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Abstract

The calculus of binary relations was introduced by
De Morgan in 1860, and was subsequently greatly de-
veloped by Peirce and Schröder. Half a century later
Tarski, Jónsson, Lyndon, and Monk further developed
the calculus from the perspective of modern model the-
ory.

1 The Calculus

The origins of the calculus of binary relations go
back to 1860 in a paper by Augustus De Morgan,
On the Syllogism: IV; and on the Logic of Relations
[DM60]. De Morgan begins his paper by categorizing
Aristotle as “rather too much the expositor of common
language, too little the expositor of common thought.”
Aristotle had denied, in the 4th century BC, that ev-
ery binary relation has a converse. His example was
that “the rudder of the ship” lacked the converse no-
tion “the ship of the rudder.” Now De Morgan was
always on the lookout for logical fallacies. Though the
main targets of his “Budget of Paradoxes” were the
circle squarers and cube duplicators, in this instance
he was not abashed to challenge the authority of Aris-
totle 22 centuries later with the argument, “Surely the
question ‘What ship does this rudder belong to?’ must
sometimes have been heard in an Athenian dockyard.”

De Morgan went on to list the connectives of his
calculus. However his connectives are best understood
in terms of the connectives we use today, so before
listing De Morgan’s connectives let us move forward a
little in time to Peirce.

The calculus of binary relations as we understand
it today has three premises. First it is a logic. Second,
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it consists of two components, a logical or static com-
ponent and a relative or dynamic component. Third,
the two components parallel one another in that all
the logical symbols have their relative counterparts.

Whereas De Morgan’s account of the calculus only
vaguely hinted at these facets, Peirce understood and
described them very clearly [Pei33]. Peirce saw each
of the two components, logical and relative, as a fully
fledged logic in its own right, consisting of two con-
stants false and true, one unary operation of negation,
and two binary operations disjunction and conjunc-
tion.

In modern notation we may tabulate the resulting
ten constants and operations thus.

Logical : 0 1 a− a + b ab
Relative : 0’ 1’ ă a +

˘
b a; b

The logical symbols consist of the static constants
0 and 1, complement a−, sum a + b, and product ab.
The relative symbols consist of the constants 0’ and
1’, converse ă , relative sum a +

˘
b, and composition

a; b.
Dedekind in 1888 [Ded01] defined the notion of nat-

ural number in terms of the transitive closure of the
successor relation. This was a second order defini-
tion that could be made first order in two ways. In
1889 Peano found one of those ways, namely his fa-
mous first-order axiomatization of the natural num-
bers. In 1895 Schröder gave the other, namely (follow-
ing Peirce) to treat binary relations as first-order indi-
viduals and to define transitive closure as just another
operation. Schröder accordingly added four unary op-
erations abstractly expressing “Induktion oder Rekur-
sion”: transitive closure a00, reflexive transitive clo-
sure a0 (which nowadays we would notate respectively
a+ and a∗), and their respective De Morgan duals a11

and a1 (for which there is no modern notation).
Following Ward and Dilworth [WD39], Birkhoff in

1948 [Bir48] added two more operations, a\b and b/a,



called respectively right and left residuals and inter-
pretable as relative implications a→b and b←a.

Interpretation. A binary relation is a set of pairs of
elements assumed to be drawn from an indeterminate
but fixed set X. The logical operations treat a binary
relation purely as a set, ignoring the nature of its ele-
ments. 0 denotes the empty relation while 1 denoted
(prior to the 1950’s)1 the complete relation X2. Com-
plement a− is taken relative to 1. Sum and product
are union and intersection.

The relative operations take into account that a
binary relation consists of pairs. 0’ consists of all pairs
(x, y) for which x 6= y, while 1’ is its complement,
the pairs (x, x), constituting the diagonal or identity
relation. The converse ă consists of all pairs (y, x)
such that (x, y) is a pair in a. The composition a; b
consists of all pairs (x, z) such that there exists y with
(x, y) in a and (y, z) in b. The relative sum a +

˘
b

consists of all pairs (x, z) such that for all y either
(x, y) is in a or (y, z) is in b.

