

 M T S

 The Michigan Terminal System

 Volume 16: ALGOL W in MTS

 September 1980

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 **

 * *

 * This obsoletes the August 1978 edition. *

 * *

 **

 1

 DISCLAIMER

 The MTS Manual is intended to represent the current state of the

 Michigan Terminal System (MTS), but because the system is constantly

 being developed, extended, and refined, sections of this volume will

 become obsolete. The user should refer to the Computing Center _________ ______

 Newsletter, Computing Center Memos, and future Updates to this volume __________

 for the latest information about changes to MTS.

 Copyright 1980 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each repro-

 duction is done without alteration and (2) the volume reference and date

 of publication are included. Permission to republish any portions of

 this manual should be obtained in writing from the Director of the

 University of Michigan Computing Center.

 2

 MTS 16: ALGOL W in MTS

 September 1980

 PREFACE _______

 The software developed by the Computing Center staff for the

 operation of the high-speed processor computer can be described as a

 multiprogramming supervisor that handles a number of resident, reentrant

 programs. Among them is a large subsystem, called MTS (Michigan

 Terminal System), for command interpretation, execution control, file

 management, and accounting maintenance. Most users interact with the

 computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the

 facilities provided by the Michigan Terminal System. Administrative

 policies of the Computing Center and the physical facilities provided

 are described in a separate publication entitled Introduction to the _____________________

 Computing Center. ________________

 The MTS volumes now in print are listed below. The date indicates

 the most recent edition of each volume; however, since volumes are

 updated by means of CCMemos, users should check the Memo List, copy the

 files *CCMEMOS or *CCPUBLICATIONS, or watch for announcements in the

 Computing Center Newsletter, to ensure that their MTS volumes are fully ____________________________

 up to date.

 Volume 1: The Michigan Terminal System, December 1979 ____________________________

 Volume 2: Public File Descriptions, December 1978 ________________________

 Volume 3: System Subroutine Descriptions, October 1976 ______________________________

 Volume 4: Terminals and Tapes, August 1974 ___________________

 Volume 5: System Services, April 1980 _______________

 Volume 6: FORTRAN in MTS, December 1978 ______________

 Volume 7: PL/I in MTS, July 1977 ___________

 Volume 8: LISP and SLIP in MTS, June 1976 ____________________

 Volume 9: SNOBOL4 in MTS, September 1975 ______________

 Volume 10: BASIC in MTS, September 1974 ____________

 Volume 11: Plot Description System, August 1978 _______________________

 Volume 12: PIL/2 in MTS, December 1974 ____________

 Volume 14: 360/370 Assemblers in MTS, August 1978 _________________________

 Volume 15: FORMAT and TEXT360, April 1977 __________________

 Volume 16: ALGOL W in MTS, September 1980 ______________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their

 appearance; however, in general, the higher the number, the more

 specialized the volume. Volume 1, for example, introduces the user to

 MTS and describes in general the MTS operating system, while Volume 10

 deals exclusively with BASIC.

 3

 MTS 16: ALGOL W in MTS

 September 1980

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain

 amount of repetition. Public file descriptions, for example, may appear

 in more than one volume. However, this arrangement permits the user to

 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury

 General Editor

 4

 MTS 16: ALGOL W in MTS

 September 1980

 PREFACE TO VOLUME 16 ____________________

 Algol W is a general-purpose programming language which is a

 development of Algol 60. The main differences concern:

 Character handling

 Complex arithmetic

 A more convenient ’while’ construct

 A simpler ’for’ loop

 The ’case’ construct

 Data structures (using ’record’ and ’reference’)

 Note that Algol W is not a superset of Algol 60; Algol 60 programs

 cannot be compiled and run in Algol W without considerable editing.

 This manual describes the Algol W language, the Algol W compiler, and

 aspects of MTS relevant to the use of the Algol W compiler. It is

 intended for use as a reference manual. It is not meant for teaching

 programming concepts. The text does not assume a great deal of

 programming experience, and thus is appropriate for even the beginner.

 Blanche Grosswald wrote the major portion of this volume. She is

 grateful to members of the University of Michigan Computing Center staff

 and to people in the department of Computer and Communication Sciences

 at the University of Michigan, who read drafts of this volume, offered

 suggestions and examples, and pointed out ways to clarify many topics.

 Alan Hunter revised the text in the light of developments to Algol W

 at the University of Newcastle upon Tyne. This has added sections on

 the input/output system, external subroutine linkages, other new prede-

 clared procedures, and new features provided by the compiler. The main

 text describing the Algol W language has been modified only very

 slightly. NUMAC wishes to thank the University of Michigan for the use

 of their MTS Volume 16 text, and the University of Alberta for use of

 other material.

 The system changes for this version of Algol W were designed and

 coded by Alan Hunter, Margaret Hindmarsh (of Newcastle University

 Computing Laboratory), and James Bodwin (of the University of Michigan

 Computing Center).

 Thanks are due to members of staff of several MTS installations, in

 particular James Eve, Peter King and John Lloyd (of Newcastle); George

 Helffrich (of Michigan); Kathryn Ward, Tony Marsland and Antoine

 Verheijen (of the University of Alberta). Without their help, advice,

 and encouragement, enhancements to the Algol W system would not have

 been possible.

 5

 MTS 16: ALGOL W in MTS

 September 1980

 6

 MTS 16: ALGOL W in MTS

 September 1980

 Contents ________

 Preface 3 Reference 39

 Preface to Volume 16 5 Arithmetic Expressions and

 Assignment Statements 41

 Introduction to Algol W 13 Expressions 41

 Terminology 13 Assignment Statements 44

 Notation for Describing Multiple Assignment

 the Algol W Language . . . 13 Statements 45

 Basic Symbols in Algol W . 13 Precedence 45

 Format 13 Tables of Resulting Types . 46

 Presentation of Examples Assignment Compatibility . 48

 in this Manual 14 Predeclared Functions 50

 Block Structure 15 Real to Integer

 Order 16 Conversion Functions . . . 51

 Scope 16 Floating Point Conversion

 Simple Input and Output . . . 17 Functions 51

 Output of Real Numbers . . 19 Roots and Powers Functions 52

 Comments 20 Trigonometric Functions . . 52

 Example Programs 21 Inverse Trigonometric

 Example Program 1 21 Functions 53

 Example Program 2 21 Hyperbolic Functions . . . 53

 Example Program 3 22 Special Functions 54

 Complex Functions 54

 Identifiers 25 Predeclared Function

 Examples 55

 Values and Types 27 Predeclared Function

 Simple Types 27 Domains of Definition . . . 56

 Integer 27

 Real 28 Constants, Variables,

 Long Real 30 Expressions and Values 57

 Complex 31 Constants 57

 Long Complex 32 Arithmetic 57

 Logical 32 Logical, Bits and String . 58

 Bits 32 Reference 58

 String 33 Variables 58

 Reference 34 Expressions 59

 Structured Types 34 Arithmetic Expressions . . 59

 Array 34 Logical Expressions 59

 Record 35 String Expressions 60

 Output of Values 36 Bits Expressions 60

 Reference Expressions . . . 60

 Simple Variable Declarations . 37 Functions 60

 Integer, Real, Long Real, Conditional Expressions . . 60

 Complex, Long Complex and If Expression 60

 Logical 37 Type of Resulting If

 Bits 38 Expression 61

 String 38 Assignment Compatibility . 62

 7

 MTS 16: ALGOL W in MTS

 September 1980

 Case Expressions 63 Declarations 107

 Block Expressions 65 Function Procedures

 without Formal Parameters .108

 Arrays 67 Function Procedures with

 Array Declarations 67 Formal Parameters109

 Integer, Real, Long Real, Parameter Passing

 Complex, Long Complex and Conventions110

 Logical Array Declarations 67 Call by Name 110

 String Array Declarations . 68 Call by Value111

 Bits Array Declarations . . 69 Call by Result 113

 Reference Array Call by Value Result . . .114

 Declarations 69 Recursive Procedures 118

 Subscripts 70 Externally Defined

 Dynamic Allocation 71 Procedures 120

 Array Assignments 71

 Sample Programs 72 Statements 121

 Array Sample Program One . 72 Simple Statements121

 Array Sample Program Two . 73 Blocks 121

 Assignment Statements . . .124

 Logicals 77 Assignment Compatibility .125

 Declarations 77 Procedure Statements . . .125

 Relations 77 Goto Statements and Labels 125

 Logical Expressions 80 Predeclared Procedure

 Precedence 82 Statements 128

 Logical Assignment Assert Statements128

 Statements 82 Empty Statements 129

 Predeclared Functions 84 Iterative Statements 130

 While Statements 131

 Strings 85 For Statements 132

 String Declarations 85 Conditional Statements . . .136

 String Expressions 85 If Statements136

 String Comparisons 87 Case Statements139

 String Assignment Statements 88

 Predeclared Functions 90 Records and References 141

 Record Class Declarations . .141

 Bits 93 References 142

 Bits Declarations 93 Creating Records 142

 Constants 93 Accessing Fields and Field

 Simple Bits Expressions . . . 93 Assignment Statements145

 Bits Expressions 94 Reference Assignment

 Precedence 95 Statements 146

 Bits Assignment Statements . 96 Reference Arrays 147

 Predeclared Functions 97 Linked Lists 148

 Insertions of Records at

 Procedures 99 the Beginning of a List . .148

 Proper Procedures 99 Insertions of Records at

 Declarations 100 the End of a List150

 Proper Procedures without Inserting Records in

 Formal Parameters100 Sequential Order into an

 Proper Procedures with Ordered List and Deleting

 Formal Parameters102 Records from a List152

 Partial Arrays 106 Multiple Record Class

 Function Procedures107 Declarations 163

 8

 MTS 16: ALGOL W in MTS

 September 1980

 Dynamic Control of

 Basic Input and Output 167 Input/Output Streams 203

 Input Data 167 Assign 203

 Integer168 Release204

 Real and Long Real 168 Input/Output Stream

 Complex and Long Complex .169 Predeclared Utility

 Logical171 Procedures 205

 Strings171 Rewind 205

 Bits 173 Empty206

 Reference173 Flush206

 Input Statements 174 Protect207

 Read and Readon174 Qualify208

 Readcard 176 Control210

 Output Statements177 Sense211

 Write and Writeon177 Sense, FDUB-Pointers, and

 Complex Expressions178 MTS File Locking 214

 String Expressions 179

 Writecard180 Stream Directed Input and

 Format Specifications and Output 217

 Assignment Statements180 Input and Output of

 Format Variables 180 Complete Records 217

 Fixed Decimal Point Format 182 Getcard218

 Explicit Exponent Format .183 Putcard219

 General (Default) Format .184 Indexed Input and Output . .219

 Simple Variable Types and Xgetcard 220

 Output Formats 185 Xputcard 221

 Format Assignment Xdelete222

 Statements 187 Returned Line Numbers . . .223

 Iocontrol188 Input and Output of

 Control of Basic Input Individual Items 224

 and Output 190 Get and Geton224

 Newline193 Put and Puton225

 Carriage Control Character Internal Input and Output

 Generation 195 Conversion 227

 Sample Input Output Program .196 Getstring227

 Putstring229

 Multiple Input and Output

 Streams199 Format Directed Input and

 Input/Output Streams and Output 231

 Stream Designators 199 Introduction to Format

 Predefined Named Strings231

 Input/Output Streams . . .200 Format Strings 232

 Predefined Numbered Format Codes 233

 Streams200 Constructing Format

 User Defined Streams . . .201 Strings233

 Basic Input and Output Interpretation of Format

 Streams201 Strings234

 Input and Output to a Format Directed Input234

 Designated Stream201 "/" Format 235

 Changing the Basic Input Literal String Format . . .235

 Stream - Reader202 "A" Format 235

 Changing the Basic Output "B" Format 236

 Stream - Writer202 "D", "E", and "F" Formats .237

 9

 MTS 16: ALGOL W in MTS

 September 1980

 "H" Format 238 A Working Example using

 "I" and "J" Formats238 Call 273

 "L" Format 239 Rcall275

 "T" Format 240 The FORTRAN External

 "X" Format 240 Reference276

 "Z" Format 241 Parameter Type

 Format Directed Output . . .242 Correspondence for External

 "/" Format 242 Subroutines277

 Literal String Format . . .242

 "A" Format 243 Miscellaneous Topics 281

 "B" Format 243 Predeclared State Variables .281

 "D" and "E" Formats244 Clock Functions283

 "F" Format 245 Time 283

 "H" Format 246 Date 285

 "I" Format 247 Exceptional Conditions . . .286

 "J" Format 247 Exception - Field Values .288

 "L" Format 248 Special Conditions and

 "T" Format 249 Adjustment Table 289

 "X" Format 250 Table of Results for

 "Z" Format 250 Exceptional Conditions . .290

 "R" - The Data Driven Predeclared Function

 Replication Factor 252 Errors and Default Values .291

 Sample Program Using Format Additional Iocontrol Options 295

 Directed Output253 Timing Information 295

 External and Library

 External Linkages257 Interruptions297

 Calling Algol W Procedures .257 Control of Getstring

 Coding External Algol W Action 298

 Procedures 257 Modification of the

 Calling Precompiled String Recognition

 Procedures from Algol W . .258 Algorithm300

 Calling Precompiled A Simple Command Scanner .302

 Procedures from Outside Obtaining Lengths for

 Algol W259 String Input 306

 Explicitly Initializing Stopping an Executing

 the Algol W Environment . .260 Program307

 Deallocating the Algol W Trapping Attention

 Environment262 Interrupt Conditions 308

 Link - Procedure Call Extended Storage Access . . .309

 Back from an External External 310

 Subroutine 263 Halfword and Fullword . . .311

 Calling FORTRAN, Assembler, Locate 312

 and Related Subroutines . . .265 Move 314

 Call 266 Fetch316

 Literal Parameters using Store317

 Call 267 Translate318

 Arrays as Parameters Predeclared Translate

 using Call 269 Tables - Lowercase and

 Subroutine Return Codes Uppercase320

 using Call 271

 Obtaining Function Values Algol W Programmer’s Guide . .321

 using Call 272 System Design Philosophy . .321

 Algol W in MTS 321

 10

 MTS 16: ALGOL W in MTS

 September 1980

 Input/Output Stream Names .321 Compiler Diagnostic Output 372

 *ALGOLW322 Identifier Cross

 Basic Use of the System . . .322 Reference Listing373

 The Compile, Load, and Go Object Deck Output 374

 Default323 Run-Time Diagnostics . . .375

 Compile, Load, and Go System Return Codes377

 using Control Records . . .324

 Producing an Object Deck .326 Appendix A: An Algol W

 Running Object Decks . . .327 Bibliography 379

 Basic Compiler Parameters .328

 Building a Precompiled Appendix B: Character

 Procedure Library329 Encodings381

 Control of the System331

 System States332 Appendix C: Error Messages . .383

 Compiler Source Listing

 Control333 Appendix D: Basic Symbols . . .417

 Including Source or Data

 from Other Files 333 Appendix E: Predeclared

 System Control Records . . .334 Procedures 423

 Compiler Parameters344

 Selecting Object Deck or Appendix F: Predeclared

 Compile, Load, and Go Mode 344 Functions431

 Source Listing Control . .345

 Compiler Control 349 Appendix G: Predeclared

 Control of Program Loading 351 Variables441

 Object Program Attributes .352

 Execution Resource Control 354 Appendix H: User Oriented

 Run-Time Checking and Algol W Syntax 449

 Diagnostics356

 Miscellaneous Parameters .358 Appendix I: Complete Algol W

 Run-Time Parameters359 syntax 455

 The Algol W Compiler System .365

 Symbol Representation . . .366 Appendix J: Internal

 Predeclared Identifiers . .366 Representation of Numerical

 Restrictions 367 Data 469

 Input Format 368

 System Output369 Appendix K: Subroutine

 Source Program Listing . .370 Calling Conventions481

 Index493

 11

 MTS 16: ALGOL W in MTS

 September 1980

 12

 MTS 16: ALGOL W in MTS

 September 1980

 INTRODUCTION TO ALGOL W _______________________

 TERMINOLOGY ___________

 Notation for Describing the Algol W Language __

 The symbols < > are used throughout this manual to enclose generic

 terms to be replaced by an item supplied by the user.

