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1 Introduction

The Pareto/NBD model was developed by Schmittlein et al. (1987), hereafter SMC, to describe
repeat-buying behavior in a noncontractual setting. They derive expressions for, amongst other
things, (i) the probability that a customer with a given transaction history is still “alive”, and (ii)
the expected number of future transactions for a randomly-chosen customer, conditional on his
transaction history.

Many readers of SMC find the derivations presented in the paper to be rather daunting. The
objective of this note is to guide the reader through the derivations of the key results and to present
some new related results. In many cases, our approach to deriving a specific expression differs from
that used by SMC; our reason for taking an alternative derivation route is that we feel it is simpler
to follow.

In Section 2 we outline the assumptions of the Pareto/NBD model and derive a key intermediate
result. In Sections 3–6, we derive expressions for the model likelihood function (something not
presented in SMC), the mean and variance, the probability that a customer is “alive”, and the
conditional expectation.

But before we start, let us “introduce” the Gaussian hypergeometric function,1 which is the
power series of the form

2F1(a, b; c; z) =
∞∑

j=0

(a)j(b)j

(c)j

zj

j!
, c �= 0, −1, −2, . . . ,

where (a)j is Pochhammer’s symbol, which denotes the ascending factorial a(a + 1) · · · (a + j − 1).
The series converges for |z| < 1 and is divergent for |z| > 1; if |z| = 1, the series converges for
c − a − b > 0.

• Since an ascending factorial can be represented as a ratio of two gamma functions,

(a)j =
Γ(a + j)

Γ(a)
,

† c© 2005 Peter S. Fader and Bruce G. S. Hardie. Document source: <http://brucehardie.com/notes/009/>.
1The standard reference is the Handbook of Mathematical Functions, edited by Abramowitz and Stegun (1972);

the interested reader is directed to this book for further information on this function. Additional information can
be found in Gradshteyn and Ryzhik (1994) and Andrews, Askey, and Roy (1999). An excellent online reference is
the Wolfram functions site (http://functions.wolfram.com/).
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we can write the Gaussian hypergeometric function as

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
j=0

Γ(a + j)Γ(b + j)
Γ(c + j)

zj

j!
.

Looking at this, it should be clear that the function is symmetric in the upper parameters a
and b, i.e., 2F1(a, b; c; z) = 2F1(b, a; c; z). (The reader should keep this in mind when working
through the derivations in this note.)

• Euler’s integral representation of the Gaussian hypergeometric function is

2F1(a, b; c; z) =
1

B(b, c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−adt , c > b , (1)

where B(·, ·) is the beta function. While the symmetry of the Gaussian hypergeometric
function in the parameters a and b is not obvious in this integral, be assured that it does
hold.

2 Model Assumptions

The Pareto/NBD model is based on the following assumptions:

i. Customers go through two stages in their “lifetime” with a specific firm: they are “alive” for
some period of time, then become permanently inactive.

ii. While alive, the number of transactions made by a customer follows a Poisson process with
transaction rate λ; therefore the probability of observing x transactions in the time interval
(0, t] is given by

P (X(t) = x | λ) =
(λt)xe−λt

x!
, x = 0, 1, 2, . . . .

This is equivalent to assuming that the time between transactions is distributed exponential
with transaction rate λ,

f(tj − tj−1 | λ) = λe−λ(tj−tj−1) , tj > tj−1 > 0 ,

where tj is the time of the jth purchase.

iii. A customer’s unobserved “lifetime” of length τ (after which he is viewed as being inactive)
is exponentially distributed with dropout rate μ:

f(τ | μ) = μe−μτ .

iv. Heterogeneity in transaction rates across customers follows a gamma distribution with shape
parameter r and scale parameter α:

g(λ | r, α) =
αrλr−1e−λα

Γ(r)
. (2)

v. Heterogeneity in dropout rates across customers follows a gamma distribution with shape
parameter s and scale parameter β.

g(μ | s, β) =
βsμs−1e−μβ

Γ(s)
. (3)

vi. The transaction rate λ and the dropout rate μ vary independently across customers.

2



Assumptions (ii) and (iv) give us the NBD model for the distribution of the number of trans-
actions while the customer is alive,

P (X(t) = x | r, α) =
∫ ∞

0
P (X(t) = x | λ) g(λ | r, α) dλ

=
Γ(r + x)
Γ(r) x!