The transitive closure a+ of a is the least rela-
tion including both a+; a+ (transitivity) and a, while
a∗ = a0 = 1’ + a+. Dually a11 is the greatest relation
included in both a11 +

˘
a11 and a, while a1 = 0’a11.

The right residual a\b or a→b is elegantly expressed
as ă − +

˘
b, or dually as (ă ; b−)−. It can be defined as

the set of all pairs (y, z) such that for all x, (x, y) in
a implies (x, z) in b. It is also the greatest c such that
a; c ⊆ b. The converse notion is the left residual b/a,
or b←a, which clearly will be b+

˘
ă − or (b−; ă )−, but

which can also be considered as the “converse De Mor-
gan dual” of the right residual, namely b/a = (ă \b̆ )̆ .
Equivalently b/a consists of all pairs (x, y) such that
for all z, (y, z) in a implies (x, z) in b, and is the great-
est c such that c; a ⊆ b. Setting b to 0’ leads to the def-
inition of converse in terms of either residual, namely
ă = a−\0’ = 0’/a−.

2 A Brief Chronology

As noted above De Morgan was the founder of the
calculus, writing a single paper on it in 1860 [DM60].
Though he did not develop an equational calculus he
nevertheless completely identified the essence of resid-
uation as we shall see later.

Peirce turned to the subject in 1870, writing sev-
eral papers and a good many unpublished manuscripts

1The custom now is to take it to be the maximal binary
relation among all those being combined with these operations,
i.e. the union of all such. This is necessarily an equivalence
relation on X2 but need not be the complete relation.

during the next twenty years [Pei33]. Peirce found
most of the interesting equational laws of relation al-
gebra.

The third volume of Schröder’s series of books on
algebraic logic, an 800-page tome [Sch95], was devoted
to the calculus. Schröder added to it the operations
of transitive closure, reflexive transitive closure, and
their De Morgan duals.

Bertrand Russell took up the subject in one of his
earliest papers [Rus00] with the explanation “the logic
of Peano is hardly complete without an explicit intro-
duction to relations. . . the definition of function is not
possible except through knowing a new primitive idea,
that of relation.” But while acknowledging the con-
tributions of Peirce and Schröder Russell viewed them
as “difficult and complicated to so great a degree as to
doubt their utility” and with the enthusiasm of youth
felt both obliged and qualified to begin the subject
anew.

The subject then fell into neglect, to be revived
forty years later by Tarski in 1941 [Tar41]. Tarski’s
school, firmly grounded in model theory, indeed per-
haps the leading source of model theoretic ideas of
its day, then proceeded to apply those ideas to gain
a deeper understanding of the calculus than the alge-
braic logicians of the 19th century could reasonably
have been expected to hope for.

The importance we attach today to the niceties of
typing, in particular that of domain and codomain of
functions and relations, were lost on all early students
of binary relations save Russell, who referred [Rus00]
to the domain of a relation R and notated it ρR. He
also notated the dual notion ρ̆R; although he did not
give it a name then, subsequently in Principia Mathe-
matica [RW35, p.247] it was named converse domain,
in close agreement with our modern terminology of
codomain. Russell and Whitehead also proposed the
term field to describe the domain when it was equal
to the codomain.

3 Composition as Conjunction

Relational composition or relative product has been
viewed as the relative analogue of logical or static con-
junction for a long time. Actually it is not even nec-
essary to keep the static conjunction: it is perfectly
reasonable to have composition (or concatenation) as
the only conjunction. This describes for example J.
Lambek’s 1958 calculus of sentence structure [Lam58],
which can be viewed equivalently as either a proof sys-
tem or (up to weak generative capacity as shown by



Gaifman around 1960) a context-free grammar, with
theoremhood corresponding to derivability. Kleene’s
1957 calculus of regular expressions can be similarly
viewed as a monotone logic in which composition or
concatenation is the only conjunction, a + b is dis-
junction, and star a∗ makes it a sort of “propositional
Datalog”.

But this view of composition/concatenation as a
form of conjunction predates even Peirce and would
appear to be due to De Morgan in 1860 [DM60].
The following footnote appears exactly one-third of
the way through De Morgan’s “On the Syllogism
IV” (p.221 in Heath’s anthology “On the Syllogism”
[Hea66]). Here De Morgan argues that, allowing for
the obvious differences, composition L;M of relations
L and M resembles conjunction XY of “terms” (pred-
icates) X and Y . Indeed he notates composition LM
the better to suggest conjunction—the L;M notation
which is now in almost universal use, and is in (for-
tuitous?) agreement with Algol 60 and dynamic logic
[Pra76], was introduced later by Peirce.