 Basic Symbols in Algol W ________________________

 Algol W programs are written using the following basic character set:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

 0 1 2 3 4 5 6 7 8 9

 + - * / = : ; . , # " ’ | ¬ () < > % _

 Certain groups of letters form ’reserved words’. Examples of these are

 ’begin’ and ’end’, introduced later in this chapter. Reserved words

 cannot be used as identifiers (see the section "Identifiers") in an

 Algol W program. A list of reserved words is in Appendix D.

 Note that in reserved words and identifiers, described later, lower

 case letters are treated as if they were the equivalent upper case

 letter.

 The symbol <empty>, where <empty> is no physical symbol, is also

 considered an element of the Algol W set of symbols.

 Format ______

 Reserved words, identifiers, and constants (see the section "Con-

 stants, Variables, Expressions, and Values") must not include blanks and

 must be separated from each other by at least one blank or special

 character (other than underscore) when appropriate. Otherwise, blanks

 have no meaning and can be used freely throughout an Algol W program.

 Introduction to Algol W 13

 MTS 16: ALGOL W in MTS

 September 1980

 For example, blanks are not required to separate any of the special

 characters from an identifier, a number, or each other.

 Lines composing Algol W programs can be punched or typed anywhere in

 the first 255 columns. It is not necessary to begin a line in a given

 column. Reserved words, identifiers, and constants may not cross a line

 boundary. Data items may be placed anywhere in the first 256 columns.

 In simple input, no data item may cross a line boundary.

 Presentation of Examples in this Manual _______________________________________

 Algol W programs may be entered in any mixture of upper and lower

 case text, because the implementation is case independent. To aid

 readability within this manual, examples of Algol W program text are

 formatted in the manner which the compiler would list them if the

 compiler parameters TRIDENTIFIER=MIXEDCASE, TRRESERVED=LOWERCASE and

 INDENT were specified (see the section "Algol W Programmer’s Guide").

 This implies:

 (1) Reserved words are presented in lowercase text. For example:

 array

 begin

 reference

 (2) Identifiers are also presented in lower case text, but with the

 first letter and any letter immediately following an underscore

 character capitalised. For example:

 I

 Score

 Number_Of_Elements

 (3) The indenting of source text in the examples is that which the

 compiler would produce if the indent option were specified and

 if the text were not indented in the source input. The

 exceptions to this rule are in some comments and statement

 continuations where extra indentation has been used for clarity.

 For example:

 begin

 integer Score, Item;

 Read(Score, Item)

 end.

 There is, therefore, no need to input program source text in mixed case;

 uppercase only punched cards and mixed case file lines are equally _______

 acceptable to the compiler.

 14 Introduction to Algol W

 MTS 16: ALGOL W in MTS

 September 1980

 Within the text of this reference manual, reserved words are usually

 presented in lower case enclosed in primes (’). For example:

 ...’if’ and ’case’ are reserved words ...

 It should be clearly understood that this notation is to avoid ambiguity

 in the English of the manual text; reserved words are never enclosed in _____

 primes within source programs. Identifiers are distinguished in the

 manual text by the capitalization of the first character of the name.

 BLOCK STRUCTURE _______________

 Almost all Algol W programs have the form:

 <statement>.

 where:

 <statement> can be any legal Algol W statement (see the section

 "Statements," for other program forms and for the definition of

 <statement>), but usually is a block; and

 the period (.) is part of the program.

 A block starts with the reserved word ’begin’ and ends with the

 reserved word ’end’. In between, it contains two types of information:

 (1) declarations which describe variables used within the block, and

 (2) statements which describe the action of the block.

 The format of a program block is:

 begin

 <declarations>

 <statements>

 end.

 Declarations specify the types of given variables (see the section

 "Values and Types") and statements perform actions on the variables.

 Each declaration and statement must be separated from the following

 declaration or statement by a semicolon (;). The semicolon is used to

 separate Algol W declarations and statements, not to terminate them.

 Since ’begin’ and ’end’ are examples of Algol W punctuation, and are not

 statements or declarations, there is no semicolon preceding the ’end’ or

 following the ’begin’ of a block.

 There are many different statements in Algol W. An example of a

 simple statement is the <assignment-statement>, which is employed to

 store a value in a declared variable. The assignment operator := is

 used.

 Introduction to Algol W 15

 MTS 16: ALGOL W in MTS

 September 1980

 An example Algol W program:

 begin

 integer A, B, C, D;

 A := 5;

 B := -6;

 C := A + B;

 D := A - B

 end.

 The program above declares the variables A, B, C, and D to be integers,

 that is whole numbers, and assigns values to them.

 Order _____

 The <declarations> part of the block is optional. A block need not

 have declarations. However, all blocks must contain at least one

 statement.

 The ordering within a block is significant. All declarations must

 occur before any statements. It is not legal to declare a new variable

 in the middle of a block. It is legal, however, to begin a new block

 anywhere in an Algol W program where a statement may appear. Blocks can

 be nested within other blocks.

 Example:

 begin

 integer A, B;

 A := 5;

 B := 6;

 begin

 integer C, D;

 C := A + B;

 D := C * A

 end

 end.

 Scope _____

 Scope refers to the range of blocks over which a variable has

 meaning. A variable is only meaningful within the block in which it has

 been declared or defined. For example, in the program above, A and B

 are accessible anywhere in the program, while C and D can only be

 referenced in the inner block. For a more detailed explanation of

 scope, see "Blocks" in the section "Statements."

 16 Introduction to Algol W

 MTS 16: ALGOL W in MTS

 September 1980

 SIMPLE INPUT AND OUTPUT _______________________

 Algol W provides several statements which allow input to be specified

 on data cards or in a data file.

 Read(A)

 stores the value given on a data card or in a data file, into the

 storage location designated A. Data constants can be signed constants,

 that is there may be a plus (+) or minus (-) sign preceding a number

 used as data for an Algol W program, to indicate a positive or negative

 value, respectively. The statement:

 Read(A, B, C)

 reads the first three values on a card or cards, and stores them in the

 corresponding locations specified in the Read statement. All 80 columns

 of a data punched card are read; from a file the first 256 characters of

 each line are read. Any characters appearing past column 256 are

 ignored. No data item may cross a line or card boundary. If there are

 only one or two values on the first data line, the next line is read,

 and so on until three values have been encountered. Each Read statement

 begins reading at column 1 of the next data line.

 begin

 integer A, B, C;

 Read(A);

 Read(B);

 Read(C)

 end.

 The program above reads A from the first card, B from the second, and C

 from the third. If the data cards are as follows:

 5 6

 7

 8

 A will have the value 5, B the value 7, and C the value 8. The 6 on the

 first data card is ignored.

 If it is desirable to continue reading from the same card, the Readon

 statement can be used. The sequence:

 Read(A);

 Readon(B, C)

 reads a value from the first card, stores it in A, and then continues

 reading values for B and C from the same card. If there are not enough

 values on the current card to match the number of variables specified in

 the Readon statement, reading continues to subsequent cards until all

 necessary values have been read.

 Introduction to Algol W 17

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 begin

 integer A, B, C, D;

 Read(A);

 Readon(B, C);

 Readon(D)

 end.

 If the data cards read:

 5 -6

 7 8

 A will have the value 5, B the value -6, C the value 7, and D the value

 8.

 Note that column 1 of a data line is considered to be separated from

 column 256 of the previous line by a space.

 Example:

 begin

 integer A, B, C;

 Read(A, B, C);

 end.

 If the data lines read:

 col. 1 col. 256

 | |

 1

 2 3

 4

 A will have the value 1, B the value 2, and C the value 3.

 Algol W also provides two output statements: Write and Writeon.

 Write(X)

 prints the value of X. If more than one value is to be printed on one

 line, one can say:

 Write(X, Y, Z)

 If too many variables are specified for the values to fit on one line,

 printing continues on the next line. Each Write statement begins

 printing on the next line. The sequence:

 Write(X, Y);

 Write(Z)

 18 Introduction to Algol W

 MTS 16: ALGOL W in MTS

 September 1980

 causes the values of X and Y to be printed on one line, and the value of

 Z to be printed on the next. If it is desirable to continue writing on

 the same line which the previous output statement used, the Writeon

 statement can be employed:

 Write(X, Y);

 Writeon(Z, W)

 prints all four values of X, Y, Z, and W on the same line.

 Output statements are not confined to specifying variables. It is

 also possible to print a given string of characters by enclosing it in

 quotation marks (that is double quotes). For example:

 Write(X, " is the value of X")

 prints the value of X followed by the words enclosed in quotation marks,

 on the same line.

 Output of Real Numbers ______________________

 Unless the user specifies otherwise (see "Format Variables" in the

 section "Basic Input and Output") real numbers (reals) are printed out

 with a total of seven digits and a decimal point.

 Example:

 begin

 real A, B;

 Read(A, B);

 Write(A, B)

 end.

 If the data are:

 3.5 72.8

 the output is:

 3.500000 72.80000

 When the absolute value of a real number requires more than seven

 digits, Algol W makes use of a representation similar to scientific

 notation.

 Introduction to Algol W 19

 MTS 16: ALGOL W in MTS

 September 1980

 Examples:

 53826942.8

 is represented as:

 5.382694’+7

 where ’ (prime) is the Algol W equivalent of "times 10 to the power" in

 scientific notation.

 0.030042183

 is represented as:

 3.004218’-2

 See "Real" in the section "Values and Types," for more details.

 COMMENTS ________

 The reserved word ’comment’ followed by any sequence of characters,

 followed by a semicolon (;) is called a comment. A comment has no

 effect on the running of an Algol W program and is used only to improve

 readability of programs by including the user’s explanations. Any

 EBCDIC character (see Appendix B) other than semicolon, including

 lowercase letters and others not listed in the section "Basic Symbols in

 Algol W," may be used in comments. This type of comment can be placed

 anywhere in an Algol W program that a blank would be allowed, except

 within a quoted string. If the terminating semicolon is omitted the

 following program text may be taken as part of the comment giving rise

 to strange errors.

 A single identifier (see the section "Identifiers") inserted between

 the reserved word ’end’ and either a reserved word, a semicolon (;), or

 a period (.), is also interpreted as a comment.

 Comments may be written in a brief form by using the percent sign, %,

 to indicate both the start and the end of a comment. Comments which

 start with per cent may also be ended with a semicolon.

 The following are all examples of comments:

 comment Program to calculate means;

 % Add one to running total %

 % Check validity ;

 All programs should be documented with comments as an aid to others

 who may wish to use and understand the program and as an aid to

 remembering its function.

 20 Introduction to Algol W

 MTS 16: ALGOL W in MTS

 September 1980

 EXAMPLE PROGRAMS ________________

 Example Program 1 _________________

 begin

 real A, B, C, D, E;

 Read(A, B, C);

 Readon(D, E);

 Write("Example program 1");

 Write(A, B);

 Write(C);

 Writeon(D, E)

 end.

 If the data are as follows:

 4.2 6.3 5.7 8.5

 9.5

 the output is:

 Example program 1

 4.200000 6.300000

 5.700000 8.500000 9.500000

 Example Program 2 _________________

 comment

 This program reads in a sequence of real Score’s, prints

 them, calculates the mean value of the Score’s, and

 prints the mean value out ;

 begin

 integer Num;

 real Total;

 Write("Example program 2 to calculate mean");

 comment Skip line by writing a blank,

 to make output more readable;

 Write(" ");

 Write(" ");

 Total := 0;

 comment Read in total number of Score’s;

 Read(Num);

 Introduction to Algol W 21

 MTS 16: ALGOL W in MTS

 September 1980

 comment Perform each statement in inner block Num times;

 for I := 1 until Num do

 begin

 real Score;

 Readon(Score);

 Writeon(Score);

 Total := Total + Score

 end;

 Write(" ");

 Write("Mean score = ", Total/Num)

 end.

 If the data are as follows:

 5 85.3 91.2 46.5 56.8 99.5

 the output is:

 Example program 2 to calculate mean

 85.30000 91.20000 46.50000 56.80000 99.50000

 Mean score = 75.85995

 Example Program 3 _________________

 The following program is meant to give the reader an idea of the

 basic structure of an Algol W program. The beginning programmer should

 probably postpone going through it until the concepts of arrays and

 procedures (subprograms) are understood.

 comment

 This program prints a title, reads a sequence of real

 numbers into an array Score, and prints the values of

 the numbers. It then calls the procedure Mean to

 determine the mean value. Finally, it prints the value

 of the mean score ;

 begin

 integer Num;

 Read(Num);

 Write("Example program 3 to calculate mean");

 Write(" ");

 Write(" ");

 comment

 Start new block to declare array with Num elements.

 Cannot declare array in current block since

 declarations must precede all statements, and cannot

 specify array bounds before finding value of Num. ;

 22 Introduction to Algol W

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 real array Score(1::Num);

 comment

 Declare function procedure Mean to calculate the

 mean. The procedure reads the array and the size

 of the array. It adds the values of the array

 Grade into the local variable Total. The final

 expression Total/N is the value of the Mean.

 Note that all declarations, including procedure

 declarations, come before statements in an Algol W

 program. ;

 real procedure Mean(real array Grade(*);

 integer value N);

 begin

 real Total;

 Total := 0;

 for I := 1 until N do

 Total := Total + Grade(I);

 Total/N

 end Mean;

 comment Now begin the program’s statements.

 Read the Score values

 into an array and print them;

 for I := 1 until Num do

 begin

 Readon(Score(I));

 Writeon(Score(I))

 end For_Loop;

 comment Print a blank line to improve readability;

 Write(" ");

 comment Invoke function procedure Mean

 and output result;

 Write("Mean score = ", Mean(Score,Num))

 end Inner_Block

 end Outer_Block.

 If the data are as follows:

 5 85.3 91.2 46.5 56.8 99.5

 the output is:

 Example program 3 to calculate mean

 85.30000 91.20000 46.50000 56.80000 99.50000

 Mean score = 75.85995

 Introduction to Algol W 23

 MTS 16: ALGOL W in MTS

 September 1980

 Note that the following words are interpreted as comments: "Mean"

 following the ’end’, indicating the end of the procedure declaration

 Mean, "For_Loop", indicating the end of the ’for’ loop, and "Inner_B-

 lock" and "Outer_Block", signifying the end of the inner and outer

 blocks, respectively (see the section "Comments").

 24 Introduction to Algol W

 MTS 16: ALGOL W in MTS

 September 1980

 IDENTIFIERS ___________

 An identifier consists of a letter followed by zero to 254 letters,

 digits, and the underscore symbol (_). Thus, an identifier is between 1

 and 255 characters long.

 A letter is any one of the following characters:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

 A digit is any one of these characters:

 0 1 2 3 4 5 6 7 8 9

 Identifiers are names. They represent variables, arrays, procedures,

 record classes, record fields, labels, formal parameters and actual

 parameters (see the section "Values and Types"). Identifiers have no

 inherent meaning and can be chosen from the character set defined above.

