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It is well known that W = 2a supergravity in ten dimensions-(gmn,Am,Q; Qn’
X3 Amnp Am ) may be obtained by dimensional reduction from N = 1 supergravity in
eleven dimensions (g.a, ¢¢, A.AA) On the other hand, N = 2a supergravity is
also the field theory limit of the Type IIA superstring. Does this imply a
connection between D = 11 supergravity and strings? Bergshoeff, Sezgin and

1)

Townsend have recently found a niche for D = 11 supergravity within the frame-

work of extended objects, but the extended object im question is a three-dimen-
sional membrane rather than a two-dimensional string*). The purpose of this
letter is to derive the Type IIA superstring from this supermembrane by a dimen-
sional reduction of the world-volume from three to two dimensions and, simul-

taneously, a dimensional reduction of the space-time from eleven to temn.

To describe the coupling of a closed three-membrane to a d = 1l supergravity

background, let us introduce world-volume co-ordinates él (f = 1,2,3) and a

world-volume metric Yﬁﬁ(g) with signature (- :+,+,); TPe target space 1s a super-
manifold with superspace co-ordinates EM = (im,éu) where 0 = 1,...,1] and
o = l,...,32 with space-time signature (—,+,...,+). We also define
ﬁiA = (64 ) (z) where E*--A is the supervielbein and A = (2,%) is the tangent
space index (& 1,...,11 and @=1,...,32). The action is then given byl)
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Note that there is a Wess—Zumino term involving the super three—form Aﬁﬁe(z) and
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also a world—-volume cosmological term. In addition to world-volume diffeomor-
phisms, target space superdiffeomorphisms, Lorentz invariance and three-form
gauge invariance, the act%?n (1) is invariant under a fermiomnic gauge transfor-
mationl) whose parameter &“(E) is a 32-component space-time Majorana spiner and a
world-volume scalar. This is a generalization to the case of membranes of the
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symmetry discovered by SiegeIA) for the superparticle and Green and Schwarz for
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the superstring in the form given by Hughes, Liu and Polchinski ", We shall

return to this later in Eq. (23).

%) It is interesting to note that the three-eight split 50(1,10)> 50(1,2)x 50(8)
implied by the membrame had previously been invoked in Refs. 2) and 3) to
exhibit the hidden S0(16) of D = 11 supergravity.



To see how the dimensional reduction works, let us first focus our attention

on the purely bosonic sector for which the action (1) reduces to
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Varying with the respect to the metric ¥_s yields the embedding equation
Y3 Y q
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while varying with respect to X" yields the equation of motion
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where ﬁ.»»A is the field-strength of Bann 3
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We now make a two-one split of the world-volume co-ordinates
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and a ten-one split of the space-time co-ordinates
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X = (X , \d,) M= 1,10 (7
in order to make the partial gauge choice
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which identifies the eleventh space-time dimension with the third dimension of

the world-volume. The dimemsional reduction is then effected by demanding that
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A suitable choice of ten-dimensional variables is now given by
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From (3), the induced metric on the world-sheet is mow given by

333 = 38 Iy + T ALA 3" A
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where
g3 = P X 9 x" Gwan , Ay = 2;x A, . G
Note that
Jjg = \r.:; (14)

Substituting these expressions into the field equations (4) yields in the case
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X
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where F is the field-strength of A g
mnp mn
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In the case %" = v, (4) is an identity, as it must be for consistency. But (15)

is just the ten-dimensional string equation of motion derivable from the action

s = \a*¢ * Fr¥99,x™ 3,x" g + "Ii' £~ 3;x" ;% A
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Comparing with (2Z), we see that the overall effect is to reduce the eleven-dimen-
sional membrane to a ten-dimensiconal string, to replace the three-form by a two-
form in the Wess-Zumino term and to eliminate the world-volume cosmological con~
stant. Note that the other ten-dimensional bosonic fields Amnp’ Am and & have all
decoupled. They have not disappeared from the theory, however, since their coup=
ling still survives in the fermionic © sector, to which we shall turn shortly.

First, we make some remarks.

As is well known, the dimensional reduction (10) corresponds to a Kaluza-
Klein compactification of space-time on a c¢ircle in which one discards all the
massive modes. The difference from conventional Kaluza-Klein is that by identify-
ing the eleventh space—time dimension with the third dimension on the world-
volume as in (8), the world-volume is also compactified on the same circle. The
condition (9) means that we are discarding the massive world-sheet modes at the
same time. By retaining all the U(l) singlets but only the U(l) singlets, these
7

truncations are guaranteed to be consistent with the membrane equations of
motion and, as we shall see, with the equations of motion of the background
fields. As an extra check on consistency, we have been careful to substitute the

Kaluza-Klein ansatz into the equations of meotion rather than directly into the
~
m

action. The signal for consistency is that the ¥ = y component of the field
equations (4) is an identity. Having established consistency one may then, if so
desired, substitute directly into the action (2) and integrate over p. The

result is not quite the action (17) but an equivalent one which yields the same
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equations of motion. To see this, let us recall that since we are now treating
»

~ m - . . .