A mathematician may raise a moment’s
question as to whether L and M are properly
said to be compounded in the sense in which
X and Y are said to be compounded in the
term XY . In the phrase brother of parent,
are brother and parent compounded in the
same manner as white and ball in the term
white ball. I hold the affirmative, so far as
concerns the distinction between composition
and aggregation: not denying the essential
distinction between relation and attribute.
According to the conceptions by which man
and brute are aggregated in animal, while
animal and reason are compounded in man,
one primary feature of the distinction is that
an impossible component puts the compound
out of existence, an impossible aggregant
does not put the aggregate out of existence.
In this particular the compound relation ‘L
of M’ classes with the compound term ‘both
X and Y .’

(De Morgan uses “aggregation” and “compound-
ing” to mean respectively disjunction and conjunc-
tion.)

The last two sentences assert that just as the con-
junction X0 vanishes so does the composition L; 0,
whereas aggregating 0 to either X or L (with aggre-
gation defined as union in both cases) makes neither
vanish, i.e. X + 0 and L + 0 need not be 0.

Although De Morgan greatly admired Boole’s cal-
culus, he never became more proficient with it than

to appreciate the idea behind A ∨ B = A + B − AB.
If he had pursued it as far as Jevons and Peirce did
he might have noticed that his analogy in the above
quote was the zeroary case of the more general anal-
ogy that both conjunction and composition distribute
over union. Had he further known of the interdepen-
dence of distributivity and residuation he would have
taken this yet further to point out that his “Theorem
K” (which in more modern terminology asserts that
composition is residuated, i.e. is the partially invert-
ible multiplication of what one might call a semifield)
held also for conjunction, suitably phrased.

De Morgan then notes some differences, e.g.
whereas conjunction Xx of a term X with its “con-
trary” (Boolean complement) x is 0, composition L; l
of a relation L with its complement l need not be 0.

In place of a separate complement operation De
Morgan used the case of the letter to indicate its sign.
When negation can appear only at atoms we know
that every operation must have its De Morgan dual.

De Morgan certainly knew this but seems not to
have liked the De Morgan dual of composition, per-
haps for lack of a reasonable way of expressing it in
English. The English for L;M is “L of an M”, as
in “Alice is an enemy of a son of Bob”, that is, Al-
ice(enemy;son)Bob. The De Morgan dual of compo-
sition is Peirce’s “relative sum” L +

˘
M (Schröder’s

notation), the English for which is best put as “L
of all non-M” (“Alice is an enemy of all non-sons of
Bob”) or equally well as “non-L only of M” (“Alice
is a non-enemy only of sons of Bob”). This composes
one instance of negation with either of the more nat-
ural English constructs “L of all M” and “L only of
M”.

So what De Morgan supplied in lieu of an explicit
De Morgan dual of composition were these two con-
structs, which he notated as respectively LM ′ and
L′M . Note that LM ′ = l′m. Hence either one of
LM ′ and L′M can perform the function of a De Mor-
gan dual of composition. (There is an additional
fringe benefit of this notation. In “pushing comple-
ment through” the composition, the complement only
has to be pushed further down in one argument, and
moreover you can choose which argument by choosing
one of LM ′ and L′M .)

Given that only one such construct was needed,
one might ask why De Morgan defined both. Perhaps
for the aforementioned choice. His discussion however
suggests that he felt he was really only defining one
construct, the prime, which served to change the de-
fault existential quantifier on the input or output of
the primed relation into a universal quantifier when



it was in the superscript or subscript position respec-
tively. De Morgan did not however explain what M ′

meant on its own.

4 Residuation and Theorem K

At the beginning of his 1941 article on the calculus
Tarski renders the following judgement of De Morgan.

De Morgan cannot be regarded as the cre-
ator of the modern theory of relations, since
he did not possess an adequate apparatus for
treating the subject in which he was inter-
ested, and was apparently unable to create
such an apparatus. His investigations on re-
lations show a lack of clarity and rigor which
perhaps accounts for the neglect into which
they fell in the following years.