(
α

α + t

)r (
t

α + t

)x

, (4)

while assumptions (iii) and (v) give us “Pareto distribution of the second kind”,

f(τ | s, β) =
∫ ∞

0
f(τ | μ) g(μ | s, β) dμ

=
s

β

(
β

β + τ

)s+1

, and (5)

F (τ | s, β) =
∫ ∞

0
F (τ | μ) g(μ | s, β) dμ

= 1 −
(

β

β + τ

)s

. (6)

The NBD and Pareto labels for each of the sub-models naturally leads to the name of the integrated
model.

2.1 A Key Intermediate Result

As we proceed with the derivations, we will need evaluate a double integral of the following form
a number of times:

A =
∫ ∞

0

∫ ∞

0

λγμδ

λ + μ
e−(λ+μ)tg(λ | r, α)g(μ | s, β) dλ dμ . (7)

Let us consider the transformation p = μ
λ+μ and z = λ + μ, with corresponding inverse trans-

formation λ = (1 − p)z and μ = pz. The Jacobian of this transformation is

J =

∣∣∣∣∣
∂λ
∂p

∂λ
∂z

∂μ
∂p

∂μ
∂z

∣∣∣∣∣ = z .

It follows that

A =
∫ 1

0

∫ ∞

0
pδ(1 − p)γzγ+δ−1e−ztg(p, z | α, β, r, s) dz dp , (8)

where the joint distribution of p and z

g(p, z | α, β, r, s) =
αrβs

Γ(r)Γ(s)
ps−1(1 − p)r−1zr+s−1e−z(α−(α−β)p) (9)

is derived using the transformation technique (Casella and Berger 2002, Section 4.3, pp. 156–162;
Mood et al. 1974, Section 6.2, p. 204ff). Substituting (9) in (8) gives us

A =
αrβs

Γ(r)Γ(s)
× B
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where

B =
∫ 1

0

∫ ∞

0
ps+δ−1(1 − p)r+γ−1zr+s+γ+δ−2e−z(α+t−(α−β)p) dz dp

=
∫ 1

0
ps+δ−1(1 − p)r+γ−1

{∫ ∞

0
zr+s+γ+δ−2e−z(α+t−(α−β)p) dz

}
dp

= Γ(r + s + γ + δ − 1)
∫ 1

0
ps+δ−1(1 − p)r+γ−1(α + t − (α − β)p)−(r+s+γ+δ−1) dp

=
Γ(r + s + γ + δ − 1)
(α + t)r+s+γ+δ−1

∫ 1

0
ps+δ−1(1 − p)r+γ−1[1 − (

α−β
α+t

)
p
]−(r+s+γ+δ−1)

dp

which recalling Euler’s integral for the Gaussian hypergeometric function, (1),

=
Γ(r + s + γ + δ − 1)
(α + t)r+s+γ+δ−1

Γ(r + γ)Γ(s + δ)
Γ(r + s + γ + δ) 2F1

(
r + s + γ + δ − 1, s + δ; r + s + γ + δ; α−β

α+t

)
,

and therefore

A =
αrβs

(α + t)r+s+γ+δ−1

Γ(r + γ)Γ(s + δ)
Γ(r)Γ(s)

(
1

r + s + γ + δ − 1

)
× 2F1

(
r + s + γ + δ − 1, s + δ; r + s + γ + δ; α−β

α+t

)
. (10)

Looking closely at (10), we see that the z argument of the Gaussian hypergeometric function,
α−β
α+t , is guaranteed to be bounded between 0 and 1 when α ≥ β (since β > 0 and t > 0), thus
ensuring convergence of the series representation of the function. However, when α < β we can be
faced with the situation where |z| > 1, in which case the series is divergent.

Therefore, for the case of α ≤ β, let us consider the transformation p = λ
λ+μ and z = λ+μ, with

corresponding inverse transformation λ = pz and μ = (1−p)z. The Jacobian of this transformation
is

J =

∣∣∣∣∣
∂λ
∂p

∂λ
∂z

∂μ
∂p

∂μ
∂z

∣∣∣∣∣ = z .

