
1 Introduction to the Ricci calculus

1.1 The covariant derivative

A vector u can be expressed as a linear combination of basis vectors ej:

u = ujej (1)

where the Einstein summation convention is used. The derivative of u with
respect to a coordinate xi is obtained using the product rule:

∂u

∂xi
=
∂ujej
∂xi

=
∂uj

∂xi
ej + uj

∂ej
∂xi

(2)

The derivative of ej with respect to xi is a linear combination of the basis
vectors ek, with the coefficients given by the Christoffel symbols Γkij :

∂ej
∂xi

= Γkijek (3)

Substituting this expression into the previous equation yields

∂u

∂xi
=
∂uj

∂xi
ej + ujΓkijek (4)

Swapping the j and k indices in the second term yields:

∂u

∂xi
=
∂uj

∂xi
ej + ukΓjikej =

(
∂uj

∂xi
+ ukΓjik

)
ej (5)

A shorthand notation for this expression is

∇iuj = ∂iu
j + ukΓjik (6)

where ∇i is called the covariant derivative (as opposed to the partial deriva-
tive, which is denoted by ∂i). The covariant derivative introduces a correction
term that accounts for changes in the basis vectors themselves.

The covariant derivative of a covector can be derived as follows:

∇a(ubub) = (∇aub)ub + ub(∇aub)
= (∂au

b + Γbacu
c)ub + ub(∇aub)

(7)

Therefore
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ub(∇aub) = ∇a(ubub)− (∂au
b + Γbacu

c)ub

= ∂a(ubub)− (∂au
b + Γbacu

c)ub

= (∂au
b)ub + ub(∂aub)− (∂au

b + Γbacu
c)ub

= (∂au
b)ub + ub(∂aub)− (∂au

b)ub − Γbacu
cub

= ub(∂aub)− Γbacu
cub

= ub(∂aub)− Γcabu
buc

= ub(∂aub − Γcabuc)

(8)

Hence

∇aub = ∂aub − Γcabuc (9)

1.2 Parallel transport

Let xi = xi(λ) be a curve parametrized by some parameter λ. The derivative
of u with respect to λ can be obtained using the chain rule:

∂u

∂λ
=

∂u

∂xi
∂xi

∂λ
=

(
∂uj

∂xi
∂xi

∂λ
+ ukΓjik

∂xi

∂λ

)
ej =

(
∂uj

∂λ
+ ukΓjik

∂xi

∂λ

)
ej (10)

u is parallel transported about the curve if its derivative with respect to the
parameter λ is zero (that is, it remains locally parallel to the curve):

∂u

∂λ
= 0 (11)

Hence each component must also be zero:

∂uj

∂λ
+ ukΓjik

∂xi

∂λ
= 0 (12)

This is called the parallel transport equation. It can also be expressed as

duj + ukΓjikdxi = 0 (13)

If the δxi are the infinitesimal changes in coordinates for a parallel transport,
the components of u after the parallel transport are

u′j = uj + δuj = uj − ukΓjikδx
i (14)
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1.3 The geodesic equation

A geodesic is a curve whose tangent vector is parallel transported along the
curve itself. If u is the tangent vector to the curve xi = xi(λ), then

ui =
∂xi

∂λ
(15)

Substituting this into the parallel transport equation yields

∂2xj

∂λ2
+
∂xk

∂λ
Γjik

∂xi

∂λ
= 0 (16)

This is called the geodesic equation. It can also be expressed as

d2xa + Γabcdx
bdxc = 0 (17)

dua + Γabcu
buc = 0 (18)

Hence the components of the tangent vector ua after parallel transport along
the geodesic are

u′a = ua + δua = ua − Γabcu
bucδλ (19)

The coordinates themselves are updated as follows:

x′a = xa + δxa = xa + uaδλ (20)

In Riemannian geometry, the exponential map expp u is a map from a tan-
gent vector u at some point p on a manifold M to another point q on M . More
precisely, q is the endpoint of the geodesic of length |u| that starts at p in the
direction of u.

The exponential map can be used to define Riemannian normal coordinates,
a local coordinate system in a neighborhood of p obtained by applying the
exponential map to the tangent space at p. In a normal coordinate system, the
Christoffel symbols of the connection vanish at p, simplifying calculations.

In a way, the exponential map provides the best description for what an ob-
server would see within a non-Euclidean space, since light rays follow geodesics.
This allows us to “project” a non-Euclidean space onto a Euclidean one.

1.4 Christoffel symbols in terms of the metric

The covariant derivative of the metric tensor vanishes:

0 =
∂g

∂xk
=
∂gije

iej

∂xk
=
∂gij
∂xk

eiej + gij
∂ei

∂xk
ej + gije

i ∂e
j

∂xk
(21)

Equivalently,

0 = ∇kgij = ∂kgij − (gljΓ
l
ik + gliΓ

l
jk) = ∂kgij − 2gl(iΓ

l
j)k (22)
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Because the Christoffel symbols are symmetric in the lower indices (that is,
Γabc = Γacb), one can permute the indices to obtain the Christoffel symbols purely
in terms of the metric tensor:

Γkij =
1

2
gkl
(
∂gli
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

)
(23)