The chronology does not bear out this last asser-
tion. Peirce began his studies of the calculus only
a decade after De Morgan’s paper, with a warm ac-
knowledgement of De Morgan as the founder of the
subject, and proceeded to write vigorously about it
for more than a decade. Then Schröder took up the
refrain and wrote an entire book about the calculus
[Sch95], volume 3 in his series on algebraic logic. It
was only in the 20th century that the subject fell
asleep for forty years.

But a more direct vindication of the importance of
De Morgan’s first and only paper on the calculus is
in De Morgan’s observation of a certain facet of the
calculus that has attracted the attention of essentially
all contributors since, namely residuation. De Morgan
named the phenomenon “theorem K, in remembrance
of the office of that letter in [the syllogisms] Baroko
and Bokardo; it is the theorem on which the formation
of what I called opponent syllogisms is founded.” 2

Thanks to Ward and Dilworth, who coined the term
“residual” [WD39], we understand residuation today
as a form of division. In a field we have that ab = c
if and only if a = c/b, provided b 6= 0. With binary
relations we have a; b ≤ c if and only if a ≤ c/b if and
only if b ≤ a\c, without exception. Here c/b, the left
residual of c by b, is the relation consisting of all pairs
(x, y) such that for all z, (y, z) in b implies (x, z) in c.
Conversely a\c, the right residual of c by a, or a under
c, consists of all pairs (y, z) such that for all (x, y) in
a, (x, z) is in c.

2I am indebted to Roger Maddux for drawing Theorem K to
my attention.

By contraposition the above pair of equivalences
becomes:

a; b ≤ c ⇔ ă ; c− ≤ b− (1)
a; b ≤ c ⇔ c−; b̆ ≤ a− (2)

Thus prepared we are now in a good position to
follow De Morgan’s Theorem K, which reads verbatim
as follows (italics are my interpolations).

If a compound relation be contained in an-
other relation, by the nature of the relations
and not by causality of the predicate [that
is, independently of the interpretation of the
relations], the same may be said when either
component is converted, and the contrary of
the other component and of the compound
change places. That is if, be Z what it may,
every L of M of Z be an N of Z, say LM))N ,
then L−1n))m, and nM−1))l. [That was the
theorem, the rest is the proof.] If LM))N ,
then n))lM ′ and nM−1))lM ′M−1. But an l
of every M of an M−1 of Z must be an l of
Z: hence nM−1))l. Again, if LM))N , then
n))L′m, whence L−1n))L−1L′m. But an L
of an L of none but ms of Z must be an m
of Z; whence L−1n))m.

Writing ≤ for )), M− for m, and M˘ for M−1,
Theorem K becomes

L;M ≤ N ⇒ L ;̆N− ≤M− (3)
L;M ≤ N ⇒ N−;M˘≤ L− (4)

Theorem K can now be seen to assert one direction
of the residuation laws (1) and (2).

Was De Morgan aware of the converse direction?
In (1) replace a by its converse and b and c by their

negations and simplify using a−− = a and ă ˘ = a to
yield:

ă ; b− ≤ c− ⇒ a; c ≤ b (5)

But this is just the converse direction of (1) with
variables b and c interchanged.

So given the involutory nature of negation and con-
verse, of which De Morgan was well aware, the con-
verse of Theorem K amounts to just one of what turns
out to be a large number of changes that can be rung
by application of the laws of double negation, double
converse, and contraposition. De Morgan presumably



would only have given this particular permutation if
he wished to draw attention to the fact that both di-
rections held.

But it is of less interest whether De Morgan no-
ticed the converse than how much of the residuation
principle in the calculus is captured by Theorem K.
In conjunction with the involution laws, Theorem K
constitutes a complete characterization of residuation.

Peirce gives the following method of enumerating
the equivalent forms of a; b ≤ c in a manuscript ti-
tled On the Logic of Relatives, [Klo86, p.341]. There
are two contraposition principles that can be applied
independently, one for each of negation and converse,
yielding c− ≤ a−+

˘
b−, b̆ ; ă ≤ c̆ , and c̆ − ≤ b̆ −+

˘
ă ’.

