Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

Adobe Photoshope
TIFF Technical Note 3

April 8, 2005

This document describes additions to the TIFF specification to improve support for
floating point values.

Readers are advised to cross reference terms and discussions found in this
document with the TIFF 6.0 specification (TIFF6.pdf), the TIFF Technical Note
for Adobe PageMakere 6.0 (TIFF-PM6.pdf), and the File Formats Specification for
Adobe Photoshope (Photoshop File Formats.pdf).

Page 1 of 5

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

16 and 24 bit Floating Point Values

Introduction

This section describes the format of floating point data with BitsPerSample of 16 and 24.

Field: SampleFormat

Tag: 339 (153.H)

Type: SHORT

Count: N = SamplesPerPixel

Value: 3 = IEEE Floating point data

Field: BitsPerSample

Tag: 258 (102.H)

Type: SHORT

Count: N = SamplesPerPixel
Value: 16 or24

16 and 24 bit floating point values may be used to minimize file size versus traditional 32 bit or 64 bit floating point
values. The loss of range and precision may be acceptable for many imaging applications.

The 16 bit floating point format is designed to match the HALF data type used by OpenEXR and video graphics
card vendors.

Implementation

16 bit floating point values
16 bit floating point numbers have 1 sign bit, 5 exponent bits (biased by 16), and 10 mantissa bits.

The interpretation of the sign, exponent and mantissa is analogous to IEEE-754 floating-point numbers. The 16 bit
floating point format supports normalized and denormalized numbers, infinities and NANs (Not A Number).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(==

E E E E E M M M M M M M M M M

24 bit floating point values
24 bit floating point numbers have 1 sign bit, 7 exponent bits (biased by 64), and 16 mantissa bits.

The interpretation of the sign, exponent and mantissa is analogous to IEEE-754 floating-point numbers. The 24 bit
floating point format supports normalized and denormalized numbers, infinities and NANs (Not A Number).

23 122211201918 |17 |16 151413 |12 |11]10]9 |8 |7 |6 |5 |4 |3

\9)
—_

(=)

S |E |E |E |E |E|]E|E/ M MM MIMIMI MM MIMIMIM|IM|M | M

References
http://www.openexr.com/documentation.html

Page 2 of 5

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005
Floating Point Predictor

Introduction

This section describes TIFF predictor type 3, a byte reordering of the image values followed by horizontal byte
differencing used to improve compression of floating point image data.

Field: Predictor

Tag: 317 (13D.H)

Type: SHORT

Count: 1

Value: 3 = Floating Point predictor

Note that this predictor works well for both Deflate and LZW compression methods.
This predictor should only be applied to floating point data that has BitsPerSample equal to a multiple of 8.

Algorithm

This predicator makes use of the fact that many continuous-tone images don’t vary much in pixel value from one
pixel to the next. Additionally, in floating point data, the sign and exponent values will not change much from pixel
to pixel, and the most significant bits of the mantissa will not change much from pixel to pixel, while the least
significant bits of the mantissa may change a great deal (statistically equal to noise).

By rearranging the floating point data to group the sign and exponent data, the upper bytes of the mantissa and the
lower bytes of the mantissa separately — we can then use a simple byte differencing predictor to reduce the apparent
information content and allow for better compression by LZW or Deflate compressors. By putting the sign and
exponent first (slowest changing), followed by most significant bytes of the mantissa (next slowest changing) then
the least significant bytes (fastest changing, most noise-like), we achieve the best compression. This means that the
predictor reorders the bytes into a semi-BigEndian order, and that the TIFF reader and writer should not change the
byte order of the image data outside of the predictor. This predictor also preserves the ordering of interleaved color
channels.

A simple C implementation might look like this:

void DecodeDeltaBytes(void *ptr, int32 cols, int32 channels)
{
int32 COL, CHAN;
unsigned char *bytePtr = (unsigned char *)ptr;

for (COL = 1; COL < cols; ++COL)
{
for (CHAN = 0; CHAN < channels; ++CHAN)
bytePtr[COL * channels + CHAN] =
bytePtr[COL * channels + CHAN]
+ bytePtr[(COL - 1) * channels + CHAN];

void EncodeDeltaBytes(void *ptr, int32 cols, int32 channels)

{
int32 COL, CHAN;

unsigned char *bytePtr = (unsigned char *)ptr;

Page 3 of 5

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005
for (COL = cols-1; COL > 0; --COL)
{
for (CHAN = 0; CHAN < channels; ++CHAN)
bytePtr[COL * channels + CHAN] =
bytePtr[COL * channels + CHAN] -
bytePtr[(COL - 1) * channels + CHAN];

void EncodeFPDelta(unsigned char *input,
unsigned char *output,
int32 cols,
int32 channels,
int32 bytesPerSample)

{
int32 COL, BYTE;

// reorder the bytes into the output buffer
// result is always in the same byte order (big endian, sort of)

int32 rowIncrement = cols * channels;

for (COL = 0; COL < rowIncrement; ++COL)

{
for (BYTE = 0; BYTE < bytesPerSample; ++BYTE)
{
#if BigEndian
output[BYTE * rowIncrement + COL] =
input[bytesPerSample * COL + BYTE];
#else
output|[(bytesPerSample-BYTE-1) * rowIncrement + COL] =
input[bytesPerSample * COL + BYTE];
#endif
}
}
// do byte difference on output
EncodeDeltaBytes (output, cols*bytesPerSample, channels);
// output data is now in semi-BigEndian byte order
}
S — */

void DecodeFPDelta(unsigned char *input,
unsigned char *output,
int32 cols,
int32 channels,
int32 bytesPerSample)

{
int32 COL, BYTE;

// undo byte difference on input
DecodeDeltaBytes (input, cols*bytesPerSample, channels);

// reorder the semi-BigEndian bytes into the output buffer
int32 rowIncrement = cols * channels;

for (COL = 0; COL < rowIncrement; ++COL)
{
for (BYTE = 0; BYTE < bytesPerSample; ++BYTE)
{
#if BigEndian
output[bytes * COL + BYTE] =
input[BYTE * rowIncrement + COL];

Page 4 of 5

Adobe Photoshop® TIFF Technical Note 3 April 8, 2005

#else
output[bytes * COL + BYTE] =
input[(bytesPerSample-BYTE-1) * rowIncrement + COL];

#endif
}

// output data is now in native byte order

Page 5 of 5

