuous definition, and later discretize the results. In this
task, our goal will be to find the estimate of surface S by the
minimization of a surface energy Eφ:

Eφ(S) =
∫
S

φ(X)dA, (4)

where φ(X) is a photoconsistency measure and dA is surface
element. Since we assume a good initial estimate of the surface
S, we can resort in our method to implicit regularization of
the surface based on the minimal surface area.

The primary goal in multi-view reconstruction is to find a
surface with photoconsistent projections to multiple images.

Photoconsistency is efficient when a given surface point is
seen in close-to-normal direction, where non-Lambertianity is
not critical. Close to occluding contours even the Lambertian
model breaks, but here we can exploit contour matching.

In the following sections we will combine these two sources
to construct φ and next propose a method for its minimization.

A. Photoconsistency measure

We define a photoconsistency function φI for a given world
point X and a set of images Ii, i = 1, . . . , N in the following
way:

φI(X) =
1

|V (X)|
∑

i,j∈V (X)
i6=j

2‖Ii(πi(X))− Ij(πj(X))‖2

σ2
i (πi(X)) + σ2

j (πj(X))
(5)

where V (X) is a set of images in which point X is visible, and
πi(X) ' PiX is the perspective projection function (Pi is a
camera matrix). The normalizing factors σi,j are independently
pre-computed variances of image functions Ii,j in visible re-
gions and they estimate expected measurement error assuming
Poisson distribution of the image values. They allow the range
of the measuring function to be φ ∈ 〈0, 1 + ε〉 , ε ≥ 0, unless
the mean intensities differ wildly. Our resulting measure is
thus a normalized sum of squared differences (NSSD). As
pointed out in [2], we avoid the use of normalized cross
correlation (NCC), which introduces additional ambiguities.

The traditional Lambertian assumption allows us to use
simple difference of pixel intensities, unfortunately this model
is often violated, for instance, the exposure parameters are
often different in available input images. Since modeling of re-
flectance properties is complex, i.e. with radiance tensors [16],
we will limit ourselves to intensity offset correction. We will
thus use the knowledge of current shape to estimate the ‘true’
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Fig. 3. Demonstration of a suboptimal situation in contour matching, where
the image edge (local maxima of image gradient, ∇I) does not correspond
to the projected contour ωk .

offset-corrected images I∗i = Ii−Ci which minimize the total
error (5) by choosing the offset Ci to be the mean radiance
error of the surface visible in camera i:

Ci =
1
Ni

Ni∑
j | i∈V (Xj)

(
Ii(πi(Xj))− Ī(Xj)

)
, (6)

where Ni is the number of vertices X visible in camera i and
Ī(X) is the mean of the projections of point X to images
where it is visible:

Ī(Xj) =
1

|V (Xj)|
∑

i∈V (Xj)

Ii(Xj), (7)

being the best estimate of radiance with respect to the square
error in (5). The Ī(Xi) is also used as consistent surface color
for texturing the neighborhood of point Xj .

Once we have obtained all offsets Ci, i = 1, . . . , Ni, we can
use them to recompute the mean Ī from corrected images I∗

and iteratively improve our estimate of the correcting offsets.
Now we can replace original images Ii with corrected I∗i

in all our image terms derived from (5).

B. Contour matching

The analysis of [20] has first brought the observation that
projection of contour generators on a smooth surface should
match local maxima of image gradient∇I (apparent contours),
which has recently been an inspiration for [17], [21]. Similarly
to [21] we avoid explicit detection of contours in images
by a more general formulation, but we additionally take into
account the directions of ∇I and surface normals N projected
to the image, see Figure 3. It is formalized by maximization
of a contour matching function φC(X):

φC(X) =
1

|Ω(X)|
∑

k∈Ω(X)

∣∣∣〈∇I(πk(X)
)
, $k

(
N(X)

)〉∣∣∣, (8)

where $k

(
N(X)

)
= πk(N(X))
‖πk(N(X))‖ is a unit normal projected to

the image and 〈·, ·〉 is a scalar product. We denote here Ω(X)
as the set of cameras that see X as a contour point. Inversely,
for a given camera k, we can find contours Ωk on the surface
S as curves, where normal N(X) of each of its visible points
is perpendicular to the viewing direction X−Ck:

Ωk =
{
X |
〈
N(X),X−Ck

〉
= 0, k ∈ V (X)

}
, (9)

where Ck is the camera center. On discrete meshes, we
identify contour vertices by a change of sign of the dot product
above and a simultaneous change of visibility. Now we can
partition surface points in the following sets for every camera
k: Vk – set of points visible in camera k, V̄k – set of points
not visible in camera k and Ωk – points generating contour in
camera k.

To adapt our method for large datasets, we limit the size of
Vk by choosing only a given number of the best views based
on the angle between the normal and view direction, calculated
from the dot product in (9).