It follows that

A =
∫ 1

0

∫ ∞

0
pγ(1 − p)δzγ+δ−1e−ztg(p, z | α, β, r, s) dz dp ,

where the joint distribution of p and z

g(p, z | α, β, r, s) =
αrβs

Γ(r)Γ(s)
pr−1(1 − p)s−1zr+s−1e−z(β−(β−α)p)

is derived using the transformation technique. This gives us

A =
αrβs

Γ(r)Γ(s)
× B

where

B =
∫ 1

0

∫ ∞

0
pr+γ−1(1 − p)s+δ−1zr+s+γ+δ−2e−z(β+t−(β−α)p) dz dp

=
∫ 1

0
pr+γ−1(1 − p)s+δ−1

{∫ ∞

0
zr+s+γ+δ−2e−z(β+t−(β−α)p) dz

}
dp

= Γ(r + s + γ + δ − 1)
∫ 1

0
pr+γ−1(1 − p)s+δ−1(β + t − (β − α)p)−(r+s+γ+δ−1) dp

=
Γ(r + s + γ + δ − 1)
(β + t)r+s+γ+δ−1

∫ 1

0
pr+γ−1(1 − p)s+δ−1[1 − (

β−α
β+t

)
p
]−(r+s+γ+δ−1)

dp
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which recalling Euler’s integral for the Gaussian hypergeometric function, (1),

=
Γ(r + s + γ + δ − 1)
(β + t)r+s+γ+δ−1

Γ(r + γ)Γ(s + δ)
Γ(r + s + γ + δ) 2F1

(
r + s + γ + δ − 1, r + γ; r + s + γ + δ; β−α

β+t

)
,

and therefore

A =
αrβs

(β + t)r+s+γ+δ−1

Γ(r + γ)Γ(s + δ)
Γ(r)Γ(s)

(
1

r + s + γ + δ − 1

)
× 2F1

(
r + s + γ + δ − 1, r + γ; r + s + γ + δ; β−α

β+t

)
. (11)

We see that the z argument of the above Gaussian hypergeometric function is bounded between
0 and 1 when α ≤ β. We therefore present (10) and (11) as solutions to (7): we use (10) when
α ≥ β and (11) when α ≤ β.

3 Deriving the Model Likelihood Function

3.1 Deriving the Likelihood Function Conditional on λ and μ

Let us assume we know when each of a customer’s x transactions occurred during the period (0, T ];
we denote these times by t1, t2, . . . , tx:

�· · ·
0 T

×
t1

×
t2

×
tx

There are two possible ways this pattern of transactions could arise:

i. The customer is still alive at the end of the observation period (i.e., τ > T ), in which case
the individual-level likelihood function is simply the product of the (inter-transaction-time)
exponential density functions and the associated survivor function:

L(λ | t1, . . . , tx, T, τ > T ) = λe−λt1λe−λ(t2−t1) · · ·λe−λ(tx−tx−1)e−λ(T−tx)

= λxe−λT .

ii. The customer became inactive at some time τ in the interval (tx, T ], in which case the
individual-level likelihood function is

L(λ | t1, . . . , tx, T, inactive at τ ∈ (tx, T ]) = λe−λt1λe−λ(t2−t1) · · ·λe−λ(tx−tx−1)e−λ(τ−tx)

= λxe−λτ .

Note that in both cases, information on when each of the x transactions occurred is not required;
we can replace t1, . . . , tx, T with (x, tx, T ) where, by definition, tx = 0 when x = 0. In other words,
tx and x are sufficient summaries of a customer’s transaction history. (Using direct marketing
terminology, tx is recency and x is frequency.)

Removing the conditioning on τ yields the following expression for the individual-level likelihood
function:

L(λ, μ | x, tx, T ) = L(λ | x, T, τ > T )P (τ > T | μ)

+
∫ T

tx

L(λ | x, T, inactive at τ ∈ (tx, T ])f(τ | μ) dτ (12)

= λxe−λT e−μT + λx

∫ T

tx

e−λτμe−μτ dτ

= λxe−(λ+μ)T +
λxμ

λ + μ
e−(λ+μ)tx − λxμ

λ + μ
e−(λ+μ)T (13)

=
λxμ

λ + μ
e−(λ+μ)tx +

λx+1

λ + μ
e−(λ+μ)T . (14)

This is a new result, as SMC do not present an explicit expression for the model likelihood function.
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3.2 Removing the Conditioning on λ and μ

We remove the conditioning on λ and μ by taking the expectation of L(λ, μ | x, tx, T ) over the
distributions of λ and μ:

L(r, α, s, β | x, tx, T ) =
∫ ∞

0

∫ ∞

0
L(λ, μ | x, tx, T )g(λ | r, α)g(μ | s, β)dλdμ . (15)

Substituting (13) in (15) gives us

L(r, α, s, β | x, tx, T ) = A1 + A2 − A3 (16)

where

A1 =
∫ ∞

0

∫ ∞

0
λxe−(λ+μ)T g(λ | r, α)g(μ | s, β)dλdμ (17)

and

A2 =
∫ ∞

0

∫ ∞

0

λxμe−(λ+μ)tx

λ + μ
g(λ | r, α)g(μ | s, β)dλdμ

and

A3 =
∫ ∞

0

∫ ∞

0

λxμe−(λ+μ)T

λ + μ
g(λ | r, α)g(μ | s, β)dλdμ

Let us first consider A1: substituting (2) and (3) in (17), we have

A1 =
∫ ∞

0

∫ ∞

0
λxe−(λ+μ)T αrλr−1e−λα

Γ(r)
βsμs−1e−μβ

Γ(s)
dλdμ

=
Γ(r + x)αrβs

Γ(r)(α + T )r+x(β + T )s

Looking closely at the expressions for A2 and A3, we see that they have the same form as that
given in (7) with γ = x and δ = 1, and t = tx and t = T respectively. Recalling the solutions given
in (10) and (11), it follows that for α ≥ β,

A2 =
αrβs

(α + tx)r+s+x

Γ(r + γ)
Γ(r)

(
s

r + s + x

)
2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+tx

)
A3 =

αrβs

(α + T )r+s+x

Γ(r + x)
Γ(r)

(
s

r + s + x

)
2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)
,

while for α ≤ β,

A2 =
αrβs

(β + tx)r+s+x

Γ(r + x)
Γ(r)

(
s

r + s + x

)
2F1

(
r + s + x, r + x; r + s + x + 1; β−α

β+tx

)
A3 =

αrβs

(β + T )r+s+x

Γ(r + x)
Γ(r)

(
s

r + s + x

)
2F1

(
r + s + x, r + x; r + s + x + 1; β−α

β+T

)
.

Substituting these expressions for A1–A3 into (16) and simplifying gives us the following expres-
sion for the likelihood function for a randomly-chosen individual with purchase history (x, tx, T ):

L(r, α, s, β | x, tx, T ) =
Γ(r + x)αrβs

Γ(r)

{
1

(α + T )r+x(β + T )s
+

(
s

r + s + x

)
A0

}
(18)
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where for α ≥ β

A0 =
2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+tx

)
(α + tx)r+s+x

− 2F1
(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)
(α + T )r+s+x

(19)

while for α ≤ β

A0 =
2F1

(
r + s + x, r + x; r + s + x + 1; β−α

β+tx

)
(β + tx)r+s+x

− 2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+T

(β + T )r+s+x

)
. (20)

(This expression for the model likelihood function is that used in Fader et al. (2005b).)
The four Pareto/NBD model parameters (r, α, s, β) can be estimated via the method of max-

imum likelihood in the following manner. Suppose we have a sample of N customers, where
customer i had xi transactions in the period (0, Ti], with the last transaction occurring at txi

. The
sample log-likelihood function is given by

LL(r, α, s, β) =
N∑

i=1

ln
[
L(r, α, s, β | xi, txi , Ti)

]
.

This can be maximized using standard numerical optimization routines. (See Fader et al. (2005a)
for details of a MATLAB-based implementation.)

A variant on the above derivation follows by changing the order of integration: we first integrate
(12) over the distributions of λ and μ and then remove the conditioning on τ . Any reader who has
followed our workings so far will realize that this gives us

L(r, α, s, β | x, tx, T ) = L(r, α | x, T ) P (τ > T | s, β) +
∫ T

tx

L(r, α | x, τ) f(τ | s, β) dτ

=
Γ(r + x)

Γ(r)

(
α

α + T

)r (
1

α + T

)x (
β

β + T

)s

+
∫ T

tx

Γ(r + x)
Γ(r)

(
α

α + τ

)r (
1

α + τ

)x
s

β

(
β

β + τ

)s+1

dτ

=
Γ(r + x)αrβs

Γ(r)

[
1

(α + T )r+x(β + T )s
+ sC

]
(21)

where

C =
∫ T

tx

(α + τ)−(r+x)(β + τ)−(s+1) dτ .

i. For α ≥ β, we make the change of variable y = α + τ , giving us

C =
∫ α+T

α+tx

y−(r+x)(β − α + y)−(s+1)dy

=
∫ ∞

α+tx

y−(r+x)(β − α + y)−(s+1)dy −
∫ ∞

α+T

y−(r+x)(β − α + y)−(s+1)dy

7



letting z = (α + tx)/y in the first integral (which implies dy = −dz(α + tx)z−2) and z =
(α + T )/y in the second integral (which implies dy = −dz(α + T )z−2),