 However, a reserved word cannot be used as an identifier. See Appendix

 D for a list of reserved words. Lower case letters are treated as their

 upper case equivalents when using identifiers.

 Examples of legal identifiers:

 B

 B13a

 Person

 New_Page

 Examples of illegal identifiers:

 25 begins with a digit

 What! ! not part of legal set of characters

 2a begins with a digit

 _X begins with an underscore

 Phone# # not part of legal set of characters

 New.page . not part of legal set of characters

 result ’result’ is a reserved word

 Total/Count / not part of legal set of characters

 Birth Date blank cannot be used within identifiers

 Every identifier used in a program must be defined. This is done in

 any one of the following ways:

 (1) a declaration of a variable (see the section "Simple Variable

 Declarations") if the purpose of the identifier is to refer to a

 specific storage location,

 Identifiers 25

 MTS 16: ALGOL W in MTS

 September 1980

 (2) a declaration of a procedure (see the section "Procedures"),

 (3) a label definition (see "Goto Statements and Labels" in the

 section "Statements") (the use of labels and goto statements, is

 strongly discouraged),

 (4) its occurrence in a formal parameter list (see "Proper Proce-

 dures With Formal Parameters" and "Function Procedures With

 Formal Parameters" in the section "Procedures"),

 (5) its occurrence following the reserved word ’for’ in a ’for’

 loop, in which case it is known as a control identifier (see

 "Iterative Statements" in the section "Statements"), or

 (6) its implicit declaration if it is a predeclared variable,

 procedure, or function (see Appendix E, Appendix F and Appendix

 G).

 Examples:

 (1) integer Test_Score

 An integer storage location is set aside for the simple variable

 Test_Score.

 (2) L: B := A + B;

 .

 .

 goto L;

 The label L is defined by its usage.

 (3) procedure Sort(real array Test(*); integer value Number);

 The variables Test and Number are defined by virtue of appearing

 in the formal parameter list of the Sort procedure declaration.

 (4) for I := 1 until N do ...

 I is the control identifier.

 (5) Sqrt(Y)

 The predeclared function Sqrt computes the square root of a real

 number.

 The recognition of the scope of a given identifier is determined by

 specific rules. See "Blocks," "Goto Statements and Labels," and

 "Iterative Statements" (’for’ loops in particular) in the section

 "Statements" for explanations of scope rules.

 26 Identifiers

 MTS 16: ALGOL W in MTS

 September 1980

 VALUES AND TYPES ________________

 An important distinction must be made between the concepts of type

 and value in Algol W. Every storage location used by a programmer is

 known as a variable. Every such storage location is of a certain type

 and possesses a value of that type. The type has to be declared (see

 the section "Simple Variable Declarations") and any value assigned to

 the location either has to match in type or else is converted to that

 type. (See "Assignment Compatibility" in the section "Arithmetic

 Expressions and Assignment Statements" and under "Assignment Statements"

 in the section "Statements".) The value of a constant is determined by

 the way the constant is written. The value of a variable is the one

 most recently assigned to it. Algol W’s types of variables are divided

 into two classes: simple and structured.

 SIMPLE TYPES ____________

 Integer _______

 Integer values include zero and positive and negative numbers which

 do not contain a fractional part. They are expressed by an optional

 plus or minus sign followed by a sequence of digits, where digits are

 the following set of characters:

 0 1 2 3 4 5 6 7 8 9

 If no sign is given, the value is assumed to be positive.

 Examples of integer values:

 2

 -356

 0

 +43

 023

 Note: Although integer values can be positive or negative, integer

 constants are unsigned when they occur within a program. The examples

 of signed integers above imply the evaluation of expressions (see the

 section "Constants, Variables, Expressions and Values").

 Integers are stored as fullwords (in 32 bits). For a full descrip-

 tion of their representation see Appendix J. The largest positive

 integer that can be stored is:

 Values and Types 27

 MTS 16: ALGOL W in MTS

 September 1980

 2³¹ - 1 = 2147483647

 The smallest integer that can be stored is:

 -2³¹ = -2147483648

 The important thing to remember when using integers in Algol W is

 that integers are stored exactly, without any approximation. This

 contrasts with the storage of reals (see below) which is often only a

 close approximation to the actual values. As long as the value of an

 integer stays within the range:

 -2³¹ ≤ <integer-value> ≤ 2³¹ - 1

 or approximately:

 -10⁹ ≤ <integer-value> ≤ 10⁹

 (that is minus 1 billion and plus 1 billion), no integer overflow errors

 (integers outside the range) will occur. To prevent these errors, the

 user should convert integers which have a likelihood of becoming too

 big, to single-precision reals or double-precision reals by making them

 reals or long reals (see below).

 Real ____

 Real values include zero and positive and negative numbers which

 contain a fractional part. There are two possible representations for

 reals in Algol W. The first is the form that is in common usage: an

 optional integer followed by a decimal point, followed optionally by

 another integer representing the fractional part. If the integer

 preceding the decimal point is omitted, then the integer following the

 decimal point must appear, and vice versa. It is illegal to have a

 decimal point appear alone as a real number. This form of a real value

 is called an unscaled real value. An example of this form is:

 4156.28

 The other representation, called scaled real, is similar to what is

 known as scientific notation. Instead of writing:

 20.3x10⁴

 however, in Algol W one would write:

 20.3’4

 The correct form is an optional integer, followed optionally by a

 decimal point and an integer representing the fractional part, followed

 by a prime (’), followed by an integer representing the power to which

 28 Values and Types

 MTS 16: ALGOL W in MTS

 September 1980

 10 should be raised. If the first real part (the mantissa) is omitted,

 it is assumed to be 1.

 Examples of real values:

 0.0 zero

 .56 fifty-six one-hundredths

 42. forty-two

 1.3’+6 one point three by ten to the power six

 -6.5 minus six point five

 1.3’6 one point three by ten to the power six

 4’-3 four one-thousandths; four by ten to the minus three

 ’10 (one times ...) ten to the power ten

 Note: Although real values can be positive or negative, real constants

 are unsigned when they occur within a program. The examples above of

 signed reals imply the evaluation of expressions.

 Reals are stored as 32-bit, floating-point numbers. The first 8 bits

 of a real value are used to store the sign (+ or -) and an encoding of

 the exponent of 16 by which the number is multiplied. The last 24 bits

 are used to store the mantissa. For a full description of the internal

 representation of reals see Appendix J.

 The largest possible positive real value that can be stored is

 7FFFFFFF (base 16) which is equal to:

 (1 - 16⁻⁶) x 16⁶³

 in base 10, or approximately:

 7.23 x 10⁷⁵

 The smallest positive real number is 00100000 (base 16) which is equal

 to:

 1/16 x 16⁻⁶⁴

 in base 10, or approximately:

 5.40 x 10⁻⁷⁹

 The corresponding range for negative reals is the same. The value 0

 (base 10) can also be represented exactly as 00000000 (base 16).

 All real values in an Algol W program are automatically converted to

 hexadecimal (that is base 16) floating-point numbers, usually with some

 round-off error. When real values are printed, they are converted back

 to decimals, possibly with an additional round-off error. Occasionally,

 the cumulative effect of round-off errors can be significant. If the

 user wants to avoid problems of this sort, it is advisable to use

 integers, where this is possible.

 Values and Types 29

 MTS 16: ALGOL W in MTS

 September 1980

 An example of a potential disaster caused by hexadecimal conversion

 round-off error is given in the following program:

 begin

 real X, Y;

 X := 1.0;

 while X ¬= 2.1 do

 begin

 Y := Sqrt(X);

 Write(X, Y);

 X := X + 0.1

 end

 end.

 This program, designed to print out the values of X and the square

 roots of X for the range of X values starting at 1.0 and ending at 2.0

 will continue forever because X will never be exactly equal to 2.1 since

 .1 (base 10) cannot be represented exactly with six significant

 hexadecimal digits. A solution to this problem is to change ¬= in the

 While statement to < or <=. A general rule to remember is: when

 comparing reals, do not use the operators = and ¬=.

 In addition to the type of errors introduced by hexadecimal conver-

 sion, there also are finite precision errors due to the 32-bit

 limitations on reals. The precision possible is 6 significant hexadeci-

 mal digits, which is approximately equivalent to 7 significant decimal

 digits. If extended precision is desired, the user should convert to

 long real (see below).

 Long Real _________

 Long real values are real numbers with precision extended to

 approximately 17 decimal places. A long real value is expressed by

 following the digits of a real or integer value, without a space, by the

 letter L. If a space is left, the L will be interpreted as an

 identifier.

 Examples of long real values:

 1.2L

 0.2’-3L

 5L

 -3.1’5L

 63.L

 3.14159265358979L

 Note: Although long real values can be positive or negative, long real

 constants are unsigned when they occur within a program. The examples

 of signed long reals imply the evaluation of expressions.

 30 Values and Types

 MTS 16: ALGOL W in MTS

 September 1980

 Long reals are stored as 64-bit, floating-point numbers. The sign of

 the number and an encoding of the exponent of 16 by which the number is

 multiplied, are stored in the first 8 bits. The remaining 56 bits are

 used to store the mantissa. Thus, a long real value is accurate up to

 14 hexadecimal places which is approximately equivalent to 17 decimal

 places (more than double the precision possible for reals). The legal

 range and all other rules which apply to reals are the same for long

 reals. For more information on the internal representation of long

 reals see Appendix J.

 Complex _______

 A complex value is a number composed of two numbers of type real, one

 representing the real part of the complex number, and the other the

 imaginary part. A complex number with a zero value for the real part is

 expressed by following a real or an integer value without a space, by

 the letter I. If a space is left, the I will be interpreted as an

 identifier.

 Examples of complex values with zero real parts:

 1I

 13I

 7.2I

 -18.5I

 5.6’3I

 In mathematical notation, the last value would be:

 0 + (5.6x10³i)

 Note: The examples above are imaginary constants. In an Algol W

 program, there is no such thing as a complex constant. A complex number

 with a non-zero real part is expressed as a real or integer value

 followed by an imaginary part, connected by + or - without any embedded

 spaces. Thus a complex number is an expression.

 Examples of complex values with non-zero real parts:

 5-3I

 -6.3+0.4I

 -3.2-6.1I

 The storage of each part of the complex number is the same as that for

 real values, that is two 32-bit, floating-point numbers.

 Values and Types 31

 MTS 16: ALGOL W in MTS

 September 1980

 Long Complex ____________

 Long complex values are complex numbers, with precision extended to

 approximately 17 decimal places. A long complex value is a complex

 number composed of two long real numbers. A long complex value is

 expressed by following a complex value, without a space, by the letter

 L. If there is a non-zero real part of a long complex value, then both

 the real and the imaginary values must be followed by an L.

 Examples of long complex values:

 5IL

 14.2L+16.3IL

 60’3IL

 .5L-’7IL

 Note: In an Algol W program, there is no such thing as a long complex

 constant, just long imaginary constants. The examples above, which

 involve a non-zero real part, are examples of long complex expressions.

 Long complex values are stored in the same way as two long reals;

 that is as two 64-bit, floating-point numbers.

 See the section "Arithmetic Expressions and Assignment Statements,"

 for types resulting from functions, expressions and assignment state-

 ments involving integer, real and complex values.

 Logical _______

 There are two possible logical values: ’true’ and ’false’. Both are

 reserved words.

 Logical values are stored in single bytes (8 bits). In base 16,

 ’true’ is represented as 01 and ’false’ as 00 .

 Bits ____

 Bits values are specified by a hash mark (#) followed by a sequence

 of 1 to 8 hexadecimal (base 16) digits. If fewer than 8 hexadecimal

 digits are specified, additional zeros are assumed between the # and the

 first digit. However, it is a good idea to get into the habit of

 specifying all 8 digits. Although the Algol W compiler supplies zero

 bits in this way, many other compilers do not. Bits values represent a

 binary succession of 0’s and 1’s. Each hexadecimal digit stands for 4

 binary digits. A hexadecimal digit is one of the following:

 32 Values and Types

 MTS 16: ALGOL W in MTS

 September 1980

 0 1 2 3 4 5 6 7 8 9 A B C D E F

 where the digits 0-9 correspond to the digits 0-9 base 10, and

 A,B,C,D,E, and F signify 10, 11, 12, 13, 14 and 15 respectively.

 Examples of bit values:

 Decimal Binary Bits in Hexadecimal _______ ______ ___________________

 79 100 1111 #0000004F

 14 1110 #0000000E

 Bits are stored as a (fullword) linear sequence of 32 binary digits;

 that is a sequence of 0’s and 1’s.

 String ______

 A string is any sequence of 1 to 256 EBCDIC characters enclosed by

 quotes (") - see Appendix B for a description of the EBCDIC character

 codes. A blank is considered to be a character. If a quote occurs

 within the sequence of characters, it must be written as two consecutive

 quotation marks "". The value of a string is the sequence of

 characters. The length of a string is the number of characters between

 the quotation marks.

 When entering long string constants it is often convenient to split

 the constant over several source input records. Algol W allows string

 constants to be built up from a number of adjacent string constants

 provided that they are separated from each other by an input record

 boundary, or at least one blank. A string may not be defined across an

 input record boundary without splitting it in this way.

 Examples of strings:

 String Value Length ______ _____ ______

 "JOHN" JOHN 4

 """" " 1

 " " b (blank) 1 /

 "AB""E" AB"E 4

 "52" 52 2

 "ABC" "DEF" "ABCDEF" 6

 Each character is stored as its equivalent integer encoding in 8 bits

 of storage - see Appendix B. Note that when numbers are used as part of

 a string, they are stored as characters and not as 32-bit integers or

 floating-point numbers.

 Values and Types 33

 MTS 16: ALGOL W in MTS

 September 1980

 Reference _________

 A reference value is a pointer to (implemented as a memory address

 of) a particular record occurrence of a record class. (See below for

 the definition of record occurrences and classes.) It may also have the

 value ’null’, which means it does not point to any record. ’null’ is a

 reserved word.

 Reference values are stored as fullword (32-bit) integers.

 STRUCTURED TYPES ________________

 Array _____

 An array is an ordered set of values, all of identical type. An

 array can be declared to be any of the simple types described earlier:

 integer, real, long real, complex, long complex, bits, string, logical

 and reference (see the section "Arrays"). In each case, all of the

 elements which compose the array are of the specified type. Note that

 an array cannot itself be composed of elements of structured types; that

 is there are no arrays of arrays or arrays of records. Arrays are made

 up of a given number of dimensions, declared by the user. The total

 number of elements in an array equals the product of the number of

 elements in each dimension. An array element is accessed by the use of

 subscripts, one subscript for each dimension (see "Subscripts" in the

 section "Arrays").

 Examples of array elements:

 A(5)

 means the 5th element of the one-dimensional array A.

 X(4,2)

 means the element in the 4th row, 2nd column of the two-

 dimensional array X.

 Each element of an array is stored in the number of bits required for

 the type specified. There is at least one dimension in every array.

 The upper limit on the size of an array is not in terms of dimensions,

 but rather, in terms of the size of all the elements. The product of

 the number of elements in each of the first n-1 dimensions multiplied by

 the size of each element must be less than 32768 bytes. Arrays are

 stored linearly, since there is no machine structure which corresponds

 to the data structure of an n-dimensional array where n>1. In other

 words, multidimensional arrays are internally translated into one-

 dimensional arrays. They are stored in column-major form. Array

 34 Values and Types

 MTS 16: ALGOL W in MTS

 September 1980

 elements in multidimensional arrays are stored with their leftmost

 subscript changing most rapidly. For example, in a two-dimensional

 array, the elements of the second column are stored in succession after

 those in the first column, and so on until the last column. For

 example, an array J with 3 rows and 10 columns has its elements stored

 in the order:

 J(1,1) J(2,1) J(3,1) J(1,2) J(2,10) J(3,10)

 This mode of storage was deliberately chosen to be the same as Fortran.