Independently we may cyclically permute the variables
according to:

a; b ≤ c ⇔ c̆ −; a ≤ b̆ − (6)
(7)

We can derive this permutation from (1) by apply-
ing converse to the right hand side. The cyclic per-
mutation being of order three, Peirce obtains a total
of 12 equivalent inequalities.

5 Linear Negation

In 1882, in a Johns Hopkins circular Remarks on
[B.I. Gilman’s “On Propositions and the Syllogism”]
[Klo86, p.345], Peirce developed the notion of ă − as
a negation operator in its own right. Today we can
think of this negation as the “perp” or linear negation
operation a⊥ of linear logic, which I will use here.
Peirce noted the following properties.

a; b ≤ c ⇔ c⊥; a ≤ b⊥ ⇔ b; c⊥ ≤ a⊥ (8)
a ≤ b +

˘
c ⇔ c⊥ ≤ a⊥ +

˘
b ⇔ b⊥ ≤ c +

˘
a⊥ (9)

a ≤ b ⇔ a; b⊥ ≤ 0’ ⇔ b⊥; a ≤ 0’ (10)
a ≤ b ⇔ 1’ ≤ a⊥ +

˘
b ⇔ 1’ ≤ b +

˘
a⊥ (11)

a; a⊥ ≤ 0’ 1’ ≤ a +
˘

a⊥ (12)

These will all be familiar to students of linear logic.
Another Peirce law with a connection to linear logic

is from The Logic of Relatives [Klo86, p.456]. Peirce
says “Two formulae so constantly used that hardly
anything can be done without them are

a; (b +
˘

c) ≤ a; b +
˘

c

(a +
˘

b); c ≤ a +
˘

b; c

These correspond to half of the weak distributiv-
ity laws for linear logic studied by Cockett and Seely
[CS91].

6 Tarski’s School

In 1939 Tarski was visiting the US when Germany
invaded his native Poland, and he accordingly took
up permanent residence in the US, taking a position
at UC Berkeley in 1942 where he remained until his
death in 1983.

In 1941 Tarski revived the long-dormant calcu-
lus with a paper titled On the Calculus of Relations
[Tar41]. He adhered to the notation of Schröder, iden-
tified Peirce as the “creator of the theory of relations,”
listed a number of axioms for a general calculus, stated
without proof that the calculus was undecidable as a
corollary of Church’s result for the elementary two-
sorted theory of relations (relations and related indi-
viduals), and asked about the connection between his
axiomatized calculus and the theory of relations.

He also suggested simplifying his calculus by re-
stricting it to equations. This program was realized
in collaboration with his student Bjarni Jónsson and
the resulting list of axioms was announced in 1948 as
the defining the variety (equational class) RA of rela-
tion algebras [JT48]. The content of the RA axioms
may be succinctly summarized thus. A relation alge-
bra is a Boolean algebra with a monoid; the monoid is
residuated (on both sides) with respect to the Boolean
order (in the sense we have seen above); and there is
a converse operation ă permitting residuation to be
expressed as a\b = (ă ; b−)− and a/b = (a−; b̆ )−. A
stream of papers on RA appeared shortly thereafter
[Lyn50, CT51, JT52].

Tarski had asked whether RA completely axioma-
tized the equational theory of binary relations. In 1950
Lyndon gave a negative answer to the question; the
missing equations are complicated to describe, which
one might take as a sort of “pragmatic completeness
argument” for RA. Lyndon claimed as a corollary
that the class RRA of representable relation algebras,
those all of whose symbols save 1 had their standard
interpretation in terms of relations over an infinite set
X, could not be a variety. In 1955 Tarski contradicted
Lydon’s unfortunate corollary. In 1964 Donald Monk
showed that RRA had no finite axiomatization.

Tarski was very much a philosopher in his outlook,
and saw the calculus not only as a mathematical ob-
ject of independent interest but as an elegant language



within which to do set theory, in the process eliminat-
ing the need for variables. (This vision is familiar in
computer science with Schönfinkel’s combinatory logic
and Backus’ FPP programming language.) The case
and foundations for this vision are collected in Tarski
and Givant’s book A Formalization of Set Theory
without Variables, published in 1987.

