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1 Introduction and Basic Results

As inexperienced mathematicians we may have once thought that the natural definition for matrix
multiplication would be entrywise multiplication, much in the same way that a young child might
say, “I writed my name.” The mistake is understandable, but it still makes us cringe. Unlike poor
grammar, however, entrywise matrix multiplication has reason to be studied; it has nice properties
in matrix analysis and has applications in both statistics (301 [4], 140 [5]) and physics (93, 149 [5]).
Here we will only expore the properties of the Hadamard product in matrix analysis.

Definition 1.1. Let A and B be m× n matrices with entries in C. The Hadamard product of A
and B is defined by [A ◦B]ij = [A]ij[B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

As we can see, the Hadamard product is simply entrywise multiplication. Because of this, the
Hadamard product inherits the same benefits (and restrictions) of multiplication in C. Note also
that both A and B need to be the same size, but not necessarily square. To avoid confusion,
juxtaposition of matrices will imply the “usual” matrix multiplication, and we will always use “◦”
for the Hadamard product.

Now we can explore some basics properties of the Hadamard Product.

Theorem 1.2. Let A and B be m× n matrices with entries in C. Then A ◦B = B ◦ A.

Proof. The proof follows directly from the fact that multiplication in C is commutative. Let A and
B be m × n matrices with entries in C. Then [A ◦ B]ij = [A]ij[B]ij = [B]ij[A]ij = [B ◦ A]ij and
therefore A ◦B = B ◦ A.

Theorem 1.3. The identity matrix under the Hadamard product is the m×n matrix with all entries
equal to 1, denoted Jmn. That is, [Jmn]ij = 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note: we have denoted the Hadamard identity as Jmn as to avoid confusion with the “usual”
identity matrix, In.

Proof. Take any m × n matrix A with entries in C. Then [Jmn ◦ A]ij = (1)([A]ij) = [A]ij and so
Jmn ◦A = A. Since the Hadamard Product is commutative (1.2), we know Jmn ◦A = A ◦ Jmn = A.
Therefore, Jmn as defined above is indeed the identity matrix under the Hadamard product.

Theorem 1.4. Let A be an m × n matrix. Then A has a Hadamard inverse, denoted Â, if and
only if [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Furthermore, [Â]ij = ([A]ij)

−1.
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Proof. (⇒) Let A be an m×n matrix with Hadamard inverse Â. Then we know A◦ Â = Jmn. That
is, [A ◦ Â]ij = [A]ij[Â]ij = 1. Multiplying by inverses in C we know that [Â]ij = (1)(([A]ij)

−1) =
([A]ij)

−1, which is only possible when all entries of A are invertible (in C). In other words, [A]ij 6= 0
for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(⇐) Take any m×n matrix A with entries in C such that [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Then there exists ([A]ij)

−1 for all i,j. This implies [A]ij([A]ij)
−1 = ([A]ij)

−1[A]ij = 1, and so A has

an inverse Â defined by [Â]ij = ([A]ij)
−1 for all i,j.

Note: again we have denoted the Hadamard inverse as Â as to avoid confusion with the “usual”
matrix inverse, A−1.

The Hadamard identity matrix and the Hadamard inverse are both more limiting than helpful,
so we will not explore their use further. One last fun fact: the set of m× n matrices with nonzero
entries form an abelian (commutative) group under the Hadamard product (Prove this!).

Theorem 1.5. The Hadamard Product is Linear. Suppose α ∈ C, and A, B and C are
m×n matrices. Then C ◦ (A+B) = C ◦A+C ◦B. Furthermore, α(A◦B) = (αA)◦B = A◦ (αB).

