
TCP Tuning for the Web

Jason Cook - @macros - jason@fastly.com

Wednesday, June 19, 13

mailto:jason@fastly.com
mailto:jason@fastly.com

Me

• Co-founder and Operations at Fastly

• Former Operations Engineer at Wikia

• Lots of Sysadmin and Linux consulting

Wednesday, June 19, 13

Wednesday, June 19, 13

The Goal

• Make the best use of our limited resources to deliver the best user
experience

Wednesday, June 19, 13

Focus

Wednesday, June 19, 13

Linux

• I like it

• I use it

• It won’t hurt my feelings if you don’t

• Examples will be aimed primarily at linux

Wednesday, June 19, 13

Small Requests

• Optimizing towards small objects like html and js/css

Wednesday, June 19, 13

Just Enough TCP

• Not a deep dive into TCP

Wednesday, June 19, 13

The accept() loop

Wednesday, June 19, 13

Entry point from the kernel to
your application

• Client sends SYN

• Kernel hands SYN to Server

• Server calls accept()

• Kernel sends SYN/ACK

• Client sends ACK

Wednesday, June 19, 13

Backlog

• Number of connections allowed to be in a SYN state

• Kernel will drop new SYNs when this limit is hit

• Clients wait 3s before trying again, then 9s on second failure

Wednesday, June 19, 13

Backlog Tuning (kernel side)

• net.ipv4.tcp_max_syn_backlog and net.core.somaxconn

• Default value of 1024 is for “systems with more than 128MB of
memory”

• 64 bytes per entry

• Undocumented max of 65535

Wednesday, June 19, 13

Backlog Tuning (app side)

• Set when you call listen()

• nginx, redis, apache default to 511

• mysql default of 50

Wednesday, June 19, 13

DDoS Handling

Wednesday, June 19, 13

The SYN Flood

• Resource exhaustion attack

• Cheaper for attacker than target

• Client sends SYN with bogus return address

• Until the ACK is completed the connection occupies a slot in the
backlog queue

Wednesday, June 19, 13

The SYN Cookie

• When enabled, kicks in when the backlog queue is full

• Sends a slightly more expensive but carefully crafted SYN/ACK then
drops the SYN from the queue

• If the client responds to the SYN/ACK it can rebuild the original SYN
and proceed

• Does disable large windows when active, but better than dropping
entirely

Wednesday, June 19, 13

Dealing with a SYN Flood

• Default to syncookies enabled and alert when triggered

• tcpdump/wireshark

• Frequently attacks have a detectable signature such as all having the same initial window size

• iptables is very flexible for matching these signatures, but can be expensive

• If hardware filters are available, use iptables to identify and hardware to block

Wednesday, June 19, 13

The Joys of Hardware

Wednesday, June 19, 13

Queues

• Modern network hardware is multi-queue

• By default assigns a queue per cpu core

• Should get even balancing of incoming requests, irqbalance can mess
that up

• Intel ships a script with their drivers to aid in static assignment to
avoid irqbalance

Wednesday, June 19, 13

Packet Filters

• Intel and others have packet filters in their nics

• Small, only 128 wide in the intel 82599

• Much more limited matchers than iptables

• src,dst,type,port,vlan

Wednesday, June 19, 13

Hardware Flow Director

• Same mechanism as filters, just includes a mapping destination

• Set affinity to put both queue and app on same core

• Good for things like SSH and BGPD

• Maintain access in the face of an attack on other services

Wednesday, June 19, 13

TCP Offload Engines

Wednesday, June 19, 13

Full Offload

• Not so good on the public net

• Limited buffer resources on card

• Black box from a security perspective

• Can break features like filtering and QoS

Wednesday, June 19, 13

Partial Offload

• Better, but with their own caveats

Wednesday, June 19, 13

Large Receive Offload

• Collapses packets into a larger buffer before handing to OS

• Great for large volume ingress, which is not http

• Doesn’t work with ipv6

Wednesday, June 19, 13

Generic Receive Offload

• Similar to LRO, but more careful

• Will only merge “safe” packets into a buffer

• Will flush at timestamp tick

• Usually a win and you should test

Wednesday, June 19, 13

TCP Segementation

• OS fills a 64KB buffer and produces a single header template

• NIC splits the buffer into segements and checksums before sending

• Can save lots of overhead, but not much of a win in small request/
response cycles