7 Notation

The notation of the basic calculus stabilized to its
present ten symbols around 1950. Here is a blow by
blow account of its prior development.

De Morgan’s notation was different in all respects
from the modern one. He wrote LM for composi-
tion, and indicated negated variables in lower case and
converse as L−1. As we saw earlier he did not have
Peirce’s relative sum but had instead two “implica-
tions” LM ′ and L′M . He wrote ≤ as )) but had no
symbols for the logical connectives or for any of the
constants.

Peirce developed the modern selection of operations
and its notation, to within the following details. He
followed De Morgan in writing composition as ab, the
switch to a; b originating with Schröder. He initially
wrote the logical connectives with a comma—a+, b
and a, b—to indicate idempotence of each, but later
dropped the comma from a + b. Schröder dropped
the comma from a, b and the two logical connectives
thereafter settled down to a+b and ab, at least for the
calculus of relations if not elsewhere in logic. Russell
followed Peano in using a∪ b and a∩ b for logical sum
and product of relations [Rus00, RW35].

Peirce’s choice of logical constants 0,1 and relative
constants 0’, 1’ have been followed faithfully by all,
even Russell [Rus00]. (Note the distinction between
0’, 1’ and 0′, 1′; the latter is incorrect.)

Peirce wrote negation and complement as ā and ă
respectively, stacked as ˘̄a. Schröder followed this, but
while Russell was happy with R̆ he followed Peano
in writing the negation of relation R as −R [Rus00].
Tarski stuck at first to the Peirce-Schröder notation
but adopted the typographically more convenient no-
tation ă in [JT48]. In [JT52] this was extended to
negation as a− and ă − and has remained that way
ever since, the convenience of computerized typeset-
ting for setting ˘̄a notwithstanding.

Peirce had a variety of notations for operations sim-
ilar to relative sum, initially written with various ar-
rangements of superscripts and subscripts. In 1883
he chose a†b for relative sum, and in 1897 switched

to what he called a scorpion tail which resembled
Schröder’s a +

˘
b but with the hook much larger and

swung somewhat to the right to look like a screw-in
curtain hook.

The notations for transitive closure and reflexive
transitive closure have settled down to a+ and a∗ re-
spectively in computer science, which however has no
notation for their respective De Morgan duals a11 and
a1 in Schröder’s notation.

Peirce tried and failed in 1870 to invent residuation
as inverse to composition. By 1882 he had the right
machinery in the form of the properties of ă −, but
failed to notice that this provided the key to division.

Nevertheless in 1870 he did describe two quotients
a:b and a

b , intended to satisfy respectively

(a:b)b = a and b
a

b
= a.

These would have been left and right residual respec-
tively had he realized he should simply use inequality
in place of equality!

When Ward and Dilworth introduced residuation in
1939 [WD39] they adopted Peirce’s a:b notation. Since
their monoids were commutative they only needed one
residual. Birkhoff [Bir48] extended this notation to the
noncommutative case by distinguishing the two resid-
uals by slanting the colon appropriately. The earliest
use of the now popular a/b and a\b that I am aware
of is Lambek [Lam58]. I do not know who first wrote
residuals as implications. In mathematics the corre-
sponding notation for function spaces is of course ab,
which are typically associated with a symmetric tensor
product a⊗ b serving as a; b.

8 Recommended Reading

To conclude let me strongly recommend Peter
Heath’s introduction [Hea66] to his collection of De
Morgan’s half dozen papers all entitled On the Syllo-
gism.

I also recommend Peirce, whose eminently readable
writings are available in several editions. The most no-
table of these is a six-volume set entitled Collected Pa-
pers of Charles Sanders Peirce edited by Hartshorne
and Weiss and published by Harvard University Press
in the 1930’s. Peirce’s work on the calculus appears
in Volume III, Exact Logic.

More recently there have appeared several volumes
of Writings of Charles S. Peirce: A Chronological Edi-
tion published by Indiana University Press, organized
by date of publication (except for unpublished works



which appear in order of writing); this is promised
eventually to be a sixty-volume set!

Tarski’s revival paper [Tar41] is an enjoyable and
striking instance of a paper recognizing the exciting
possibilities in a long dead subject.
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