Proof. Part 1.
[C ◦ (A + B)]ij = [C]ij[A + B]ij

= [C]ij([A]ij + [B]ij)
= [C]ij[A]ij + [C]ij[B]ij
= [C ◦ A]ij + [C ◦B]ij
= [C ◦ A + C ◦B]ij

Part 2.
[α(A ◦B)]ij = α[A ◦B]ij

= α[A]ij[B]ij
= [αA]ij[B]ij
= [αA ◦B]ij First Equality
= α[A]ij[B]ij
= [A]ijα[B]ij
= [A]ij[αB]ij
= [A ◦ αB]ij Second Equality

2 Diagonal Matrices and the Hadamard Product

We can relate the Hadamard product with matrix multiplication via considering diagonal matrices,
since A ◦ B = AB if and only if both A and B are diagonal. For example, a simple calculation
reveals that the Hadamard product relates the diagonal values of a diagonalizable matrix A with
its eigenvalues:

Theorem 2.1. Let A be a diagonalizable matrix of size n with eigenvalues λ1, λ2, . . ., λn and
diagonalization A = SDS−1 where D is a diagonal matrix such that [D]ii = λi for all 1 ≤ i ≤ n.
Also, let [A]ij = aij for all i,j. Then

a11

a22
...

ann

 =
[
S ◦ (S−1)T

]


λ1

λ2
...

λn

 (304, [4]).

2



Proof. Let d ∈ Cn such that [d]i = λi for all 1 ≤ i ≤ n. We will show aii = [S ◦ (S−1)Td]i.

aii = [A]ii
= [SDS−1]ii

=
n∑

j=1

n∑
k=1

[S]ik[D]kj[S
−1]ji

=
n∑

k=1

[S]ik[D]kk[S
−1]ki

=
n∑

k=1

[S]ikλk[S
−1]ki

=
n∑

k=1

[S]ik[S
−1]kiλk

=
n∑

k=1

[S]ik[(S
−1)T ]ikλk

=
n∑

k=1

[S ◦ (S−1)T ]ikλk

=
n∑

k=1

[S ◦ (S−1)T ]ik[d]k

= [S ◦ (S−1)Td]i

We obtain a similar result when we look at the singular value decomposition of a square matrices:

Theorem 2.2. Let A be a matrix of size n with singular values σ1, σ2, . . ., σn and singular value
decomposition A = UDV ∗, where D is a diagonal matrix with [D]ii = σi for all 1 ≤ i ≤ n. Then,

a11

a22
...

ann

 =
[
U ◦ V̄

]


σ1

σ2
...

σn


Note that this relation only makes sense with square matrices, since otherwise we cannot compute

U ◦ V̄ .

Proof. Note that (V ∗)T = V̄ . The proof is similar to our proof of (2.1).

We have started to see that the Hadamard product behaves nicely with respect to diagonal
matrices and normal matrix multiplication. The following are some more general properties that
expand on this idea. The proofs all involve straightforward sum manipulation and are left as
exercises for the reader.

Theorem 2.3. Suppose A, B are m × n matrices, and D and E are diagonal matrices of size m
and n, respectively. Then,

D(A ◦B)E = (DAE) ◦B = (DA) ◦ (BE)
= (AE) ◦ (DB) = A ◦ (DBE) (304, [4])
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We will need a quick definition before our next theorem.

Definition 2.4. Define the diagonal matrix, Dx, of size n with entries from a vector x ∈ Cn by

[Dx]ij =

{
[x]i if i = j,
0 otherwise.

Theorem 2.5. Suppose A, B are m× n matrices and x ∈ Cn. Then the ith diagonal entry of the
matrix ADxB

T coincides with the ith entry of the vector (A ◦B)x for all i = 1, 2, . . . ,m (305, [4]).
That is,

[ADxB
T ]ii = [(A ◦B)x]i for all 1 ≤ i ≤ m.

Theorem 2.6. Let A, B and C be m × n matrices. Then the ith diagonal entry of the matrix
(A ◦B)CT coincides with the ith diagonal entry of the matrix (A ◦C)BT . That is, [(A ◦B)CT ]ii =
[(A ◦ C)BT ]ii for all 1 ≤ i ≤ m (305, [4]).

3 Schur Product Theorem

The purpose of this section is to set up and prove the Schur Product Theorem. This theorem
relates positive definite matrices to the Hadamard product, which is important when analyzing the
determinants of matrices since we want real, nonnegative numbers to compare. Note that if A is
positive semidefinite of size n then clearly |A| =

∏n
i=1 λi ≥ 0 since λi ≥ 0 for all 1 ≤ i ≤ n.