 Note that it is the transpose of the scheme adopted by Algol 60, PL/1 _________

 and certain Pascal compilers.

 Record ______

 A record value is an ordered set of values, in which each value may

 be of a different simple type. The word "record" is ambiguous in that

 it is often used to denote two distinct concepts: record class and

 record occurrence. A record class is defined as a group of variable

 types placed together (see the section "Records and References"). Each

 variable type specified is known as a field. The value of each field is

 of the type declared for that field. A record class defines a

 structure. Many record occurrences can have this same structure. The

 record occurrences are made up of the same fields, but have different

 values assigned to those fields. Since there is usually more than one

 record occurrence per record class, it is not enough to specify the

 field name of a record class in order to access a given record

 occurrence. Therefore, to be able to designate a particular record

 occurrence, one must use a variable of type reference (see above

 discussion of references). A reference points to a specific record

 occurrence, and a field within a record occurrence is accessed by

 specifying the field designator, that is the field name and the name of

 the reference variable that points to the occurrence of the record class

 desired.

 Personnel Record Class

 List Name Socsecno Age Next

 ┌────┐ ┌─────────────────────────────────────┐ ┌ ┌ ┌
 | . |──| Joe Smith| 562487809 | 35 | . | ┌ ┘
 └────┘ └─────────────────────────────────────┘ ┘ ┘ ┘ ┌
 ┌──────────────────────────────┘
 ┌─────────────────────────────────────┐ ┘ ┌ ┌ ┌
 | Tom Jones| 468362112 | 49 | . |

 └─────────────────────────────────────┘ ┘ ┘ ┘ ┌
 ┌──────────────────────────────┘
 ┌─────────────────────────────────────┐ ┘ ┌ ┌ ┌
 | Mary Doe | 723458899 | 28 | null|

 └─────────────────────────────────────┘ ┘ ┘ ┘

 Values and Types 35

 MTS 16: ALGOL W in MTS

 September 1980

 This example contains a Personnel record class with fields Name of

 type string, Socsecno and Age of type integer, and Next of type

 reference. There are three different record occurrences belonging to

 the same record class. Thus, each includes the same fields but all have

 different values. The Next field of each record occurrence points to

 the next record occurrence in the list. The first record occurrence in

 the list is pointed to by the reference variable List. The last record

 occurrence signifies that there are no further records in the list by

 specifying a ’null’ pointer in the Next field. See the section "Records

 and References," for declarations and assignment statements necessary

 for this example.

 In order to access the name Joe Smith of the first record occurrence,

 one would say:

 Name(List)

 To refer to the social security number of the second record

 occurrence, the appropriate reference is:

 Socsecno(Next(List))

 since Next(List) points to the entire record occurrence following the

 record occurrence pointed to by the reference List, and Socsecno

 specifies the field designating the social security number.

 The record fields are stored contiguously, each field being stored as

 whichever type it has been declared.

 OUTPUT OF VALUES ________________

 It should be noted that the forms of values on output depend on the

 current field widths for the corresponding types (see "Format Variables"

 in the section "Basic Input and Output") or the format string item given

 with the output procedure used (see the section "Format Directed Input

 and Output").

 36 Values and Types

 MTS 16: ALGOL W in MTS

 September 1980

 SIMPLE VARIABLE DECLARATIONS ____________________________

 Every variable in a program must be declared before it is used. (See

 "For Statements" and "Goto Statements and Labels" in the section

 "Statements," Appendix E, Appendix F, and Appendix G for predeclared and

 implicitly declared variables.) The purpose of a declaration is to

 reserve storage space for the variable being used and to associate an

 identifier name with the reserved space. Declarations are only valid

 within a given block. They do not have any meaning outside the block in

 which they are declared (see the example in "Blocks" in the section

 "Statements").

 The initial value of any declared variable is not defined. A

 variable receives a value only through an assignment statement or an

 input statement. Any value assigned to a variable of a certain type

 either has to match in type or else is converted to that type if

 possible (see "Assignment Compatibility" in the section "Arithmetic

 Expressions and Assignment Statements" and under "Assignment Statements"

 in the section "Statements").

 INTEGER, REAL, LONG REAL, COMPLEX, LONG COMPLEX AND LOGICAL ___

 The general form of a declaration for integers, reals, long reals,

 complex numbers, long complex numbers and logical variables is:

 <simple-variable-type> <identifiers>

 where:

 <simple-variable-type> can be ’integer’, ’real’, ’long real’,

 ’complex’, ’long complex’ or ’logical’; and

 <identifiers> can be a list of one or more identifiers, each

 separated from the next by a comma.

 Examples of declarations in a partial program:

 real Mean, Median, Mode;

 integer Number;

 logical Flag;

 long real Average;

 complex Sum;

 These declarations set aside three storage locations for real values

 in Mean, Median, and Mode; one storage location Number for an integer

 Simple Variable Declarations 37

 MTS 16: ALGOL W in MTS

 September 1980

 value; one location Average for a long real value; one location Flag for

 a logical value ’true’ or ’false’ and one location Sum for a complex

 value.

 The semicolon (;) separates one Algol W declaration or statement from

 the next one.

 BITS ____

 The declaration of a variable of type bits takes one of the following

 forms:

 bits <identifiers>

 bits (32) <identifiers>

 The (32) part of the ’bits’ declaration is optional since a variable of

 type bits is always of length 32 whether or not this is included in the

 declaration.

 STRING ______

 The declaration of a variable of type string takes one of the

 following forms:

 string (<integer-constant>) <identifiers>

 string <identifiers>

 where:

 <integer-constant> is any constant of type integer in the range of

 1 to 256 inclusive, indicating the number of characters in the

 string. Note that the integer following ’string’ has to be a

 constant, not a variable. If the <integer-constant> is omitted, as

 in the second form, the length of the string defaults to 16.

 Examples of string declarations:

 string(20) Student_Name, Course_Name;

 declares two strings, each with a length of 20 characters.

 string Word;

 declares one string with a length of 16 characters.

 38 Simple Variable Declarations

 MTS 16: ALGOL W in MTS

 September 1980

 REFERENCE _________

 The general form of a declaration of a variable of type reference is:

 reference (<record-class-identifiers>) <identifiers>

 where:

 <record-class-identifiers> is a list of all the record classes to

 which the reference(s) can point, each separated from the next by a

 comma, and

 <identifiers> is a list of identifiers specifying the reference

 variables being declared, each one separated from the next by a

 comma.

 Examples of reference declarations:

 reference(Student,Employee) List, Place;

 declares two reference variables, List and Place, each of which

 can point to a record occurrence belonging to either of the

 record classes Student or Employee.

 reference(Student,Course) List;

 declares a reference variable List which can point to a record

 occurrence belonging to either of the record classes Student or

 Course.

 reference(Student) Student_List, List;

 declares two reference variables Student_List and List, both of

 which can point to record occurrences belonging to the record

 class Student.

 Simple Variable Declarations 39

 MTS 16: ALGOL W in MTS

 September 1980

 40 Simple Variable Declarations

 MTS 16: ALGOL W in MTS

 September 1980

 ARITHMETIC EXPRESSIONS AND ASSIGNMENT STATEMENTS __

 EXPRESSIONS ___________

 Expressions are the means used to tell the computer to perform

 operations. They are made up of constants, variables, and optionally,

 operators such as + (addition), - (subtraction), * (multiplication) and

 / (division). A simple expression is either a variable or a constant.

 Examples of simple expressions in Algol W:

 6.2’4 constant

 29 constant

 4.2L constant

 Xnum variable

 To form more complex expressions, simple expressions are combined

 with the use of unary and binary operators, and by enclosing an

 expression in parentheses (). Putting parentheses around an expression

 does not change the meaning of that expression. Unary operators are

 those which require only one operand, such as absolute value. Binary

 operators are those which involve more than one operand, such as / in

 Xnum/Ynum, which means the quotient of Xnum divided by Ynum.

 In Algol W, the following unary arithmetic operators are used:

 long

 is a reserved word used to change the precision of a real

 expression from the default (32 bits) to long precision (64

 bits).

 short

 is a reserved word which changes the precision of a real

 expression from long to short precision.

 abs

 is a reserved word which means the absolute value of an

 expression. Abs yields a value of the same type as given, for

 example the absolute value of a real is a real, the absolute

 value of an integer is an integer.

 Arithmetic Expressions and Assignment Statements 41

 MTS 16: ALGOL W in MTS

 September 1980

 + -

 mean the same as in common arithmetic usage, that is they

 indicate a positive or negative value, respectively. - reverses

 the sign of an expression. + has no effect, but may be used for

 stylistic or aesthetic reasons.

 Examples:

 long Xnum

 changes the variable Xnum from the default precision to long

 precision.

 short(Xnum+Ynum)

 changes the precision of the sum of Xnum and Ynum from long

 precision to short precision. Note that here, the operator + is

 a binary operator (see below). Both + and - can be used as

 unary and binary operators.

 abs(Ynum)

 gives the absolute value of the quantity Ynum. The equivalent

 mathematical formulation would be |Ynum|.

 The following arithmetic binary operators are provided by Algol W:

 **

 is the operator used for exponentiation. Its literal transla-

 tion is "raised to the power of." The expression being raised

 to a power can be any simple arithmetic type: integer, real,

 long real, complex or long complex. The power has to be of type

 integer.

 *

 means multiplication.

 /

 means division.

 div

 is also a division operator, but is used with two integer

 expressions and yields an integer quotient, ignoring the

 remainder.

 42 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 rem

 is an operator used with two integer expressions and yields an

 integer equal to the remainder of the ’div’ operation. ’rem’ is

 the equivalent of mod in modular arithmetic.

 +

 means addition.

 -

 means subtraction.

 Examples:

 X**2

 means the square of X

 Xnum ** (Num-Move)

 is legal if, and only if, (Num-Move) is an integer expression.

 7*Days

 multiplies the current value of Days by 7.

 12/7

 divides 7 into 12 and yields a long real value of

 1.71428571428571 (see the operator "/" table in the section

 "Tables of Resulting Types").

 12 div 7

 yields the integer quotient of 1.

 12 rem 7

 yields the integer remainder 5, just as in modular arithmetic,

 12 mod 7 = 5.

 Examples of mathematical notation and corresponding Algol W expressions:

 Mathematics Algol W ___________ _______

 X(Y+Z) X*(Y+Z)

 |A-B+2| abs(A-B+2)

 (2.4+3.6i)J (2.4+3.6I)*J

 14.3x10²-7.1Zi 14.3’2-7.1I*Z

 Arithmetic Expressions and Assignment Statements 43

 MTS 16: ALGOL W in MTS

 September 1980

 ASSIGNMENT STATEMENTS _____________________

 Assignment statements are used to save values in storage locations.

 An assignment statement is of the form:

 <variable> := <expression>

 where:

 <variable> is an identifier giving the name of a variable; and

 <expression> is any constant, variable or group of these combined

 by unary and/or binary operators.

 <variable> can also be a subscripted variable indicating an element

 of an array, a field designator indicating a field of a record

 occurrence or a substring designator indicating a portion of a string.

 However, these will not be discussed in this chapter. See "Assignment

 Statements" in the section "Statements," "Subscripts" in the section

 "Arrays," "Accessing Fields and Field Assignment Statements" in the

 section "Records and References," and "String Expressions" in the

 section "Strings."

 The assignment operator := is translated as "is assigned the value"

 or "becomes." In other words, the value of the expression on the right

 side of := is stored in the variable referred to by the identifier on

 the left side. Note that it is illegal to place an expression on the

 left side of the assignment operator. Only a variable may appear on the

 left side of := .

 Examples of legal assignment statements:

 Length := abs Counter;

 A := A * B;

 I := I + 1;

 Mean := Total/Counter;

 Sum := (M + N)*Score + 5*(A - B)

 Examples of illegal assignment statements:

 A + B := C

 Illegal expression on left side of :=. Left side must refer to

 a single storage location.

 I = I + 1

 Operator = is not the assignment operator.

 44 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 Multiple Assignment Statements ______________________________

 It is possible to combine more than one assignment into one

 statement. Because it is illegal for an expression to appear on the

 left-hand side of any assignment statement, a multiple assignment

 statement requires variables everywhere but on the right side of the

 rightmost assignment operator := . For example,

 X := Y := B * A

 first assigns the value of B*A to the storage location Y and then

 assigns the value of Y to X.

 Examples of legal multiple assignment statements:

 A := B := C := D;

 B := C := (D + 4) * (H/(K + 5));

 B := C := B + C

 An example of illegal multiple assignment statement:

 A := B+C := D

 Illegal expression B+C on left side of assignment operator.

 PRECEDENCE __________

 As stated above, enclosing an expression in parentheses does not

 change the meaning of the expression. However, it does change the

 meaning of an expression which includes it combined with another

 expression. For example:

 A * (B + C)

 does not mean the same thing as:

 A * B + C

 while:

 (B + C)

 is exactly equivalent to

 B + C

 Parentheses are used to specify the order in which expressions are to

 be evaluated. If parentheses are not included in an expression, the

 operations are performed in order of precedence. Both lists of unary

 Arithmetic Expressions and Assignment Statements 45

 MTS 16: ALGOL W in MTS

 September 1980

 and binary operators under "Expressions" in this chapter, are listed in

 descending order of precedence; the operators on the higher rows are

 acted on before those on the lower rows. The operators on the same row

 have equal precedence. The combined list of arithmetic operators, in

 order of precedence is shown here:

 long short abs

 **

 * / div rem

 + -

 Examples of expressions without parentheses:

 X*Y+Z

 is the same as (X*Y)+Z because * (multiplication) has a higher

 precedence than + (addition).

 Num**3+4

 evaluates to (Num**3) + 4 and not Num**7 because ** (exponentia-

 tion) has a higher precedence than + (addition).

 When operators of equal precedence are used without parentheses, the

 operators are evaluated from left to right. It may be necessary to use

 parentheses to enforce a particular meaning when operators of equal

 precedence appear within an expression.

 The evaluation of operators is completely specified in the descrip-

 tion above. However, the evaluation of order of the left and right

 operands of a binary operator is unspecified and may occur in any order.

 Because of this fact, a potential problem exists when a function

 procedure call (see the section "Procedures") implicitly changes a

 variable used elsewhere in the same expression. The results of the

 evaluation are unpredictable, and such cases should be avoided.

 Tables of Resulting Types _________________________

 The tables on the following pages give the types resulting from the

 operations performed on expressions of each of the possible arithmetic

 types:

 46 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 |

 operator |

 + or - | integer real l/real complex l/cmplx

 ──────────┼──
 integer | integer real l/real complex l/cmplx

 real | real real real complex complex

 l/real | l/real real l/real complex l/cmplx

 complex | complex complex complex complex complex

 l/cmplx | l/cmplx complex l/cmplx complex l/cmplx

 where in this and following tables:

 l/real is long real

 l/cmplx is long complex

 |

 operator |

 * | integer real complex

 ────────────┼──
 integer | integer long real long complex

 real | long real long real long complex

 complex | long complex long complex long complex

 Long real may be substituted for real, and long complex for complex in

 the above table without changing the results.

 |

 operator |

 / | integer real l/real complex l/cmplx

 ──────────┼───
 integer | l/real real l/real complex l/cmplx

 real | real real real complex complex

 l/real | l/real real l/real complex l/cmplx

 complex | complex complex complex complex complex

 l/cmplx | l/cmplx complex l/cmplx complex l/cmplx

 Note the type long real which results from integer/integer.