Wednesday, June 19, 13

TX/RX Checksumming

• For small packets there is almost no win here

Wednesday, June 19, 13

Bonding

• Linux bonding driver uses a single queue, large bottleneck for high
packet rates

• teaming driver should be better, userspace tools only worked in
modern fedora core so gave up

• Myricom hardware can do bonding natively

Wednesday, June 19, 13

TCP Slow Start

Wednesday, June 19, 13

Why Slow Start

• Early TCP implementations allowed the sender to immediately send as
much data as the client window allowed

• In 1986 the internet suffered first congestion collapse

• 1000x reduction in effective throughput

• 1988 Van Jacobsen proposes Slow Start

Wednesday, June 19, 13

Slow Start

• Goal is to avoid putting more data in flight than there is bandwidth
available

• Client sends a receive window size of how much data they can buffer

• Server sends an inital burst based on server inital congestion window

• Double the window size for each received ACK

• Increases until a packet drop or slow start threshold is reached

Wednesday, June 19, 13

Tuning Slow Start

• Increase your congestion window

• 2.6.39+ defaults to 10

• 2.6.19+ can be set as a path attribute

• ip route change default via 172.16.0.1 dev eth0 proto static initcwnd 10

Wednesday, June 19, 13

Proportional Rate Reduction

• Added in linux 3.2

• Prior to PRR a loss would halve to congestion window potentially
below the slow start threshold

• PRR paces retransmits to smooth out

• Makes disabling net.ipv4.tcp_no_metrics_save safer

Wednesday, June 19, 13

TCP Buffering

Wednesday, June 19, 13

Throughput = Buffer Size / Latency

Wednesday, June 19, 13

Buffer Tuning

• 16MB buffer at 50ms RTT = 320MB/s max rate

• Set as 3 values; min, default, and max

• net.ipv4.tcp_rmem = 4096 65536 16777216

• net.ipv4.tcp_wmem = 4096 65536 16777216

Wednesday, June 19, 13

TIME_WAIT

• State entered after a server has closed the connection

• Kept around in case of delayed duplicate ACKs to our FIN

Wednesday, June 19, 13

Busy servers collect a lot

• Default timeout is 2 * FIN timeout, so120s in linux

• Worth dropping FIN timeout

• net.ipv4.tcp_fin_timeout = 10

Wednesday, June 19, 13

Tuning TIME_WAIT

• net.ipv4.tcp_tw_reuse=1

• Reuse sockets in TIME_WAIT if safe to do so

• net.ipv4.tcp_max_tw_buckets

• Default of 131072, way too small for most sites

• Connections/s * timeout value

Wednesday, June 19, 13

net.ipv4.tcp_tw_recyle

•EVIL!
Wednesday, June 19, 13

net.ipv4.tcp_tw_reuse

• Allows the reuse of a TIME_WAIT socket if the client’s timestamp
increases

• Silently drops SYNs from the client if they don’t, like can happen
behind NAT

• Still useful for high churn servers when you can make assumptions of
local network

Wednesday, June 19, 13

SSL and Keepalives

• Enable them if at all possible

• The initial handshake is the most computationally intensive part

• 1-10ms on modern hardware

• 6 * RTT before user gets data really sucks over long distances

• SV to LON = 160ms = 1s before user starts getting content

Wednesday, June 19, 13

SSL and Geo

• If you can move SSL termination closer to you users, do so

• Most CDNs offer this, even for non-cacheable things

• EC2 and Route53 is another option

Wednesday, June 19, 13

In closing

• Upgrade your kernel

• Increase your initial congestion window

• Check your backlog and time wait limits

• Size your buffers to something reasonable

• Get closer to your users if you can

Wednesday, June 19, 13

Thanks!
Jason Cook
@macros

jason@fastly.com

Wednesday, June 19, 13

mailto:jason@fastly.com
mailto:jason@fastly.com