Lemma 3.1. Any rank one positive semidefinite matrix A of size n can be written as the product
A = xxT where x is some vector in Cn.

Proof. This proof follows the constructive proof of Theorem ROD [3].
Let A be a rank one positive semidefinite matrix of size n. Since A is positive semidefinite, we

know it is Hermitian and therefore normal. This allows us to write the orthonormal diagonalization
A = UDU∗ where D is the matrix of eigenvalues of A and U is a unitary matrix made up of
orthonormalized eigenvectors of A (Note that U has real entries, so U∗ = UT ). Also since A is
positive semidefinite, we know all the diagonal values of D are nonnegative numbers.

In the proof of Theorem ROD [3] we now let X∗ = {u1, . . ., un} be the columns of U and let
Y ∗ = {u1, . . ., un} be the rows of U∗ (which are the rows of UT ) converted to column vectors
(which are the columns of U). Next we define Ak = λkuku

T
k and we see that A = A1 + . . . + An.

But A is rank one, so (ordered properly) A = A1 + O + . . . + O = A1 = λ1u1u
T
1 . We also know

λ1 > 0, so we can define x =
√

λ1u1. So now we have xxT = (
√

λ1u1)(
√

λ1u1)
T =

√
λ1u1u

T
1

√
λ1 =√

λ1

√
λ1u1u

T
1 = λ1u1u

T
1 = A.

Therefore any positive semidefinite matrix A of rank one and size n can be written xxT , where
x ∈ Cn.

Lemma 3.2. Let B be a positive semidefinite matrix of size n and rank r. Then the matrices B1,
. . ., Br from the rank one decomposition of B are all also positive semidefinite.

Proof. Let B be a positive semidefinite matrix of size n and rank r with rank one decomposition
B = B1 + . . . + Br. Then from the constructive proof of Theorem ROD [3] together with the
orthonormal diagonalization of B we know that Bk = UDkU

∗ where U is a unitary matrix and Dk

is the diagonal matrix with [Dk]kk = λk and [Dk]ij = 0 for all other entries. Since B is positive
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semidefinite, then we know that all eigenvalues are positive (as ordered for the decomposition).
That is, λk > 0 for all 1 ≤ k ≤ r. Clearly then Dk is positive semidefinite for all 1 ≤ k ≤ r.

Now consider < Bkx,x > for any x ∈ Cn. Then

< Bkx,x >=< UDkU
∗x,x >=< DkU

∗x, U∗x >≥ 0.

This is true for all 1 ≤ k ≤ r and so Bk is positive semidefinite for all k.

Lemma 3.3. Let B be a matrix of size n and rank r. Furthermore, suppose the matrices B1, . . .,
Br from the rank one decomposition of B are all positive semidefinite. Then B itself is positive
semidefinite.

Proof. Let B = B1 + . . . + Br as described above and let x ∈ Cn. Then

< Bx,x > = < (B1 + . . . + Br)x,x >
= < B1x + . . . + Brx,x >
= < B1x,x > + . . . + < Brx,x >
≥ 0.

Therefore B is positive semidefinite.

Theorem 3.4. Schur Product Theorem. Suppose A and B are positive semidefinite matrices
of size n. Then A ◦B is also positive semidefinite.

Proof. (141, [2]). Let A and B be positive semidefinite matrices of size n. Suppose B is of rank zero.
This is true if and only if B = O, and therefore A ◦B = O, which is clearly positive semidefinite.

Now suppose B is of rank one. Then we can write B = xxT for some vector x ∈ Cn (Lemma
3.1). Then [A◦B]ij = [A]ij[B]ij = [A]ij[x]i[x

T ]j = [DxADx]ij. Now, since A is positive semidefinite,
then so is DxADx. Take any vector v ∈ Cn. Then

< DxADxv,v > = < ADxv, (Dx)
∗v >

= < ADxv, Dxv >
= < A(Dxv), (Dxv) >
≥ 0.

Now suppose B is of rank r, 1 < r ≤ n. Then we can decompose B into a sum of rank one
matrices B1, . . ., Br (Theorem ROD, [3]) where each matrix Bi is also positive semidefinite (Lemma
3.2). Then A ◦B = A ◦ (B1 + . . . + Br) = A ◦B1 + . . . + A ◦Br (Theorem 1.5). We know that each
A ◦Bi is positive semidefinite for each i, and so A ◦B is positive semidefinite (Lemma 3.3).