 Note that the above three tables are symmetric; i.e. the resulting

 type does not depend on which expression appears first.

 |

 operator ** | integer

 ────────────────────┼────────────────
 integer | long real

 real | long real

 long real | long real

 complex | long complex

 long complex | long complex

 It is illegal for an exponent to be of any type but integer.

 Arithmetic Expressions and Assignment Statements 47

 MTS 16: ALGOL W in MTS

 September 1980

 |

 operator ’long’ | result

 ────────────────────┼────────────────
 integer | long real

 real | long real

 complex | long complex

 It is illegal to use the operator ’long’ on an expression which is

 already long real or long complex.

 |

 operator ’short’ | result

 ────────────────────┼────────────────
 long real | real

 long complex | complex

 It is illegal to use the operator ’short’ on an expression which is

 already of short precision, that is integer, real or complex.

 It is illegal to use any type but integer expressions when performing

 the operations ’div’ and ’rem’.

 Assignment Compatibility ________________________

 When assigning the value of an expression to a variable, if the types

 of the expression and identifier do not match, the following conversions

 or errors take place:

 | expression

 operator |

 v := | integer real l/real complex l/cmplx

 a ───────────┼───
 r integer | integer illegal illegal illegal illegal

 i real | real real real illegal illegal

 a l/real | l/real l/real l/real illegal illegal

 b complex | complex complex complex complex complex

 l l/cmplx | l/cmplx l/cmplx l/cmplx l/cmplx l/cmplx

 e |

 Note that when an integer, real, or long real value is assigned to a

 complex variable, the value is converted to or remains a real value, and

 is assigned to the real part of the complex variable. When an integer,

 real, or long real value is assigned to a long complex variable, the

 value is assigned to the long real part of the long complex value. The

 imaginary or long imaginary part becomes zero. The values in the table

 are the type of the variable after the assignment has occurred.

 "illegal" indicates that a compiler error message would result from the

 attempted assignment. In general, assignment compatibility follows the

 principle of "widening": it is determined by whether the change in

 type, if any, restricts the range the value may take on. If it does, it

 48 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 is illegal. (Exceptions: long real -> real and long complex ->

 complex)

 Assume the following declarations in a partial program:

 integer N;

 real X;

 long real Xx;

 complex C;

 Examples of legal assignment statements:

 X := N;

 X := 4; (X now has the value 4.000000)

 Xx := N;

 X := Xx := N;

 C := N;

 C := X := N;

 Examples of illegal (due to type incompatibility) assignment statements:

 N := X;

 Cannot assign a real value to an integer variable.

 N := N**3;

 The result of an integer exponentiation is long real.

 X := N := Xx;

 Illegal to assign a long real value to an integer variable.

 When the types are different, although a legal assignment is taking

 place, the results are sometimes less accurate.

 Assume the same declarations as above:

 integer N;

 real X;

 long real Xx;

 complex C;

 then:

 Xx := 3.1415926535897932;

 results in Xx containing the value:

 3.141593gggggggggg

 where the g’s are trailing garbage digits, because the L indicating long

 real type was omitted from the end of the real value of pi.

 Arithmetic Expressions and Assignment Statements 49

 MTS 16: ALGOL W in MTS

 September 1980

 Xx := 3.1415926535897932L;

 results in Xx containing the entire value accurate to the 17 digits

 listed.

 X := 3.1415926535897932L;

 assigns the value 3.141593 to X in accordance with the conversion

 process of changing a long real value to its real equivalent if assigned

 to a real variable.

 Xx := X := X*N;

 Here, X*N yields a long real value as the product of a real and an

 integer (see above * table). When it is assigned to X, X stores its

 real equivalent, that is the first seven decimal digits, and Xx takes on

 the equivalent long real value, that is the first seven digits followed

 by ten garbage digits, not the original X*N value. The last ten digits

 of accuracy were lost upon storage in X, a real variable.

 PREDECLARED FUNCTIONS _____________________

 Algol W provides predeclared functions for the purposes of both

 calculation and type conversion. The form of a predeclared function

 call is:

 <function-identifier> (<expression>)

 where:

 <function-identifier> is the name of the function desired; and

 <expression> can be any expression as previously described, whose

 type is appropriate for the given function.

 The function itself is treated as an expression of the type to which

 it belongs, meaning that it can be assigned to variables with which it

 is assignment compatible and can be used as an argument in proper and

 function procedures (see the section "Procedures").

 The <expression> in a function call is known as the argument of the

 function. The type of the argument and the type of the resulting

 function value depend on the function.

 The following tables list the numerical predeclared functions:

 50 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 Real to Integer Conversion Functions ____________________________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Truncate integer real Truncated value of

 argument

 Entier integer real Largest integer

 ≤ argument

 Round integer real Rounded value of

 argument

 Exponent integer real Unbiased exponent

 used in machine

 representation of

 argument - see

 Appendix J

 Floating Point Conversion Functions ___________________________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Roundtoreal real long real Properly rounded

 value of argument

 Realpart real complex Real component

 Longrealpart long real l/complex of argument

 Imagpart real complex Imaginary component

 Longimagpart long real l/complex of argument

 Imag complex real Complex equivalent

 Longimag l/complex long real of argument (uses

 zero as real part

 and argument as

 imaginary part)

 Arithmetic Expressions and Assignment Statements 51

 MTS 16: ALGOL W in MTS

 September 1980

 Roots and Powers Functions __________________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Sqrt real real Positive square

 Longsqrt long real long real root of argument

 Exp real real e (that is 2.71828..)

 Longexp long real long real to the power of

 the argument

 Ln real real Natural logarithm

 Longln long real long real of argument

 Log real real Logarithm to base 10

 Longlog long real long real of argument

 Trigonometric Functions _______________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Sin real real Sine of argument

 Longsin long real long real which is in radians

 Cos real real Cosine of argument

 Longcos long real long real which is in radians

 Tan real real Tangent of argument

 Longtan long real long real which is in radians

 Cot real real Cotangent of argument

 Longcot long real long real which is in radians

 52 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 Inverse Trigonometric Functions _______________________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Arcsin real real Inverse sine (that is

 Longarcsin long real long real the angle in radians

 whose sine is the

 argument)

 Arccos real real Inverse cosine,

 Longarccos long real long real in radians

 Arctan real real Inverse tangent,

 Longarctan long real long real in radians

 The above Algol W predeclared functions return the principal values

 of the mathematical function in each case.

 Hyperbolic Functions ____________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Sinh real real Hyperbolic sine

 Longsinh long real long real of argument

 Cosh real real Hyperbolic cosine

 Longcosh long real long real of argument

 Tanh real real Hyperbolic tangent

 Longtanh long real long real of argument

 Arithmetic Expressions and Assignment Statements 53

 MTS 16: ALGOL W in MTS

 September 1980

 Special Functions _________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Erf real real Error function of

 Longerf long real long real argument

 Erfc real real Complementary error

 Longerfc long real long real function of argument

 Gamma real real Gamma function of

 Longgamma long real long real argument

 Lngamma real real Natural logarithm of

 Longlngamma long real long real the gamma function

 of argument

 Complex Functions _________________

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Cxsqrt complex complex Complex square root

 Longcxsqrt l/complex l/complex of argument

 Cxexp complex complex Complex exponential

 Longcxexp l/complex l/complex of argument

 Cxln complex complex Complex natural

 Longcxln l/complex l/complex logarithm of argument

 Cxsin complex complex Complex sine of

 Longcxsin l/complex l/complex argument in radians

 Cxcos complex complex Complex cosine of

 Longcxcos l/complex l/complex argument in radians

 54 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 Predeclared Function Examples _____________________________

 Note that the table of assignment (:=) conversions and errors under

 "Assignment Compatibility" in this chapter also applies to functions,

 with the substitutions of "Function Type" for "Variable" and "Type

 Actually Given" for "Expression". In other words, if the wrong function

 type is given in a function call, either the type of the value is

 converted automatically, or an error message is given. The same rules

 apply for function calls as for assignment statements.

 Assume the following declarations in a partial program:

 integer N;

 real Z, Y, X;

 long real Xx;

 complex C;

 Examples of legal assignment statements:

 Xx := Round(X) div N

 Round(X) has type integer, and thus can be used with the ’div’

 operator. It is legal to assign an integer value to the long

 real variable Xx.

 Z := Exp(Y*Ln(X))

 The result Y*Ln(X) has type long real, which is converted to a

 real value to be a legal argument for Exp. It is legal to store

 the real result of the function in the real variable Z. The

 result of the function call is equivalent to X**Y, since

 X**Y=e**(Y*Ln(X)). The Exp function avoids the limitation which

 allows only integer exponents in expressions. In this example,

 Z now has the value X**Y where Y has a real value.

 N := Truncate(Xx+X) rem Round(Xx-X)

 The values Xx+X and Xx-X are converted to their real equiva-

 lents, Truncate and Round both result in integer values, and the

 result of the ’rem’ operator is an integer value.

 C := Imag(Sqrt(Cos(X)))

 The value Sqrt(Cos(X)) is real (assuming that Cos(X) is >=0, and

 that Sqrt is therefore a defined function) and the Imag function

 takes the real value and assigns it to the imaginary part of C.

 It assigns a zero value to the real part of C.

 X := Sin(N)

 The integer N is converted to its real equivalent and the sine

 of N radians is stored in the real variable X.

 Arithmetic Expressions and Assignment Statements 55

 MTS 16: ALGOL W in MTS

 September 1980

 Examples of illegal assignment statements due to assignment

 incompatibility:

 N := Sin(X)

 Sin(X) returns a real value which cannot be stored in the

 integer variable N.

 N := Round(C)

 Round requires a real or long real argument type. It does not

 convert a complex value to a real.

 Predeclared Function Domains of Definition __

 The predeclared functions described in this section are not always

 defined for all possible values of their arguments. A list of

 predeclared functions with their domains of definition and singulari-

 ties, if any, is given in Appendix F.

 Exceptional conditions which may arise from invalid arguments to

 numerical predeclared functions are described in "Predeclared Function

 Errors and Default Values" in the section "Miscellaneous Topics."

 56 Arithmetic Expressions and Assignment Statements

 MTS 16: ALGOL W in MTS

 September 1980

 CONSTANTS, VARIABLES, EXPRESSIONS AND VALUES __

 In Algol W, it is important to distinguish between the above four

 terms; constants, variables, and expressions possess values.

 CONSTANTS _________

 The value of a constant is determined by the way in which the

 constant is written by the user. Constants can be categorized by type

 as follows:

 Arithmetic __________

 Arithmetic constants include constants of type integer, real, long

 real, imaginary, and long imaginary. Algol W allows only unsigned

 constants to be used within a program. Therefore, a complex number is

 treated as an expression, being composed of an imaginary constant, a

 real constant, and an arithmetic operator (+ or -). It is legal,

 however, to have signed constants as part of the data to be read by an

 Algol W program.

 Examples of legal constants within an Algol W program:

 integer

 5 4 120 0

 real

 15.2’12 4.32 ’2

 long real

 4.2L ’5L

 imaginary

 3I 2.4I 1I

 long imaginary

 2.5IL 30’4IL

 Constants, Variables, Expressions and Values 57

 MTS 16: ALGOL W in MTS

 September 1980

 It is necessary to make the distinction between constants and values

 of the corresponding types. An arithmetic value can be positive or

 negative, while a constant can only have a positive value. The unary

 operators + and - can be interpreted as binary operators with a 0

 preceding the sign. In other words, the use of a sign automatically

 implies the evaluation of an expression. For example:

 -5

 should be thought of as the expression

 0-5

 by the Algol W user. An error message will be returned if an expression

 such as

 X*-2

 is used in an Algol W program. The reason is that * (multiplication)

 has precedence over - (subtraction), and the compiler parses the

 expression as:

 (X*-)2

 which in Algol W has no meaning.

 Logical, Bits and String ________________________

 Logical, bits and string constants are equivalent to logical, bits

 and string values (see the section "Values and Types").

 Reference _________

 The only reference constant is ’null’, indicating that the reference

 points to no record occurrence. The value of a reference is the record

 occurrence which the reference is currently pointing to.

 Note that a constant is an expression, and thus may only appear on

 the right-hand side of the assignment operator :=.

 VARIABLES _________

 The term variable refers to a single storage location of a simple

 type. Simple type means integer, real, long real, complex, long

 58 Constants, Variables, Expressions and Values

 MTS 16: ALGOL W in MTS

 September 1980

 complex, logical, bits, string and reference. The value of a variable

 is the value of the expression most recently assigned to it.

 The following are the four possible forms of variables:

 (1) <identifier> is a simple variable (see the section

 "Identifiers")

 (2) <subscripted-variable> is an array identifier followed by a

 parenthesized subscript list, indicating an element of an array

 (see "Subscripts" in the section "Arrays")

 (3) <field-designator> is an identifier followed by a parenthesized

 reference variable, indicating a field of a record occurrence

 (see "Accessing Fields and Field Assignment Statements" in the

 section "Records and References")

 (4) <substring-designator> indicates a portion of a string (see

 "String Expressions" in the section "Strings")

 An identifier is the name of a simple variable, a procedure, an

 array, or a record class.

 It is legal to place a variable on either side of the assignment

 operator := provided the types are compatible (see "Assignment Compati-

 bility" in the section "Statements").

 EXPRESSIONS ___________

 Expressions are the means used to tell the computer to perform

 operations. They are made up of constants, variables and optionally,

 operators. An expression can be a variable or a constant. In

 assignment statements, expressions appear on the right-hand side of the

 assignment operator :=. The left-hand side of an assignment statement

 must be a variable, never an expression. The following are the legal

 types of expressions in Algol W:

 Arithmetic Expressions ______________________

 See the section "Arithmetic Expressions and Assignment Statements."

 Logical Expressions ___________________

 See "Logical Expressions" in the section "Logicals."

 Constants, Variables, Expressions and Values 59

 MTS 16: ALGOL W in MTS

 September 1980

 String Expressions __________________

 See "String Expressions" in the section "Strings."

 Bits Expressions ________________

 See "Simple Bits Expressions" and "Bits Expressions" in the section

 "Bits."

 Reference Expressions _____________________

 See "Creating Records" in the section "Records and References."

 Functions _________

 A function is treated as an expression of the simple type to which it

 has been declared - see "Function Procedures" in the section

 "Procedures."

 Note that the value of a function can be any of the simple types of

 expressions, namely, arithmetic, logical, string, bits or reference.

 Conditional Expressions _______________________

 The two types of conditional expressions are the If expression and

 the Case expression, corresponding to the two types of conditional

 statements (see "Conditional Statements" in the section "Statements").

 If Expression _____________

 An If expression takes the following form:

 if <logical-expression> then <expression> else <expression>

 where:

 60 Constants, Variables, Expressions and Values

 MTS 16: ALGOL W in MTS

 September 1980

 <logical-expression> consists of one or more <relations> and/or

 logical constants, combined by the logical binary operators ’and’,

 ’or’ or the logical unary operator ¬ (or the equivalent reserved

 word ’not’) as defined in the section "Logicals"; and

 <expression> can be any legal expression of any type.

 ’if’, ’then’, and ’else’ are reserved words. If expressions must be

 enclosed in parentheses if they appear as parts of larger expressions.