We can now put together photometric and contour measures
in

EΩ(S) =
∫
S

(
φI(X)− αφC(X)

)
dA =

∫
S

φ(X)dA, (10)

where φI(X) is integrated in cameras k ∈ V (X) and φC(X)
in k ∈ Ω(X). Parameter α controls the preference between
contour and image matching; we used α = 1 in our experi-
ments.

C. Gradient-based approach

According to [22, p. 22], we can obtain a surface flow that
minimizes the energy (4) by

∂S

∂t
(X) =

(
H(X)φ(X)− 〈∇φ(X),N〉

)
N, (11)

where H(X) is the mean surface curvature at point X. The
solution S∗ is found by Euler’s time integration of (11), hence
deforming the surface by

Xt+dt = Xt + dt
∂S

∂t
(Xt), (12)

where dt is a chosen time step.
The first part of the flow (11) performs implicit regulariza-

tion, for φ(X) → 1 this flow corresponds to mean curvature
flow, which leads to minimization of surface area. In our
flow this applies to areas with high photometric error. On
the other hand, low error φ(X) → 0 has no effect. This
kind of balancing between regularization and data gets around
the shrinking effects of pure surface minimization present in
many variational methods. The second part of (11) moves the
surface along surface normal N(X) in the direction where
E(S) will decrease, which can be calculated by taking the
negative projection of the gradient to the normal movement
direction. For regions with missing data (vertices X0 visible
in less than two views), the minimal surface should be the
optimal solution, which is accomplished by setting φ(X0) = 1.

We compute the directional derivative 〈∇φ(X),N〉 by
sampling points X̃(a), a ∈ 〈−τ, τ〉 along the normal in
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images I∗ for k ∈ V (X) or in the image gradient ∇I∗
for k ∈ Ω(X) and computing φ(X̃(a)), like in Figure 4.
At this point we discretize the problem by computing the
energy integral (10) only in the vertices Xi of the mesh, so the
photoconsistency is evaluated in individual mesh vertices and
no image neighborhood is used. We use this simplification
efficiently with mesh resampled so that the mean of edge
projection to images is around 2-3 pixels.

In order to avoid falling to a local minimum, the derivative
is computed from a quadratic polynomial φ′(X̃(a)) = p1a

2 +
p2a+p3 fit to the samples. In order to perform with a limited
number of samples, the window specified by τ is gradually
decreased in iterations: τt = τ0γ

t−1, where t is iteration, γ =
0.95 is the decrease rate, and τ0 is the initial window size
determined from average edge sizes around vertex X. This
means that in the first iterations the decision is based on a
wider support and allows us to find a global minimum in the
initial window. In later iterations the region near this minimum
is sampled more densely, producing a more precise estimate.

This can also be thought of as regularizing the problem (11)
with a scale determined by the window size. When computing
a gradient from the initial large window, the curve cannot
fit the data exactly and is rather flat, resulting in a smaller
gradient and greater smoothing. The data weight is increased
as the window size decreases, when the fitted curve gets
steeper and the gradient magnitude is greater. Window size
control is more natural than explicitly adjusting the second
term in (11) with a constant increasing over iterations: If there
is no strong minimum (i.e. in noisy conditions) in the latter
method, the gradient will not increase and the model will not
over fit there.

VI. EXPERIMENTS

First, we have evaluated our method on four high-accuracy
datasets from a publicly available benchmark [5], which allows
comparison of the results with a number of other state-of-
the-art methods both in quantitative and qualitative ways, by
analyzing occupancy histograms and diffuse renderings. The
original results of the depth map fusion [15] were taken as
the input for the mesh refinement procedure. In all cases, the
algorithm was run for 30 iterations, when the window size τ
drops to 20% of the initial size.

The quantitative evaluation in [5] was performed with
ground truth acquired with time-of-flight laser measurement.
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Evaluated scene is projected to the input cameras and ob-
tained depths are compared with the ground truth depths in
the scale of their accuracy σ, which is shown in Figure 5
for fountain-P11 dataset. More results are available on the
benchmarking website1. The results of refinement (‘our’) show
relative increase of accuracy from initial depth map fusion
(‘TYL’) output by 2.1% at σ ≤ 2. Use of this score for direct
comparison of accuracy with other methods is difficult, since
we are here evaluating our surface very close to the accuracy
limit of the ground truth (σ is the measurement variance).
Also the result depends substantially on the completeness of
the surface, i.e. the currently best-scoring method [4], which
combines the best of several previous methods, succeeds in
reconstructing the ground plane of fountain-P11, which adds
to all bins of the histogram in Figure 5. Still, [4] misses the
camera calibration adjustment, and thanks to this feature our
method is able to achieve higher accuracy in certain areas, like
in Figure 7 g), h) and i), while the error is distributed evenly
over the surface in Figure 6 c).