= −
∫ 0

1

(
α + tx

z

)−(r+x) (
α + tx

z2

) [
β − α +

α + tx
z

]−(s+1)

dz

+
∫ 0

1

(
α + T

z

)−(r+x) (
α + T

z2

) [
β − α +

α + T

z

]−(s+1)

dz

= (α + tx)−(r+s+x)
∫ 1

0
zr+s+x−1[1 − (

α−β
α+tx

)
z
]−(s+1)

dz

− (α + T )−(r+s+x)
∫ 1

0
zr+s+x−1[1 − (

α−β
α+T

)
z
]−(s+1)

dz

which recalling Euler’s integral for the Gaussian hypergeometric function, (1),

=
1

r + s + x

{
2F1

(
s + 1, r + s + x; r + s + x + 1; α−β

α+tx

)
(α + tx)r+s+x

− 2F1
(
s + 1, r + s + x; r + s + x + 1; α−β

α+T

)
(α + T )r+s+x

}
.

Substituting this expression for C in (21), and recalling the symmetry of Gaussian hyperge-
ometric function in its upper parameters (i.e., 2F1(a, b; c; z) = 2F1(b, a; c; z)), yields (18) and
(19).

ii. For α ≤ β, we make the change of variable y = β + τ , giving us

C =
∫ β+T

β+tx

y−(s+1)(α − β + y)−(r+x)dy

=
∫ ∞

α+tx

y−(s+1)(α − β + y)−(r+x)dy −
∫ ∞

α+T

y−(s+1)(α − β + y)−(r+x)dy

letting z = (β + tx)/y in the first integral (which implies dy = −dz(β + tx)z−2) and z =
(β + T )/y in the second integral (which implies dy = −dz(β + T )z−2),

= −
∫ 0

1

(
β + tx

z

)−(s+1) (
β + tx

z2

) [
α − β +

β + tx
z

]−(r+x)

dz

+
∫ 0

1

(
β + T

z

)−(s+1) (
β + T

z2

) [
α − β +

β + T

z

]−(r+x)

dz

= (β + tx)−(r+s+x)
∫ 1

0
zr+s+x−1[1 − (

β−α
β+tx

)
z
]−(r+x)

dz

− (β + T )−(r+s+x)
∫ 1

0
zr+s+x−1[1 − (

β−α
β+T

)
z
]−(r+x)

dz

=
1

r + s + x

[
1

(β + tx)r+s+x 2F1
(
r + x, r + s + x; r + s + x + 1; β−α

β+tx

)
− 1

(β + T )r+s+x 2F1
(
r + x, r + s + x; r + s + x + 1; β−α

β+T

)]
.

Substituting this expression for C in (21), and recalling the symmetry of Gaussian hyperge-
ometric function in its upper parameters, yields (18) and (20).
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3.3 An Alternative Expression for the Model Likelihood Function

An alternative expression for the model likelihood function can be obtained by substituting (14),
instead of (13), in (15), giving us

L(r, α, s, β | x, tx, T ) = A2 + A4

where A2 is defined as above and

A4 =
∫ ∞

0

∫ ∞

0

λx+1e−(λ+μ)T

λ + μ
g(λ | r, α)g(μ | s, β)dλdμ

Looking closely at this expression for A4, we see that it has the same form as that given in (7)
with γ = x + 1, δ = 0, and t = T . Recalling the solutions given in (10) and (11), it follows that
for α ≥ β,

A4 =
αrβs

(α + T )r+s+x

Γ(r + x)
Γ(r)

(
r + x

r + s + x

)
2F1

(
r + s + x, s; r + s + x + 1; α−β

α+T

)
,

while for α ≤ β,

A4 =
αrβs

(β + T )r+s+x

Γ(r + x)
Γ(r)

(
r + x

r + s + x

)
2F1

(
r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)
.

Therefore, for α ≥ β,

L(r, α, s, β | x, tx, T ) =
Γ(r + x)αrβs

Γ(r)

{ (
s

r + s + x

)
2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+tx

)
(α + tx)r+s+x

+
(

r + x

r + s + x

)
2F1

(
r + s + x, s; r + s + x + 1; α−β

α+T

)
(α + T )r+s+x

}
, (22)

while for α ≤ β,

L(r, α, s, β | x, tx, T ) =
Γ(r + x)αrβs

Γ(r)

{ (
s

r + s + x

)
2F1

(
r + s + x, r + x; r + s + x + 1; β−α

β+tx

)
(β + tx)r+s+x

+
(

r + x

r + s + x

)
2F1

(
r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)
(β + T )r+s+x

}
. (23)

Are (18)–(20) equivalent to (22) and (23)? While the indirect equivalence is obvious (given the
equivalence of (13) and (14)), the direct equivalence is not immediately obvious.