 If the value of the <logical-expression> is ’true’, the <expression>

 following the ’then’ is evaluated and its value becomes the value of the

 conditional expression. If the value of the <logical-expression> is

 ’false’, the expression following the ’else’ is evaluated and its value

 becomes the value of the conditional expression.

 Type of Resulting If Expression _______________________________

 If the <expressions> in the If expression are arithmetic, the

 resulting type of the entire If expression is given by the following

 table:

 |

 expression |

 type |integer real l/real complex l/cmplx

 ───────────┼──
 integer |integer real l/real complex l/cmplx

 real |real real real complex complex

 l/real |l/real real l/real complex l/cmplx

 complex |complex complex complex complex complex

 l/cmplx |l/cmplx complex l/cmplx complex l/cmplx

 Type is determined by the following precedence rule:

 complex

 real

 integer

 Precision is determined by the following precedence rule:

 4 byte (that is short)

 8 byte (that is long)

 In other words, if at least one type is complex, the type of the entire

 If expression is complex. If at least one type has 4 byte precision,

 then the entire If expression has 4 byte precision. The exceptions to

 these rules are the long complex type resulting from integer and long

 complex, and the long real type resulting from integer and long real.

 Note that the table is symmetric, meaning that which <expression>

 follows the ’then’ and which <expression> follows the ’else’ is

 Constants, Variables, Expressions and Values 61

 MTS 16: ALGOL W in MTS

 September 1980

 irrelevant in determining the type and precision of the entire If

 expression.

 For all other than arithmetic types, the <expression> following

 ’then’ and the <expression> following ’else’ must match exactly in type

 (except for string lengths). Note that if the <expressions> are string

 expressions, the length of the resulting string value equals the maximum

 of the lengths of the string <expressions>. If necessary, blanks are

 appended on the right of the shorter string.

 Assignment Compatibility ________________________

 If an If expression is used in an assignment statement, the type of

 the If expression must be assignment compatible with the variable being

 assigned its value. It is not enough for one of the <expressions> to be

 assignment compatible with the variable.

 Assume the following declarations in a partial program:

 logical L, Flag, On;

 integer A, B, C;

 real X;

 string(7) Word;

 string(5) Line;

 Examples of assignment statements using conditional If expressions:

 L := if Flag and ¬On then Flag else On

 is equivalent to:

 if Flag and ¬On

 then L := Flag

 else L := On

 The assignment statement:

 L := if A > B then Flag else On

 is equivalent to:

 if A > B

 then L := Flag

 else L := On

 The assignment statement:

 X := (if A > B then A else B)+(if X < Y then X else Y)

 62 Constants, Variables, Expressions and Values

 MTS 16: ALGOL W in MTS

 September 1980

 is equivalent to:

 if (A > B) and (X < Y)

 then

 X := A + X

 else

 if ¬(A > B) and ¬(X < Y)

 then

 X := B + Y

 else

 if ¬(A > B) and (X < Y)

 then X := B + X

 else X := A + Y

 The assignment statement:

 Word := if Line(1|1)="A" then Line else "A"

 is equivalent to:

 if Line(1|1)="A"

 then Word := Line

 else Word := "A"

 An example of an illegal assignment statement:

 A := if L then B else X

 The type of the If expression is real, and it is illegal to

 assign a real expression to an integer variable.

 Case Expressions ________________

 A Case expression takes the following form:

 case <integer-expression> of (<expressions>)

 where:

 <integer-expression> is any expression whose value is of type

 integer; and

 <expressions> is a list of legal expressions of any type, each one

 separated from the next by a comma, in accordance with the table

 and precedence rules given for If expressions above. In other

 words, if at least one of the <expressions> in the Case expression

 is of complex type, the resulting Case expression is of complex

 type. If one of the <expressions> is 4 bytes (that is short

 precision), the resulting Case expression has short precision.

 Constants, Variables, Expressions and Values 63

 MTS 16: ALGOL W in MTS

 September 1980

 ’case’ and ’of’ are reserved words.

 (Note the exceptions in the long complex type resulting from a cross

 between integer and long complex, and the long real type resulting from

 integer and long real.)

 If the <expressions> in the Case expression are of other than

 arithmetic type, they must match exactly (except for string lengths).

 Note that if the <expressions> are string expressions, the length of the

 resulting string value equals the maximum length of the string expres-

 sions. If necessary, blanks are appended on the right of the shortest

 string.

 The assignment compatibility rule for If expressions applies to Case

 expressions as well.

 Just as in a Case statement (see "Conditional Statements" in the

 section "Statements), the value of the <integer-expression> must be

 greater than 0 and less than or equal to the number of expressions

 listed after ’of’. When a Case expression is used, the expression

 evaluated is the one whose position in the <expressions> matches the

 value of the <integer-expression>. The value of that expression becomes

 the value of the entire Case expression. A Case expression must be

 enclosed in parentheses if it appears as part of a larger expression.

 Assume the following declarations in a partial program:

 string(15) Cards;

 integer Suit;

 Example of conditional Case expression in an assignment statement:

 Cards := case Suit of

 ("SPADES","HEARTS","DIAMONDS","CLUBS");

 is equivalent to:

 case Suit of

 begin

 Cards := "SPADES";

 Cards := "HEARTS";

 Cards := "DIAMONDS";

 Cards := "CLUBS"

 end

 Note that the value of a conditional expression can be any of the

 simple types of expressions, namely, arithmetic, logical, string, bits

 or reference.

 64 Constants, Variables, Expressions and Values

 MTS 16: ALGOL W in MTS

 September 1980

 Block Expressions _________________

 A block expression is a type of block (see "Blocks" in the section

 "Statements") composed of a ’begin’, followed optionally by declara-

 tions, followed by a series of statements, followed by an expression of

 any type, followed by an ’end’. There must not be a semicolon following

 the expression. The value of the expression becomes the value of the

 block expression.

 Example:

 begin

 integer Num;

 Read(Num);

 Write(Num);

 Num ¬= 0

 end

 is a logical block expression whose value equals ’true’ if Num has any

 value other than 0, and whose value equals ’false’ if Num equals 0 .

 A block expression can be of any simple type, and can be inserted

 anywhere in an Algol W program where it is legal to use an expression.

 Examples of good uses for block expressions are given in the explanation

 of While statement loops (see "Iterative Statements" in the section

 "Statements") and in "Function Procedures" in the section "Procedures."

 Note that the value of a block expression can be any of the simple

 types of expressions, namely, arithmetic, logical, string, bits or

 reference.

 Constants, Variables, Expressions and Values 65

 MTS 16: ALGOL W in MTS

 September 1980

 66 Constants, Variables, Expressions and Values

 MTS 16: ALGOL W in MTS

 September 1980

 ARRAYS ______

 An array is a data structure composed of a collection of elements

 that are all of the same simple type. An array with one dimension is a

 vector, that is a linear collection of values. An array with two

 dimensions corresponds to a rectangular matrix. Arrays with three or

 more dimensions correspond to rectangular solids of the given dimension.

 An array must be declared as any one of the simple types: integer,

 real, long real, complex, long complex, logical, string, bits or

 reference. An array cannot be composed of structured types, that is

 there are no arrays of arrays or arrays of records.

 ARRAY DECLARATIONS __________________

 Integer, Real, Long Real, Complex, Long Complex and Logical Array ___

 Declarations ____________

 The form of an array declaration for arrays of integers, reals, long

 reals, complex, long complex or logicals is:

 <simple-variable-type> array <identifiers> (<bound-pairs>)

 where:

 <simple-variable-type> can be ’integer’, ’real’, ’long real’,

 ’complex’, ’long complex’ or ’logical’;

 <identifiers> is a list of one or more identifiers, each separated

 from the next by a comma, each being the name of an array being

 declared;

 <bound-pairs> is a list of one or more bound pairs, each separated

 from the next by a comma.

 The form of a <bound-pair> is:

 <integer-expression-1> :: <integer-expression-2>

 where:

 <integer-expression> can be any combination of constants, varia-

 bles, and/or operators, resulting in a legal expression of type

 integer;

 Arrays 67

 MTS 16: ALGOL W in MTS

 September 1980

 <integer-expression-1> indicates the lower bound of the array

 dimension;

 <integer-expression-2> indicates the upper bound of the array

 dimension.

 Note that <integer-expression-1> may be greater than <integer-

 expression-2>, in which case an array with no elements is being

 declared.

 The total number of bound pairs listed is the number of dimensions in

 the array.

 Examples:

 integer array Number, Times(1::50)

 declares two, one-dimensional arrays of 50 elements of type

 integer.

 real array Score(1::N,K::M+N)

 declares a two-dimensional array of N*(M+N-K+1) elements, each

 of type real. Note that the values N, K, and M+N must evaluate

 to integer types to be legal expressions for bound-pairs.

 logical array Switch(1::N,1::N,1::N)

 declares a three-dimensional array containing N cubed logical

 elements, each of which can contain the value ’true’ or ’false’.

 String Array Declarations _________________________

 The form of a string array declaration is either of the following:

 string(<integer-constant>) array <identifiers> (<bound-pairs>)

 string array <identifiers> (<bound-pairs>)

 where:

 <integer-constant> is any constant of type integer in the range of

 1 to 256 inclusive, indicating the number of characters in each

 element of the array(s) declared;

 <identifiers> and <bound-pairs> are as defined above.

 If the <integer-constant> is omitted, as in the second type of string

 array declaration shown above, the lengths of the strings default to 16.

 68 Arrays

 MTS 16: ALGOL W in MTS

 September 1980

 Examples:

 string(15) array Word(1::Size)

 declares a one-dimensional array Word with Size number of

 elements, each element being a 15-character string.

 string array Street(I::K,M::N)

 declares a two-dimensional array Street with (K-I+1)*(N-M+1)

 number of elements, each element being a 16-character string.

 Bits Array Declarations _______________________

 The form of an array declaration for arrays of type bits is either of

 the following:

 bits array <identifiers> (<bound-pairs>)

 bits(32) array <identifiers> (<bound-pairs>)

 where:

 <identifiers> and <bound-pairs> are as defined above.

 The (32) part of the ’bits’ declaration is optional in that a

 variable of type bits is always of length 32 whether or not this is

 included in the declaration.

 Example:

 bits array Check(-2::2)

 declares a one-dimensional array of five elements, each element

 containing a value of type bits.

 Reference Array Declarations ____________________________

 The form of an array declaration for arrays of type reference is:

 reference (<record-class-identifiers>) array

 <identifiers> (<bound-pairs>)

 where:

 <record-class-identifiers> is a list of all the record classes

 (previously declared), which the reference can point to, each one

 separated from the next by a comma;

 Arrays 69

 MTS 16: ALGOL W in MTS

 September 1980

 <identifiers> is a list of identifiers specifying the reference

 variables being declared, each one separated from the next by a

 comma;

 <bound-pairs> are as defined under "Array Declarations" earlier in

 this chapter.

 Example:

 reference(Student,Course) array Number(1::10)

 declares a one-dimensional array of ten elements, each element a

 reference variable, which can point to any record occurrence

 belonging either to the Student record class or to the Course

 record class.

 Note that having arrays of references is functionally equivalent to

 arrays of records.

 SUBSCRIPTS __________

 The total number of elements in an array is the product of the

 elements in each dimension. The total number of elements in each

 dimension equals the upper bound - the lower bound + 1. If the upper

 bound is less than the lower bound, the array being declared has zero

 elements in it. A given element is referred to with the use of a

 subscript list, one subscript for each dimension. A subscript must be

 an integer expression. A subscript list must contain one or more

 subscripts. The number of subscripts needed to specify an element of an

 array equals the number of dimensions in the array. Each subscript in

 an array element specification is separated from the next by a comma.

 Each element in an array has the same properties of a simple variable of

 the array type. In order to use an array element as a variable, the

 array identifier is followed by a parenthesized subscript list. Each

 individual element of the array is called a <subscripted-variable>.

 Example:

 complex array C(-3::2,-2::0)

 declares an array of 6x3=18 complex-valued elements.

 The elements of the above array are:

 C(-3,-2) C(-3,-1) C(-3,0)

 C(-2,-2) C(-2,-1) C(-2,0)

 C(-1,-2) C(-1,-1) C(-1,0)

 C(0,-2) C(0,-1) C(0,0)

 C(1,-2) C(1,-1) C(1,0)

 C(2,-2) C(2,-1) C(2,0)

 70 Arrays

 MTS 16: ALGOL W in MTS

 September 1980

 DYNAMIC ALLOCATION __________________

 An array has to be declared before it is used. However, since the

 bound-pairs are made up of integer expressions, rather than constants,

 and because it is legal to begin a new block anywhere in an Algol W

 program, an array can be a different size each time the block in which

 the array is declared is entered. Storage for arrays is allocated at

 execution time, not at compile time. This is called dynamic storage

 allocation. The number of dimensions in an array is static, however.

 Example of a partial program:

 integer N;

 for I := 1 until 10 do

 begin

 Read(N);

 begin

 real array Score(1::N);

 ...;

 N := N + 1

 end

 end;

 Each of the ten times the outer block is entered, a new value for N

 is read. The inner block defines a one-dimensional array Score of real

 values, with a different number N of elements each time the inner block

 is entered. The size of the array is not changed by incrementing N in ___

 the inner block.

 ARRAY ASSIGNMENTS _________________

 There is no such thing as an array assignment statement. In other

 words, it is not possible to assign a value to an entire array. Each

 element of an array must be individually assigned a value.

 Example of array assignments in a partial program:

 Arrays 71

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 string(20) array Subject(1::25);

 string(20) array Object(1::25);

 integer array Subjlen(1::25);

 integer array Objlen(1::25);

 for J := 1 until 25 do

 begin

 Subject(J) := " ";

 Object(J) := " ";

 Subjlen(J) := 0;

 Objlen(J) := 0

 end;

 .

 .

 end.

 The above program declares four arrays, and initializes each string

 array element to blanks and each integer array element to 0. It would

 not have been syntactically legal to write:

 Subject := " ";

 Object := " ";

 Subjlen := 0;

 Objlen := 0

 as Algol W allows assignments to only one array element at a time.

 SAMPLE PROGRAMS _______________

 Array Sample Program One ________________________

 The following program makes use of dynamic allocation of arrays to

 find the largest and smallest values of a list of N scores. The first

 data card gives the number of scores. Each of the subsequent cards

 contains a score value.

 72 Arrays

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 integer N;

 Read(N);

 begin

 comment Note the use of dynamic allocation

 in the following statement;

 real array Score(1::N);

 real Big, Small;

 Read(Score(1));

 Big := Small := Score(1);

 for I:= 2 until N do

 begin

 real Grade;

 Read(Score(I));

 Grade := Score(I);

 if Grade > Big then Big := Grade

 else if Grade < Small then Small := Grade

 end;

 Write(Big, Small)

 end

 end.

 If the data are as follows:

 8

 20.2

 95.4

 89.3

 75.6

 18.5

 56.3

 98.2

 87.1

 the output from this program is:

 98.20000 18.50000

 Array Sample Program Two ________________________

 The following sort program sorts an array Score of N elements from

 high to low, by keeping track of subscripts. The scheme is to compare

 all the elements to the first one, determine which is the largest, and

 then if the largest is not already the first element, to have the

 largest change places with the first. Next, the second element is

 compared with the following elements and the same pattern is repeated

 until the N-1th element is compared with the Nth, and the whole array is

 ordered from high to low. The inner ’for’ loop keeps track of the

 subscript of the largest element in the unordered part of the array.

 The outer ’for’ loop moves down the array as the previous elements have

 been sorted, and makes exchanges after each set of comparisons has been

 made.