1.5 Example: Spherical coordinates

Let x1 be the azimuthal angle and x2 be the polar angle in a spherical coordinate
system. The metric tensor in this coordinate system is(

g11 g12
g21 g22

)
=

(
(sinx2)2 0

0 1

)
(24)

The inverse metric tensor is(
g11 g12

g21 g22

)
=

(
(sinx2)−2 0

0 1

)
(25)

The Christoffel symbols are

Γabc =
1

2
gad
(
∂gcd
∂xb

+
∂gdb
∂xc

− ∂gbc
∂xd

)
(26)

Therefore

Γa11 = −ga2 sinx2 cosx2

Γa12 = Γa21 = ga1 sinx2 cosx2

Γa22 = 0

(27)

The only nonzero Christoffel symbols are

Γ1
12 = Γ1

21 = (sinx2)−1 cosx2

Γ2
11 = − sinx2 cosx2

(28)

The geodesic equation is

0 = d2xa + Γabcdx
bdxc

= d2xa + Γa11dx1dx1 + Γa12dx1dx2 + Γa21dx2dx1 + Γa22dx2dx2

= d2xa − ga2 sinx2 cosx2dx1dx1 + 2ga1 sinx2 cosx2dx1dx2

= d2xa + (2ga1dx1dx2 − ga2dx1dx1) sinx2 cosx2

(29)

Therefore
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d2x1 = (g12dx1dx1 − 2g11dx1dx2) sinx2 cosx2

= −2(sinx2)−2 sinx2 cosx2dx1dx2

= −2(sinx2)−1 cosx2dx1dx2
(30)

d2x2 = (g22dx1dx1 − 2g21dx1dx2) sinx2 cosx2

= sinx2 cosx2dx1dx2
(31)

Geodesics therefore satisfy the following pair of coupled equations:

∂2x1

∂λ2
= −2

cosx2

sinx2
∂x1

∂λ

∂x2

∂λ
(32)

∂2x2

∂λ2
= sinx2 cosx2

∂x1

∂λ

∂x1

∂λ
(33)

These equations correspond to great circles on a sphere.

1.6 Example: Hyperbolic space

The Poincare ball model, also called the conformal model, is a model of hyper-
bolic geometry in which all of the hyperbolic space lies within a unit ball, and
straight lines in the hyperbolic space consist of segments of spheres contained
within the ball that are orthogonal to the spherical boundary of the ball.

The metric tensor of the Poincare ball model is given by

ds2 =
|dx|2

(1− |x|2)2
(34)

This is equivalent to

gij =
δij

(1− δklxkxl)2
(35)

where xk are the Cartesian coordinates of the ambient Euclidean space. The
geodesics of the ball model are circles perpendicular to the bounding sphere.

The partial derivative of the metric tensor with respect to a coordinate xm

is

∂mgij = ∂m
δij

(1− δklxkxl)2

= δij∂m(1− δklxkxl)−2

= −2δij(1− δklxkxl)−3∂m(1− δklxkxl)
= 2δij(1− δklxkxl)−3δkl∂mxkxl

= 4δij(1− δklxkxl)−3xm

(36)

5



Substituting the partial derivatives of the metric tensor with the appropriate
indices into the definition of the Christoffel symbol yields

Γijk =
2

(1− δklxkxl)
(δikxj + δijxk − δjkxi) (37)

1.7 A non-Euclidean raytracer

Suppose a user specifies a metric gij describing a non-Euclidean space, and that
the Christoffel symbols Γkij are obtained (through either symbolic, numerical, or
automatic differentiation). A raytracer for rendering this non-Euclidean space
from the perspective of an internal observer can be implemented as follows:

Γijk ←
1

2
gil(∂jgkl + ∂kglj − ∂lgjk) (38)

δui ← −Γijku
jukδλ (39)

ui ← ui + δui (40)

δxi ← uiδλ (41)

xi ← xi + δxi (42)

δs←
√
gijδxiδxj (43)

s← s+ δs (44)

or, more concisely,

δui ← −1

2
gil(∂jgkl + ∂kglj − ∂lgjk)ujukδλ (45)

ui ← ui + δui (46)

xi ← xi + uiδλ (47)

s← s+
√
gijδxiδxj (48)

Taking care to ensure that ui is not updated before all components of δui

have been calculated (using the terms uj and uk). This process can be wrapped
into a while loop that updates xi at every step until some desired distance s has
been travelled by the ray. Smaller δλ results in a more accurate geodesic.

For parallel transport of a vector v, we use our previous expression:

vj ← vj + δvj = vj − vkΓjikδx
i (49)

This is useful for updating the vectors that together form the local reference
frame from which an observer sees the non-Euclidean space.

Alternatively, one can use a second-order finite difference scheme to calculate
geodesics. The second-order forward difference is given by
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d2xα = (xα[t+ 2]− xα[t+ 1])− (xα[t+ 1]− xα[t])

= xα[t+ 2]− 2xα[t+ 1] + xα[t]
(50)

Therefore

xα[t+ 2] = 2xα[t+ 1]− xα[t] + d2xα

= 2xα[t+ 1]− xα[t]− Γαβγdxβdxγ

= 2xα[t+ 1]− xα[t]− Γαβγ(xβ [t+ 1]− xβ [t])(xγ [t+ 1]− xγ [t])

(51)

where Γαβγ is evaluated at x[t+ 1].
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