Direct equivalence implies that for α ≥ β,(
α + T

β + T

)s

−
(

s

r + s + x

)
2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)
=

(
r + x

r + s + x

)
2F1

(
r + s + x, s; r + s + x + 1; β−α

β+T

)
(24)

while for α ≤ β,

(
β + T

α + T

)r+x

−
(

s

r + s + x

)
2F1

(
r + s + x, r + x; r + s + x + 1; β−α

β+T

)
=

(
r + x

r + s + x

)
2F1

(
r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)
(25)

Looking at the so-called Gauss’ relations for contiguous functions, we have the following result
(Abramowitz and Stegun 1972, equation 15.2.24):

(c − b − 1)2F1(a, b; c; z) + b 2F1(a, b + 1; c; z) − (c − 1)2F1(a, b; c − 1; z) = 0 .
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i. For the case of α ≥ β, let a = r + s + x, b = s and c = r + s + x + 1. This gives us

(r + x)2F1
(
r + s + x, s; r + s + x + 1; α−β

α+T

)
+ s 2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)
− (r + s + x)2F1

(
r + s + x, s; r + s + x; α−β

α+T

)
= 0

Noting that 2F1(a, b; b; z) = (1 − z)−a,

2F1
(
r + s + x, s; r + s + x; α−β

α+T

)
=

(
α + T

β + T

)s

and therefore

(r + x)2F1
(
r + s + x, s; r + s + x + 1; α−β

α+T

)
+ s 2F1

(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)
− (r + s + x)

(
α + T

β + T

)s

= 0 ,

which is clearly equivalent to (24).

ii. For the case of α ≤ β, let a = r + s + x, b = r + x and c = r + s + x + 1. This gives us

s2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+T

)
+ (r + x) 2F1

(
r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)
− (r + s + x)2F1

(
r + s + x, r + x; r + s + x; β−α

β+T

)
= 0

The result that 2F1(a, b; b; z) = (1 − z)−a implies that

2F1
(
r + s + x, r + x; r + s + x; β−α

β+T

)
=

(
β + T

α + T

)r+x

and therefore

s2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+T

)
+ (r + x) 2F1

(
r + s + x, r + x + 1; r + s + x + 1; β−α

β+T

)
− (r + s + x)

(
β + T

α + T

)r+x

= 0 ,

which is clearly equivalent to (25).

4 Mean and Variance of the Pareto/NBD Model

Given that the number of transactions follows a Poisson process while the customer is alive,

i. if τ , the (unobserved) time at which the customer becomes inactive, is greater than t, the
expected number of transactions is simply λt.

ii. if τ ≤ t, the expected number of transactions in the interval (0, τ ] is λτ .

Removing the conditioning on the time at which the customer becomes inactive, it follows that
the expected number of transactions in the time interval (0, t], conditional on λ and μ, is

E[X(t) | λ, μ] = λtP (τ > t | μ) +
∫ t

0
λτf(τ | μ) dτ

= λte−μt + λ

∫ t

0
μτe−μτ dτ

= λte−μt +
λ

μ

∫ t

0
μ2τe−μτ dτ

10



which, noting that the integrand is an Erlang-2 pdf,

= λte−μt +
λ

μ

{
1 − e−μt − μte−μt

}

=
λ

μ
− λ

μ
e−μt . (26)

To arrive at an expression for E[X(t)] for a randomly-chosen individual, we take the expectation
of (26) over the distributions of λ and μ:

E[X(t) | r, α, s, β] =
∫ ∞

0

∫ ∞

0
E[X(t) | λ, μ]g(λ | r, α)g(μ | s, β) dλdμ

=
rβ

α(s − 1)
− rβs

α(s − 1)(β + t)s−1

=
rβ

α(s − 1)

[
1 −

(
β

β + t

)s−1
]

, (27)

which is the expression reported in SMC, equation (17).
In order to derive the variance of the Pareto/NBD, we recall the defining relationship for the

variance of a random variable:
var(X) = E(X2) − E(X)2 . (28)