 Arrays 73

 MTS 16: ALGOL W in MTS

 September 1980

 Large is initialized to the subscript of the first unordered element,

 and is replaced by the subscript of any larger element. First_Unor_Subs

 is the subscript of the first element of the unordered part of the

 array. J is the subscript of the array element being compared to the

 largest element. I is the variable which controls how many passes the

 sorter should make.

 begin

 integer N;

 Read(N);

 begin

 integer array Score(1::N);

 for I:= 1 until N do

 Read(Score(I));

 for I := 2 until N do

 begin

 integer Large, First_Unor_Subs;

 Large := First_Unor_Subs := I - 1;

 for J := I until N do

 if Score(Large) < Score(J)

 then Large := J;

 if Large ¬= First_Unor_Subs then

 begin

 integer Temp;

 Temp := Score(First_Unor_Subs);

 Score(First_Unor_Subs) := Score(Large);

 Score(Large) := Temp

 end

 end;

 for I := 1 until N do Write(Score(I))

 end

 end.

 If the data are as follows:

 5

 25

 11

 49

 81

 63

 the program goes through the following steps:

 74 Arrays

 MTS 16: ALGOL W in MTS

 September 1980

 I J Large First_Unor_Subs Score

 I=2

 pass 2 2 1 1 [25 11 49 81 63]

 2 3 1 1 [25 11 49 81 63]

 2 4 3 1 [25 11 49 81 63]

 2 5 4 1 [25 11 49 81 63]

 I=3

 pass [81 11 49 25 63]

 3 3 2 2 [81 11 49 25 63]

 3 4 3 2 [81 11 49 25 63]

 3 5 3 2 [81 11 49 25 63]

 I=4

 pass [81 63 49 25 11]

 4 4 3 3 [81 63 49 25 11]

 4 5 3 3 [81 63 49 25 11]

 I=5

 pass [81 63 49 25 11]

 5 5 4 4 [81 63 49 25 11]

 Note that the values given are those defined at the beginnings of

 passes through the inner loop. Note also that the array is already

 sorted at the beginning of pass 4, but the program continues through

 pass 5. The output from this program is:

 81

 63

 49

 25

 11

 Arrays 75

 MTS 16: ALGOL W in MTS

 September 1980

 76 Arrays

 MTS 16: ALGOL W in MTS

 September 1980

 LOGICALS ________

 DECLARATIONS ____________

 Logical variables can be declared as such, using the following form:

 logical <identifiers>;

 where:

 <identifiers> is a list of identifiers, each separated from the

 next by a comma, each representing a logical variable.

 Examples:

 logical Switch;

 logical On, Flag;

 The only two possible values which can be assigned to a logical

 variable are ’true’ and ’false’, both reserved words.

 RELATIONS _________

 A relation is a comparison between two expressions. It can have

 either of the two logical values: ’true’ or ’false’. Its form is one

 of the following:

 <expression-1> <relational-operator> <expression-2>

 <reference-variable> is <record-class-identifier>

 where:

 <relational-operator> can belong to one of the following two

 groups:

 The equality operators:

 = equal to

 ¬= not equal to (’not =’ is an alternative)

 Logicals 77

 MTS 16: ALGOL W in MTS

 September 1980

 The inequality operators:

 < less than

 <= less than or equal to

 > greater than

 >= greater than or equal to

 The equality operators test the equality or inequality of the

 values of two expressions. If an equality operator is used, then

 expressions of any arithmetic type can replace <expression-1> and

 <expression-2>. If <expression-1> is of type logical, bits, string

 or reference, then <expression-2> must be of type logical, bits,

 string or reference, respectively. In other words, it is possible

 to test the equivalence of two arithmetic values, two logical

 values, two bits values, two string values, or two reference

 values. It is not possible, however, to compare an arithmetic

 expression with a string expression. For example, 1="ONE" is not a

 valid relation. In general, it is illegal to test the equivalence

 of two expressions whose types do not match. (In this context, an

 "arithmetic" type may be assumed to include integer, real, long

 real, complex and long complex.) If an inequality operator is

 used, only types of expressions whose values imply ordering can be

 compared. It is legal to compare integer, real, and long real

 expressions to any integer, real, and long real expressions. It is

 also legal to compare two string expressions. The meaning of an

 inequality comparison between strings is the lexical comparison. A

 string is less than another string if it occurs first in the

 dictionary. Any EBCDIC character is less than another EBCDIC

 character if its integer encoding is less than the integer encoding

 of the other character (see "String Comparisons" in the section

 "Strings" and Appendix B). It is illegal, however, to compare two

 logicals, two bit values, two complex values, or two reference

 values in an inequality relation, because these values are not

 considered ordered values. Also, just as with the equality

 operator, it is illegal to compare expressions whose types do not

 match. (In this context, an "arithmetic" type may be assumed to

 include integer, real and long real.)

 <reference-variable> is an identifier, a subscripted variable or a

 field designator of type reference;

 <record-class-identifier> is an identifier previously declared a

 record class;

 ’is’ tests whether the reference variable specified on the left of

 ’is’ is currently pointing to a record occurrence belonging to the

 record class specified on the right side of ’is’ (see the section

 "Records and References").

 Assume the following declarations in a partial program:

 78 Logicals

 MTS 16: ALGOL W in MTS

 September 1980

 integer I, J;

 real X;

 complex Com, Plex;

 string(20) Coursename;

 record Course(string(20) Name; integer Number);

 comment See the section "Records and References"

 for record class declarations;

 reference(Student,Course) List1, List2;

 logical L, Ll;

 Examples of legal relations:

 2*X <= 4

 Com = Plex

 L ¬= Ll

 Com ¬= I

 Coursename <= "ALGEBRA"

 Note that when string comparisons are made, if the strings are

 of unequal length, the shorter one is extended to the length of

 the longer by padding it with blanks on the right (for the

 comparison only).

 Number(List1) = X

 Here, an integer field of a record occurrence is being compared

 to a real.

 Name(List1) ¬= Name(List2)

 List1 is Student

 has the value ’true’ if and only if List1 is currently pointing

 to a record occurrence belonging to class Student. It is

 ’false’ if it is pointing to a record occurrence of class Course

 or if it contains the value ’null’.

 List1 = List2

 Here, two reference variables are compared. The value is ’true’

 only if both are pointing to the same record occurrence or if

 both have the value ’null’. (Pointing to the same record class

 is not sufficient for a ’true’ value here.)

 Logicals 79

 MTS 16: ALGOL W in MTS

 September 1980

 Examples of illegal relations:

 Com <= I

 Cannot use an inequality operator to compare expressions of any

 types but string, integer, real or long real.

 Com > Plex

 Cannot use an inequality operator to compare expressions of any

 types but string, integer, real or long real.

 List1 is List2

 Operator ’is’ must be followed by a record class identifier, not

 a reference identifier.

 L = I + J

 Cannot compare a logical expression with an integer expression.

 List1 > List2

 Cannot use an inequality operator to compare expressions of any

 types but string, integer, real or long real.

 LOGICAL EXPRESSIONS ___________________

 A logical expression consists of one or more relations, logical

 variables, and/or logical constants ’true’ and ’false’, combined by the

 logical binary operators ’and’, ’or’ or the logical unary operator ¬ or

 ’not’ (both equivalent and signifying not).

 The value of a logical expression formed by using ’and’ is ’true’ if,

 and only if, the values of both operands are ’true’. The value of a

 logical expression formed by using ’or’ is ’false’ if, and only if, the

 values of both operands are ’false’. The operator ¬ or ’not’ changes

 the value of a ’true’ expression to ’false’ and a ’false’ expression to

 ’true’. The following chart illustrates these properties:

 | | | | |

 P | Q | ¬P | ¬Q | P and Q | P or Q

 ────────┼─────────┼─────────┼─────────┼─────────┼─────────
 true | true | false | false | true | true

 false | true | true | false | false | true

 true | false | false | true | false | true

 false | false | true | true | false | false

 80 Logicals

 MTS 16: ALGOL W in MTS

 September 1980

 Examples of logical expressions:

 L and (I <= J) or ¬Ll

 (X + Y) = I

 List1 ¬= null

 L or Ll and P

 (X + Y < I) or (L ¬= Ll) and (I > 5)

 ¬(L and Ll) or (X <= Y)

 P

 Note that although it is syntactically correct, there is never any

 good reason to compare a logical expression with a logical constant.

 Examples:

 P

 has the value ’true’ if P is ’true’ and the value ’false’

 otherwise. An equivalent but unnecessary construct would be:

 P=true

 P is the preferred version.

 ¬P

 has the value ’true’ if P is ’false’ and the value ’true’

 otherwise. An equivalent but unnecessary construct would be:

 P=false

 ¬P is the preferred version.

 Note that there is a potential problem caused by logical variables

 being initialized by Algol W to a value which is taken as neither ’true’

 nor ’false’.

 Example:

 begin

 logical A;

 while ¬A do

 Write("Loop")

 end.

 The above program will loop infinitely, because A is evaluates to

 ’false’, and so ¬A evaluates to ’true’. This may change at some future

 Logicals 81

 MTS 16: ALGOL W in MTS

 September 1980

 date without warning. NO program should EVER depend upon the values of

 uninitialized variables.

 PRECEDENCE __________

 If no parentheses are used to enclose relations within a logical

 expression, the expression is evaluated according to the rules of

 precedence. The following list gives the order of precedence for

 arithmetic, relational, and logical operators in descending order, that

 is the operators on the higher rows are acted on before those on the

 lower rows. The operators on the same rows have equal precedence.

 abs long short

 **

 * / div rem

 + -

 < <= > >= = ¬= is

 ¬

 and

 or

 Example:

 Ll or ¬L and Lll

 is equivalent to:

 Ll or ((¬L) and Lll)

 If no parentheses are used to enclose relations within a logical

 expression containing operators of equal precedence, the expression is

 evaluated from left to right. As much of the expression as is necessary

 to determine the final result will be evaluated. Some elements of the

 expression may therefore not be evaluated.

 LOGICAL ASSIGNMENT STATEMENTS _____________________________

 A logical assignment statement takes the following form:

 <logical-variable> := <logical-expression>

 where:

 <logical-variable> is an identifier, a subscripted variable or a

 field designator of type logical; and

 82 Logicals

 MTS 16: ALGOL W in MTS

 September 1980

 <logical-expression> is as defined previously in this chapter.

 Multiple logical assignment statements are legal and are of the same

 form as arithmetic multiple assignment statements. In other words,

 there must be a logical variable, not an expression on the left side of

 the assignment operator := .

 Logical values may only be assigned to variables of type logical.

 Assume these declarations in a partial program:

 logical Flag, Switch, L;

 integer I, J, K;

 record Student(string(20) Name);

 record Course(integer Num);

 comment See the section "Records and References"

 for declarations of record classes;

 reference(Student,Course) List1, List2;

 Examples of legal assignment statements:

 Switch := true

 L := (I < J) or (J < K)

 L := (I < J) and (J < K)

 Flag := List1 is Student

 Switch := Flag := L

 Flag := Switch := false

 Examples of illegal assignment statements:

 Switch := true := L

 Illegal to have an expression rather than a variable on the left

 side of :=.

 Switch := Flag or L := L

 Illegal to have an expression rather than a variable on the left

 side of := .

 Logicals 83

 MTS 16: ALGOL W in MTS

 September 1980

 PREDECLARED FUNCTIONS _____________________

 Algol W provides a predeclared function of type logical.

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Odd logical integer Returns ’true’ if

 argument is odd

 integer, and ’false’

 if argument

 is even.

 Example:

 Odd(1)

 has the value ’true’.

 84 Logicals

 MTS 16: ALGOL W in MTS

 September 1980

 STRINGS _______

 STRING DECLARATIONS ___________________

 The declaration of a variable of type string takes either of the

 following forms:

 string (<integer-constant>) <identifiers>

 string <identifiers>

 where:

 <integer-constant> is any constant of type integer, in the range of

 1 to 256 inclusive, indicating the number of characters in the

 string;

 <identifiers> are one or more identifiers, each separated from the

 next by a comma, each referring to one string variable.

 Note that the integer following ’string’ must be a constant, not a

 variable. If the <integer-constant> is omitted, as in the second form

 shown above, the length of the string defaults to 16.

 Examples of string declarations:

 string(20) Studentname, Coursename;

 declares two strings, each with a length of 20 characters.

 string(25) array State(1::50);

 declares an array of 50 elements, each of which is a 25-

 character string.

 STRING EXPRESSIONS __________________

 A string expression designates part or all of a given string. It is

 expressed in one of the following forms:

 "<string-constant>"

 <string-variable>

 <string-variable> (<integer-expression>|<integer-constant>)

 Strings 85

 MTS 16: ALGOL W in MTS

 September 1980

 where:

 <string-constant> is any sequence of up to 256 EBCDIC characters,

 listed in Appendix B, and

 <string-variable> is an identifier, a subscripted variable or a

 field designator of type string.

 Each character in a string has a position number, starting with

 position 0 for the leftmost character and ending with position n-1

 for a string of n characters.

 <integer-expression> is any expression which evaluates to a value

 of type integer, and specifies the beginning position within the

 string being designated; and

 <integer-constant> is a constant of type integer, with positive

 value, which specifies the length of the substring designated.

 The sum of the <integer-expression> and the <integer-constant> must

 be no greater than the total length of the string. Note that the

 <integer-constant> must be a constant, not a variable.

 The third form of a <string-expression> is known as a <substring-

 designator>. Both the <string-variable> and the <substring-designator>

 are simple variables of type string. They may be used wherever it is

 legal to use a string variable in an Algol W program, for example on the

 left-hand side of the assignment operator := in a string assignment

 statement.

 The double slash symbol (//) may be used as an alternative to the

 vertical bar (|) in a substring designator.

 Assume the following declarations in a partial program:

 string(8) Word;

 string(10) array State(1::50);

 integer N, J;

 real X, Y;

 Examples of legal string expressions:

 Word

 refers to entire string Word.

 Word(0|8)

 also refers to entire string Word.

 86 Strings

 MTS 16: ALGOL W in MTS

 September 1980

 State(2)(3//6)

 refers to the 4th to 9th characters inclusive, of the second

 string in array State.

 Word(N+J|4)

 refers to the (N+J+1)th to (N+J+4)th characters in the string

 Word.

 Examples of illegal string expressions:

 Word(1|0)

 Illegal to have length = 0.

 Word(N|J)

 Illegal to have variable length.

 State(J)(X|4)

 Illegal to have real position. Position must be integer.

 Word(1|8)

 Illegal for sum of position + length to be greater than total

 length of Word.

 STRING COMPARISONS __________________

 String comparisons allow strings to be alphabetized as well as

 checked for specific values. A string comparison is one example of the

 general relations discussed in the section "Logicals." It is of the

 form:

 <string-expression> <relational-operator> <string-expression>

 where:

 <string-expression> is as defined previously; and

 <relational-operator> can be any one of

 = ¬= < <= > >=

 The symbol ’not =’ may be used in place of ’¬=’.

 Every EBCDIC character has an integer encoding associated with it

 (see Appendix B). Thus, a given string character value is said to be

 Strings 87

 MTS 16: ALGOL W in MTS

 September 1980

 less than another character value if its integer encoding is less than

 the integer encoding of the other character. If two strings being

 compared are not of equal lengths, the shorter one is extended to the

 size of the longer one by appending blanks on the right (for the

 comparison only). Comparison of strings involves a comparison of each

 character in the string. Therefore, two strings will have equal values

 if and only if the corresponding characters in each string are

 identical.