The quantitative evaluation does not take into account the
visual quality of the surface. Although the estimated surface
may be close to the ground truth, the human observer is
influenced by regularity or smoothness of the surface, e.g.
when resulting 3D models are used for visualization. For this
purpose, comparison of surface normals would be appropriate,
but while it is not included in [5], we will use the renderings
in its place. Figure 7 presents results in this way and shows
how the initial result of depth map fusion in c) was improved
by the refinement in d) with flat surfaces are smoothed and
edges emphasized. Here similar results of the best performing
state-of-the-art methods [10], [4] in e) and f) still show notable
roughness.

In order to evaluate the effect of individual contributions
to the accuracy of the proposed method, we have run it with
different modifications on the fountain-P11 dataset. The results
can be compared visually in detail in Figure 8. The importance
of the contour matching term is demonstrated on the difference
between a) and d), where the edges become bumpy. It can

1http://cvlab.epfl.ch/ strecha/multiview/denseMVS.html
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a) ground truth

b) our result

c) resulting error

d) error of VU [4]

Fig. 6. Fountain-P11 dataset [5] overview diffuse rendering and error maps. Accurate regions are white, missing reconstruction is red and green area was
not evaluated.

a) input image

b) ground truth

c) initial depth map fusion

d) final mesh refinement

e) result of FUR [10]

f) result of VU [4]

g) mesh refinement error

h) error of FUR [10]

i) error of VU [4]

Fig. 7. Fountain-P11 dataset [5] detailed rendering and error maps (white=accurate, black=inaccurate,red=missing).
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a) refinement result

b) no offset correction

c) no window scaling

d) no contour term
Fig. 8. Demonstration of effect of individual contributions on Fountain-P11 dataset [5].

be also seen from this comparison that the majority of the
edges are recognized as contour generators (φC), including the
sunken ornaments, after they are first ‘discovered’ by image
matching (φI ). On the other hand, we can encounter false
contour generators detected on noisy initial surface, which can
cause the surface to create phantom edges. This particularly
affects textured surfaces, and it has to be avoided by more
robust detection of contour generators. Next, without image
offset correction in b), surface in flat regions becomes sinuous
while the edges are correct thanks to the contour information
as it is invariant to image offset errors. Finally, when we
omit the iterative scale space approach in c), the surface
becomes globally oversmoothed or eventually overfitted to
data depending on the fixed window size.

To demonstrate the possibilities of the method on large-scale
data, we have used it to reconstruct the statue Asia, which
is a part of the Albert Memorial in London. We captured a
suite of 238 photographs (Figure 9), which consists of several
semi-rings, three monocular from about 2m, 4m and 40m
distance and one stereo with non-uniform (free-hand) vertical
baseline from about 8m distance plus some additional images.
All photos have been shot by Canon PowerShot G7 (10 Mpix)
with variable focal length and with image stabilization on, and
carefully corrected for radial distortion. The variable lighting

conditions (moving clouds) were compensated by our offset
correction (up to 25% of the intensity range). The model
reconstructed with depth map fusion [15] shown in Figure 10
includes intricate features like elephant’s tusks, but some parts
of the surface are only approximated due to missing data (tops
and some back parts of the statue). We performed subsequent
refinement in the same way as previous datasets. Since we
have no ground truth data available, the effect of refinement
can be demonstrated visually by introduction of details, like
rug fringes on the elephant’s head in Figure 11 c).

VII. CONCLUSION

We have proposed a method towards increasing accuracy
in MVS. Variable 3D surface representation allows us to
achieve efficient camera pose refinement together with surface
geometry refinement. Surface contour modeling helps utilize
independent sources of 3D shape information present in the
images, while image offset correction compensates for the
effect of their exposure. A scale-space approach is employed
to find the correct surface within noisy data. In our future work
we plan tying the processes of calibration and refinement more
closely together.
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Fig. 9. The Asia dataset (Albert Memorial, London). Left: some of 238 input images. Right: scene with camera positions and sparse points computed from
initial sparse matching.

Fig. 10. Mesh refinement results on the Asia dataset. Left: final model without texture. Right: final textured model. The viewpoint is different from input
images, untextured (black) parts are not visible in any of them.

a) input image b) initial surface c) refined surface
Fig. 11. Demonstration of mesh refinement on the Asia dataset, elephant’s head in detail (without texture).
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[18] J. Čech and R. Šára, “Efficient sampling of disparity space for fast and
accurate matching,” in BenCOS 2007: CVPR Workshop Towards Bench-
marking Automated Calibration, Orientation and Surface Reconstruction
from Images. IEEE, June 2007.

[19] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in Proc Eurographics Symposium on Geometry Processing, 2006,
pp. 61–70.

[20] J. Koenderink, “What does the occluding contour tell us about solid
shape,” Perception, vol. 13, no. 3, pp. 321–30, 1984.

[21] R. Keriven, “A variational framework for shape from contours,” Ecole
Nationale des Ponts et Chaussees, CERMICS, France, Tech. Rep., 2002.

[22] H. Jin, “Variational methods for shape reconstruction in computer
vision,” Ph.D. dissertation, Washington University, St. Louis, MO, USA,
2003.
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