Having derived an expression for E(X), we now need to derive an expression for E(X2).
Given that the number of transactions follows a Poisson process while the customer is alive, it

follows that E[(X(t)2 | λ] = λt + (λt)2 if τ > t, and E[(X(τ)2 | λ] = λτ + (λτ)2 if τ ≤ t. Removing
the conditioning on the time at which the customer becomes inactive, we have

E[X(t)2 | λ, μ] = {λt + (λt)2}P (τ > t | μ) +
∫ t

0
{λτ + (λτ)2}f(τ | μ) dτ

= E[X(t) | λ, μ] + (λt)2e−μt + λ2
∫ t

0
μτ2e−μτ dτ

= E[X(t) | λ, μ] + (λt)2e−μt +
2λ2

μ2

∫ t

0

μ3τ2e−μτ

2
dτ

which, noting that the integrand is an Erlang-3 pdf,

= E[X(t) | λ, μ] + (λt)2e−μt +
2λ2

μ2

{
1 − e−μt − μte−μt − (μt)2e−μt

2

}

= λ

{
1
μ

− 1
μ

e−μt

}
+ 2λ2

{
1
μ2 − e−μt

μ2 − te−μt

μ

}
. (29)

To arrive at an expression for E[X(t)2] for a randomly-chosen individual, we take the expecta-
tion of (29) over the distributions of λ and μ:

E[X(t)2 | r, α, s, β] =
∫ ∞

0

∫ ∞

0
E[X(t)2 | λ, μ]g(λ | r, α)g(μ | s, β) dλdμ

=
rβ

α(s − 1)

[
1 −

(
β

β + t

)s−1
]

+
2r(r + 1)β
α2(s − 1)

[
β

s − 2
− β

s − 2

(
β

β + t

)s−2

− t

(
β

β + t

)s−1
]

(30)

Our expression for var[X(t) | r, α, s, β] is obtained by substituting (27) and (30) in (28); this is
equivalent to the expression reported in SMC, equation (19).
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5 Derivation of P (alive | x, tx, T )

The probability that a customer with purchase history (x, tx, T ) is “alive” at time T is the prob-
ability that the (unobserved) time at which he becomes inactive (τ) occurs after T , P (τ > T ).
Referring back to our derivation of the individual-level likelihood function (i.e., (12)), the applica-
tion of Bayes’ theorem gives us

P (τ > T | λ, μ, x, tx, T ) =
L(λ | x, T, τ > T )P (τ > T | μ)

L(λ, μ | x, tx, T )

=
λxe−(λ+μ)T

L(λ, μ | x, tx, T )
. (31)

Substituting (13) in (31), we have

P (τ > T | λ, μ, x, tx, T ) =
λxe−(λ+μ)T

λxe−(λ+μ)T + μλx

λ+μe−(λ+μ)tx − μλx

λ+μe−(λ+μ)T

=
λxe−(λ+μ)T

λxe−(λ+μ)T
{

1 +
(

μ
λ+μ

)[
e−(λ+μ)(tx−T ) − 1

]}
=

1
1 +

(
μ

λ+μ

) [
e(λ+μ)(T−tx) − 1

]
which is the expression reported in SMC, equation (A10).

As the transaction rate λ and death rate μ are unobserved, we compute P (alive | x, tx, T ) for
a randomly-chosen individual by taking the expectation of (31) over the distribution of λ and μ,
updated to take account of the information (x, tx, T ):

P (alive | r, α, s, β, x, tx, T )

=
∫ ∞

0

∫ ∞

0
P (τ > T | λ, μ, x, tx, T )g(λ, μ | r, α, s, β, x, tx, T ) dλdμ (32)

By Bayes’ theorem, the joint posterior distribution of λ and μ is

g(λ, μ | r, α, s, β, x, tx, T ) =
L(λ, μ | x, tx, T )g(λ | r, α)g(μ | s, β)

L(r, α, s, β | x, tx, T )
. (33)

Substituting (31) and (33) in (32), we get

P (alive | r,α, s, β, x, tx, T )

=
∫ ∞

0

∫ ∞

0
λxe−(λ+μ)T g(λ | r, α)g(μ | s, β) dλdμ

/
L(r, α, s, β | x, tx, T )

=
Γ(r + x)αrβs

Γ(r)(α + T )r+x(β + T )s

/
L(r, α, s, β | x, tx, T ) . (34)