Yi§ and % as independent variables in (2), we should make independent ansitze

for both. Thus we write
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where Yij’ Vi and ¢ are, a priori, unrelated to gij’ Ai and & of (12). Substi-

tuting into the action (2) and integrating over p yields
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Since the equations of motion for Yij’ v, and ¢ are algebraic, we may eliminate

all of them to yield the action
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which is the action we would have obtained by writing (2) in Nambu-Goto form
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Alternatively, we may eliminate just Vi and ¢ to obtain (17}. It is interesting

to note that the string action (17) we obtain by dimensional reductiom is confor-

mally invariant even though the membrane theory we started from was not.

The foregeing discussion is readily generalized to a superspace setting. To
facilitate a discussion of the fermionic symmetry, it is convenient to eliminate
the world-volume metric as an independent variable. In this way we avoid having
to discuss the rather complicated transformation rule for the metric. The action

(1) then takes on its Nambu-Goto form
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In (24) §i§ is the metric on the world-volume induced from the bosonic metric on

superspace,
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In order for (22) to be invariant under this transformation, it is necessary that

the background supergeometry be constrained. The constraints found in Ref. 1)

are
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Although these equations are not the standard equations of on-shell D = 11 super-
gravity in supersPaceS), they are equivalent to them. That is to say, by suitable
redefinitions o€~the superconnections and parts of the supervielbein, we may set

-~ .Y ’Y N C
Ay, Tan' and T~ to zero,
o ap b
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Equations (26) and (28) are the on-shell supergravity equations, as may be
checked using the Bianchi identities. Since we are always free to make such
redefinitions, we may take the superspace constraints to be (26) and (28). This
is therefore a stronger result than that given in Ref. 1); the fact that coanven-

tional constraints can be imposed was noted in the context of N = 1 D = 10 super-

symmetric particles and strings in Ref. 9).

The Kaluza-Klein ansatz for the N = L D = 11 supervielbein is
~ a [ o A o Y "
Eg = E, E E.
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where EMA = (EMa,EMu) is the N = 2a D = 10 supervielbein, Ay the supetspace U(1l)
gauge field and & and xa are superfields whose leading components are the dilaton
and the dilatino respectively. 1In writing (23), we have made a partial D = 11
local Lorentz gauge choice to set Eya = (0. For the superspace three-index poten-

tial Kﬁﬁﬁ we have

A Am;p (31)

MNP
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All of the D = 10 superfields Em s X Am, P, AMN’ AMNP are taken to be independ

ent of y. Note also that ten-dimensional spinor indices run from 1 to 32 so that

. ey . ~ M .
« and & can be identified. With zM = (z ,y) we also impose
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Substituting the ansdtze (30), (31) and (32) into (22) and using (33) and (34)

yields the action for a type IIA superstring coupled to a supergravity back-

ground
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Purely for convenience in superspace calculations, we have omitted an overall
factor of @ 2/3 in the ansatz (29); the factor of & in (35) can be removed by a
suitable rescaling of the supervielbein. To find the fermionic symmetry of the
dimensionally-reduced action (35), one substitutes the Kaluza-Klein ansdtze into

(23). 1t is straightforward to show that
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However, y alse transforms under (23):

39 = —KP (_\+F)P°(A°¢ (38)

and a compensating infinitesimal world-volume diffeomorphism with parameter
P o (39)
( ¢, 0 ,X (l'k T-) ¢ F}GK )
must be made in order to maintain the gauge y = p.
Since (22) is invariant under (23) when the D = 11 field equations are

satisfied, it follows that the reduced action (35) will be invariant under (37}

if the N = 2a D = 10 supergravity field equations are satisfied. This is because
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the compactification of the N = 1 b = 11 field theory on a circle is known .to
yield the N = 2a D = 10 field theory, though to the best of our knowledge this is
the first time it has been done in.superspace. Note that all of the N = 2a super-
gravity fields are now coupled, including Amnp, A and @ which de§0uP1ed.from the

purely bosonic sector,

The transformation (37) can be recast into the Green—Schwarz5)’6) form by
introducing
v . N o A
AU= et BTk (rar) (40>
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where
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Ay = -‘3__ NP (s r")p (42)

In conclusion, we have succeeded in deriving [for the first time*)] the
action of the Type IIA superstring coupled to an N = 2a D = 10 supergravity back-
ground starting from the action of the supermembrane coupled to the background of
N = 1 supergravity in D = 1l. The dimensional reduction corresponds to a compac-
tification of both the space-time and the world-volume on the same circle and
then discarding the massive modes. Classically, this is equivalent to letting
the membrane tension a3' tend to infinity and the radius of the circle R tend to

zerc in such a way that the string tension

LA J
A, = 2w R o,
remains finite. The Type IIA superstring is known to be a consistent quantum

theory; the most urgent question for the supermembrane is whether it too is a

consistent quantum theory in its own right,

We are grateful for discussions with Chris Pope and Ergin Sezgin.
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*) The Type IIB action is given in Ref. 10).
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