Therefore for any two positive semidefinite matrices A and B, A◦B is also positive semidefinite.

4 Some Inequalities

Now for some matrix analysis. In mathematics, the term “analysis” means there are tons of in-
equalities (I have no proof for this). Recall the importance of the Schur Product Theorem is that
if two matrices A and B are positive semidefinite, then so is A ◦ B. This allows us to compare
determinants of these matrices, since they are always nonnegative, real numbers.

Theorem 4.1. Oppenheim’s Inequality. Let A and B be positive semidefinite matrices of size
n. Then |A ◦B| ≥ [A]11 · · · [A]nn|B|.
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I am not including a proof of Oppenheim’s Inequality because it is somewhat long and requires
a bit of setup. However, it is not hard to follow and so instead I will simply refer you to page 144
of Bapat [2].

Theorem 4.2. Hadamard’s Inequality. Suppose A is positive semidefinite of size n. Then
|A| ≤ [A]11 · · · [A]nn.

Proof. Let A be any positive semidefinite matrix of size n. Note that In is a postive semidefinite
matrix of size n. Now we have the following:

|A| = [In]11 · · · [In]nn|A|
≤ |In ◦ A| (Oppenheim’s Inequality)
= [A]11 · · · [A]nn

Corollary 4.3. Let A and B be positive semidefinite matrices of size n. Then |A ◦B| ≥ |AB|.

Proof.
|A ◦B| ≥ [A]11 · · · [A]nn|B| (Oppenheim’s Inequality)

≥ |A||B| (Hadamard’s Inequality)
= |AB|

Theorem 4.4. Let A and B be positive semidefinite matrices of size n. Let λ1, . . . , λn be the
eigenvalues of A ◦B and let λ̂1, . . . , λ̂n be the eigenvalues of AB. Then

n∏
i=k

λi ≥
n∏

i=k

λ̂i, k = 1, 2, . . . , n. (144, [2])

Note that if k = 1, then this is true by Corollary 4.3.
This theorem dates back to Oppenheim in 1930, but has only recently been proven by Ando [1]

and Visick [6] in 1995 (144, [2]).

This last inequality does not require A and B to be positive semidefinite, although the statement
can be made stronger if they are (107 [5]).

Theorem 4.5. Let A and B be square matrices of size n. Then rank (A ◦B) ≤ (rank A)(rank B).

Proof. We will write the rank one decompositions of A and B. Suppose A has rank ρ1 with
eigenvalues λk, 1 ≤ k ≤ n and B has rank ρ2 with eigenvalues λ̂l, 1 ≤ l ≤ n. Then by the
constructive proof of Theorem ROD [3]

A =

ρ1∑
k=1

λkxky
T
k , and B =

ρ2∑
l=1

λ̂lvlw
T
l .
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Then
[A ◦B]ij = [A]ij[B]ij

=

[
ρ1∑

k=1

λkxky
T
k

]
ij

[
ρ2∑
l=1

λ̂lvlw
T
l

]
ij

=

ρ1∑
k=1

ρ2∑
l=1

[λkxky
T
k ]ij[λ̂lvlw

T
l ]ij

=

ρ1∑
k=1

ρ2∑
l=1

[((λkxk) ◦ (λ̂lvl))(yk ◦wl)
T ]ij

=

[
ρ1∑

k=1

ρ2∑
l=1

((λkxk) ◦ (λ̂lvl))(yk ◦wl)
T

]
ij

So A ◦B has at most rank ρ1ρ2 = (rank A)(rank B).

5 Conclusion

As we have seen, the Hadamard product has nice properties when we work with diagonal matrices
and regular matrix multiplication, and when we work with positive semidefinite matrices. These
properties (and numerous others that have been discovered; see references) can help us analyze
matrices and understand the freedoms and limitations of the rank, eigenvalues and diagonal values
of related matrices.

6 Addendum: License

This work is licensed under the Creative Commons Attribution 3.0 United States License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
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