Substituting (18) on (34) gives us

P (alive | r, α, s, β, x, tx, T ) =
{

1 +
(

s

r + s + x

)
(α + T )r+x(β + T )sA0

}−1

. (35)

where A0 is defined in (19) and (20).
An alternative derivation follows from the derivation of the Pareto/NBD likelihood function

given in (21). Applying Bayes’ theorem,

P (τ > T | r, α, s, β, x, tx, T ) =
L(r, α | x, T ) P (τ > T | s, β)

L(r, α, s, β | x, tx, T )

=
Γ(r + x)

Γ(r)

(
α

α + T

)r (
1

α + T

)x (
β

β + T

)s /
L(r, α, s, β | x, tx, T ) ,

which is the expression given in (34).
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5.1 Equivalence with SMC Expressions

i. Substituting (19) in (35), it follows that for α ≥ β,

P (alive | r, α, s, β, x, tx, T ) =
{

1 +
s

r + x + s

×
[ (

α + T

α + tx

)r+x (
β + T

α + tx

)s

2F1
(
r + s + x, s + 1; r + s + x + 1; α−β

α+tx

)

−
(

β + T

α + T

)s

2F1
(
r + s + x, s + 1; r + s + x + 1; α−β

α+T

)]}−1

(36)

which is the expression reported in SMC, equation (11). (Note the error in SMC, equation
(A25).)

ii. Substituting (20) in (35), it follows that for α ≤ β,

P (alive | r, α, s, β, x, tx, T ) =
{

1 +
s

r + x + s

×
[ (

α + T

β + tx

)r+x (
β + T

β + tx

)s

2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+tx

)

−
(

α + T

β + T

)r+x

2F1
(
r + s + x, r + x; r + s + x + 1; β−α

β+T

)]}−1

(37)

which is the expression reported in SMC, equation (12).

iii. Noting that 2F1(a, b; c; 0) = 1 for c > b, (36) and (37) reduce to

P (alive | r, α, s, β, x, tx, T ) =

{
1 +

s

r + s + x

[(
α + T

α + tx

)r+x+s

− 1

]}−1

when α = β, which is the expression reported in SMC, equation (13).

6 Derivation of the Conditional Expectation

Let the random variable Y (t) denote the number of purchases made in the period (T, T +t]. We are
interested in computing E(Y (t) | x, tx, T ), the expected number of purchases in the period (T, T +t]
for a customer with purchase history (x, tx, T ); we call this the conditional expectation.

If the customer is active at T , it follows from our derivation of an expression for E[X(t)] that

E[Y (t) | λ, μ, alive at T ] = λtP (τ > T + t | μ, τ > T ) +
∫ T+t

T

λτf(τ | μ, τ > T ) dτ

which, given the memoryless property of the exponential distribution associated with τ ,

= λte−μt + λ

∫ t

0
μτe−μτ dτ

=
λ

μ
− λ

μ
e−μt . (38)

Of course we don’t know whether a customer is alive at T ; therefore

E[Y (t) | λ, μ, x, tx, T ] = E[Y (t) | λ, μ, alive at T ]P (τ > T | λ, μ, x, tx, T ) (39)
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As the transaction rate λ and death rate μ are unobserved, we compute E[Y (t) | x, tx, T ] for a
randomly-chosen individual by taking the expectation of (39) over the joint posterior distribution
of λ and μ, (33):

E[Y (t) | r, α, s, β, x, tx, T ] =
∫ ∞

0

∫ ∞

0

{
E[Y (t) | λ, μ, alive at T ]P (τ > T | λ, μ, x, tx, T )

g(λ, μ | r, α, s, β, x, tx, T )
}

dλdμ (40)

Substituting (31), (33), and (38) in (40), and solving the associated double integral gives us

E[Y (t) | r, α, s, β, x, tx, T ] =
Γ(r + x + 1)
Γ(r)(s − 1)

αrβs

(α + t)r+x+1

×
[

1
(β + T )s−1 − 1

(β + T + t)s−1

]/
L(r, α, s, β | x, tx, T ) . (41)

Rearranging terms gives us

E[Y (t) | r, α, s, β, x, tx, T ] =
{

Γ(r + x)αrβs

Γ(r)(α + T )r+x(β + T )s

/
L(r, α, s, β | x, tx, T )

}

× (r + x)(β + T )
(α + T )(s − 1)

[
1 −

(
β + T

β + T + t

)s−1
]

.

The bracketed term is our expression for P (alive | x, tx, T ), (34), while the rest of the expression is
mean of the Pareto/NBD, (27), with “updated” parameters that reflect the individual’s behavior
up to time T (assuming no “death” in (0, T ]); this is the expression reported in SMC, equation
(22).
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