 Examples:

 Comparison Value __________ _____

 "C" < "D" true

 "AB"<"AB " false

 "*" > "F" false

 "2" >="4" false

 "01" = "1" false

 "XY"="XY " true

 If Word is a string of length 9 with the value "ALGEBRAIC", then

 Word(0|4)="ALGE" true

 Word="ALGEBRAIC" true

 Word(5|1)="R" true

 STRING ASSIGNMENT STATEMENTS ____________________________

 A string assignment statement takes either of the following forms:

 <string-variable> := <string-expression>

 <substring-designator> := <string-expression>

 where:

 <string-variable> is an identifier, a subscripted variable, or a

 field designator of type string; and

 <string-expression> and <substring-designator> are as defined

 previously.

 The length of the string on the right side of the assignment operator

 := must be less than or equal to the length of the string on the left

 side. If the length of the string on the right side is shorter than

 that of the string being assigned its value, the rightmost part of the

 left string is padded with blanks. If the string on the left side is a

 substring designator, its rightmost part, out to the length of the

 designated substring, is padded with blanks. The rest of the left

 string is unchanged; if it has not been assigned a value yet, it remains

 undefined.

 88 Strings

 MTS 16: ALGOL W in MTS

 September 1980

 Multiple string assignment statements are legal and are of the same

 form as multiple arithmetic assignment statements. String constants and

 expressions cannot be on the left side of the assignment operator :=.

 Only string variables and substring designators may appear on the left

 side of the assignment operator.

 Assume the following declarations in a partial program:

 string(10) A;

 string(5) Word;

 string(4) Line;

 Examples of legal string assignment statements in a program:

 Word := "WHEN";

 Assigns the first four characters of Word the values W, H, E and

 N respectively. The fifth character is assigned a blank.

 Word(0|3) := Word(1|3);

 Shifts 3 letters in Word to the left. Word now has the value

 HENN followed by a blank.

 Line := Word(0|4);

 assigns Line the value HENN.

 Line := "TT";

 assigns the characters TT to the first two positions in LINE.

 The other two positions are padded with blanks. They do not

 retain their previous values NN.

 Word := Line := "COMP";

 assigns the characters COMP to Line and to Word. Word has a

 blank in its fifth position.

 A(0|5) := "12345";

 assigns the characters 12345 to the first five positions in A.

 The relation A="12345" has a value of ’false’ because the last

 five positions of A are undefined, not blank.

 A(0|5) := "1234";

 assigns the characters 1234 to the first four positions in A.

 The fifth position is a blank and positions six through ten

 remain undefined.

 Assume the following declarations and statements in a partial

 program:

 Strings 89

 MTS 16: ALGOL W in MTS

 September 1980

 string(5) Word;

 string(4) Line;

 Word := "THERE";

 Examples of illegal assignment statements:

 Line := "ABCDE";

 Line := Word;

 Illegal for string on left side of assignment operator := to be

 shorter than string on right side.

 Line := "HERE" := Word(0|4);

 Illegal for string expression to be on left side of :=.

 PREDECLARED FUNCTIONS _____________________

 Algol W provides several predeclared functions dealing with strings.

 In the following table, the characters in the prototype formats are:

 D decimal digit in a mantissa or integer

 E decimal digit in an exponent

 A hexadecimal digit in a mantissa or integer

 B hexadecimal digit in an exponent

 + sign (blank for positive mantissa or integer)

 b blank /

 Each exponent is unbiased. Decimal exponents represent powers of 10;

 hexadecimal exponents represent powers of 16. Each mantissa (except 0)

 represents a normalized fraction less than 1. Leading 0’s are not

 suppressed.

 The internal representation of numeric values on System/370 type

 machines is fully discussed in Appendix J.

 90 Strings

 MTS 16: ALGOL W in MTS

 September 1980

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Decode integer string(1) Integer encoding of

 character (see

 Appendix B)

 Code string(1) integer The character

 corresponding to the

 absolute value of the

 (Argument REM 256)

 (this is the inverse of

 the Decode function)

 Base10 string(12) real String encoding of

 argument with format

 b+EE+DDDDDDD /

 Longbase10 string(20) long real String encoding of

 argument with format

 b+EE+DDDDDDDDDDDDDDD /

 Base16 string(12) real String encoding of

 argument with format

 bb+BB+AAAAAA //

 Longbase16 string(20) long real String encoding of

 argument with format

 bb+BB+AAAAAAAAAAAAAA //

 Intbase10 string(12) integer String encoding of

 argument with format

 b+DDDDDDDDDD /

 Intbase16 string(12) integer Unsigned, two’s

 complement string

 encoding of

 argument with format

 bbbbAAAAAAAA ////

 Date (see the description under "Clock Functions" in

 the section "Miscellaneous Topics")

 Examples:

 Decode("8") - 240

 has the integer value 8.

 Code(230)

 has the string value "W".

 Strings 91

 MTS 16: ALGOL W in MTS

 September 1980

 Intbase10(21)

 has the string value " 0000000021".

 Intbase16(21)

 has the string value " 00000015".

 Intbase10(-21)

 has the string value " -0000000021".

 Intbase16(-21)

 has the string value " FFFFFFEB".

 Base10(5.3’8)

 has the string value " +09 5300001".

 Base16(1.0)

 has the string value " +01 100000".

 92 Strings

 MTS 16: ALGOL W in MTS

 September 1980

 BITS ____

 BITS DECLARATIONS _________________

 The declaration of a variable of type bits takes either of the

 following forms:

 bits <identifiers>

 bits (32) <identifiers>

 where:

 <identifiers> is a list of one or more identifiers, each separated

 by a comma, each representing a bits variable.

 The (32) part of the ’bits’ declaration is optional in that a

 variable of type bits is always of length 32, whether or not this is

 included in the declaration.

 CONSTANTS _________

 Bits constants are specified by a hash mark (#), followed by a

 sequence of 1 to 8 hexadecimal digits, representing 32 binary digits

 (see "Bits" in the section, "Values and Types").

 SIMPLE BITS EXPRESSIONS _______________________

 A <simple-bits-expression> consists of one or more bits constants

 and/or bits variables, combined by the logical operators ’and’, ’or’, ¬

 or ’not’ (both meaning not). A bits variable is referred to by an

 identifier, a subscripted variable or a field designator of type bits.

 Examples of <simple-bits-expressions>:

 A and ¬B

 (X or Y) and (C or ¬D)

 A or #0000005A

 The operator ¬ or ’not’ changes all 0’s in a bits sequence to 1’s and

 vice versa. The 0 in a simple bits expression corresponds to ’false’ in

 a logical expression, and the 1 corresponds to ’true’. The value of

 Bits 93

 MTS 16: ALGOL W in MTS

 September 1980

 each bit of a simple bits expression formed by using ’and’ is 1 if, and

 only if, both bits in corresponding positions are 1. The value of each

 bit of a simple bits expression formed by using ’or’ is 0 if, and only

 if, both bits in corresponding positions are 0. The following chart

 illustrates this:

 |

 X Y | ¬X X and Y X or Y

 ─────────┼───────────────────────────
 0 0 | 1 0 0

 0 1 | 1 0 1

 1 0 | 0 0 1

 1 1 | 0 1 1

 |

 BITS EXPRESSIONS ________________

 A bits expression takes one of the following forms:

 <simple-bits-expression> <shift-operator> <integer-expression>

 <simple-bits-expression>

 where:

 <simple-bits-expression> is as defined above;

 <shift-operator> is either ’shl’, meaning shift left, or ’shr’,

 meaning shift right;

 <integer-expression> can be any arithmetic expression of type

 integer.

 The absolute value of the integer expression gives the number of

 positions the bits value is to be shifted. Vacated bit positions are

 assigned the value 0.

 Assume the following declarations and assignments in a partial

 program:

 bits A, B;

 integer I;

 A := #00000002;

 B := #0000001E;

 I := 16;

 94 Bits

 MTS 16: ALGOL W in MTS

 September 1980

 Examples of bits expressions:

 A or (B shl 2)

 has the value #0000007A

 B or A

 has the value #0000001E

 ¬(B or A)

 has the value #FFFFFFE1

 (¬(B or A)) shr 7

 has the value #01FFFFFF

 A and ((¬(B or A)) shr 7)

 has the value #00000002

 A shl (-8)

 has the value #00000200

 B shl (2*I)

 has the value #00000000

 PRECEDENCE __________

 If no parentheses are used to enclose simple bits expressions within

 a bits expression, the expression is evaluated according to the rules of

 precedence. The following lists the order of precedence for arithmetic,

 relational, logical, and shift operators, in descending order: the

 operators on the higher rows are acted on before those on lower ones.

 Those operators on the same row have equal precedence.

 long short abs

 ** shl shr

 * / div rem

 + -

 < <= > >= = ¬= is

 ¬

 and

 or

 Bits 95

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 A and ¬B or A shr 7

 is equivalent to

 (A and (¬B)) or (A shr 7)

 If no parentheses are used to enclose simple bits expressions within

 a bits expression containing operators of equal precedence, the expres-

 sion is evaluated from left to right.

 The evaluation of operators is completely specified in the descrip-

 tion above. However, the evaluation of order of the left and right

 operands of a binary operator is unspecified and may occur in any order.

 because of this fact, a potential problem exists when a function

 implicitly changes a variable used elsewhere in the same expression.

 The result of the evaluation is unpredictable and such cases should be

 avoided.

 BITS ASSIGNMENT STATEMENTS __________________________

 A bits assignment statement takes the following form:

 <bits-variable> := <bits-expression>

 where:

 <bits-variable> is an identifier, a subscripted variable or a field

 designator of type bits and

 <bits-expression> is as defined above.

 Multiple assignment statements are legal and are of the same form as

 arithmetic multiple assignment statements. In other words, there must

 be a bits variable, not an expression on the left side of the assignment

 operator := .

 Bits values may only be assigned to variables of type bits.

 Examples of legal assignment statements:

 A := #0000596B;

 B := A or B shl 18;

 B := #5943A260 shr 4;

 C := B := (C and ¬B) shl 5;

 96 Bits

 MTS 16: ALGOL W in MTS

 September 1980

 PREDECLARED FUNCTIONS _____________________

 Algol W provides two predeclared functions dealing with bits.

 Function Function Argument

 Identifier Type Type Meaning

 ───

 Bitstring bits integer Binary representation

 of integer argument

 Number integer bits Integer corresponding

 to bits argument

 A discussion of the two’s complement internal representation of integer

 values on System/370 type machines will be found in Appendix J. For

 example:

 begin

 bits Y, Z;

 integer I, J;

 Y := #AB69;

 I := 4580;

 Z := Bitstring(I);

 J := Number(Y);

 I_W := 1;

 Write(Y, "is equivalent to the integer ", J);

 Write(I, "is equivalent to the bits value ", Z)

 end.

 The output from this program is:

 #0000AB69 is equivalent to the integer 43881

 4580 is equivalent to the bits value #000011E4

 The assignment of the format variable I_W used in the above program is

 explained in the section "Basic Input and Output."

 Bits 97

 MTS 16: ALGOL W in MTS

 September 1980

 98 Bits

 MTS 16: ALGOL W in MTS

 September 1980

 PROCEDURES __________

 Procedures are subprograms, which can either be part of an Algol W

 program or can stand alone as programs. If they stand alone as programs

 however, they cannot be executed directly. They are executed when

 called from other Algol W programs. Procedures which do not stand alone

 are executed when called from the program in which they have been

 declared.

 One reason for using procedures is to avoid repeating code. If an

 algorithm is needed more than once in a given program, it is convenient

 to be able to use it without duplicating the identical code in several

 places. It is also much easier to debug a program if errors are

 confined to one segment of the program. In addition, a program’s

 clarity and readability increase greatly if it is divided into subpro-

 grams each of which serves a specific purpose.

 A procedure is viewed as a block. Therefore, any variables declared

 within a procedure are local to that block. In other words, they are

 accessible only within that procedure. Any variables used within a

 procedure must either be declared within that procedure, or be global

 (that is must be declared within one of the blocks which includes the

 procedure declaration). Since procedure declarations follow the same

 rules as variable declarations, any procedure A within a program can

 call another procedure B within the same program, provided that B is

 local or global (that is accessible) to the block which contains A. The

 global variables which a procedure can reference and the procedures it

 can call are determined by where the procedure is defined, not by where

 it is called. The same scope rules that apply to identifiers in

 general, apply to procedure identifiers in particular (see "Blocks" in

 the section "Statements").

 There are two types of procedures in Algol W: proper procedures and

 function procedures.

 PROPER PROCEDURES _________________

 A proper procedure is a subordinate program which can be called by a

 procedure statement (see below). Two examples of predeclared proper

 procedures, which are already written and accessible to the Algol W

 user, are Read and Write.

 Procedures 99

 MTS 16: ALGOL W in MTS

 September 1980

 Declarations ____________

 The form of a proper procedure declaration is:

 procedure <procedure-heading>; <statement>

 where:

 <procedure-heading> is either an identifier naming the procedure or

 an identifier followed by a parenthesized formal parameter list (to

 be discussed later);

 the semicolon (;) serves to separate the <procedure-heading> from

 the <statement>; and

 <statement> can be any legal <statement> as defined at the

 beginning of the section "Statements." In this context <statement>

 is often referred to as the <procedure-body>.

 A procedure declaration within an Algol W program must be separated

 from the succeeding declaration or statement by a semicolon (;). Note

 that a procedure declaration, including the heading and body, consti-

 tutes a declaration within a program. Therefore, it must occur in the

 correct order: before the <statements> of the program or block. When a

 proper procedure is not being declared within a program but instead is

 standing alone to be called by other Algol W programs, a period (.)

 replaces the semicolon (;) after the <statement> part of the

 declaration.

 Proper Procedures without Formal Parameters ___

 The following gives an example of a program that declares and then

 calls a proper procedure without a formal parameter list. A <procedure-

 statement> is a call to a proper procedure. The form of a <procedure-

 statement> in this case is simply:

 <identifier>

 where:

 <identifier> is the name of the procedure given in the procedure

 heading.

 100 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 real Sum, X, Y; integer N;

 procedure Add;

 begin

 Sum := X + Y;

 Write(Sum)

 end Add;

 Read(N);

 for I := 1 until N do

 begin

 Read(X, Y);

 Add

 end

 end.

 If the following data are used:

 3

 1.2 4.5

 5.6 10.8

 7. 3.9

 the output from the program is:

 5.700000

 16.39999

 10.90000

 This program calls the procedure Add by a <procedure-statement> consist-

 ing only of the identifier naming the procedure, in this case:

 Add

 In the example above, no local variables are declared. All variables

 declared in the main program are global and thus accessible by all

 procedures within that program. In this case Sum, X and Y are global

 variables accessed by the procedure Add.

 An important feature illustrated by this program is the special use

 of a comment without the reserved word ’comment’. The "Add" which

 appears after the ’end’ indicating the end of the procedure declaration

 is a comment. It serves to clarify to the person reading the program

 where procedures and other blocks end. The rule is that if an

 identifier is inserted in between an ’end’ and a reserved word, a

 semicolon (;) or a period (.) the identifier is regarded as a comment.

 Procedures 101

 MTS 16: ALGOL W in MTS

 September 1980

 Proper Procedures with Formal Parameters __

 A procedure with parameters is more easily transferable among and

 within programs than one without any. Procedures with formal parameters

 do not have to rely on global variables. A main program or another

 procedure can call a procedure with formal parameters and provide values

 for variables at the time of the call.

 The form of a proper procedure declaration with formal parameters is:

 procedure <identifier> (<formal-parameter-list>); <statement>

 where:

 <identifier> and <statement> are as defined above;

 the semicolon (;) separates the procedure heading from the proce-

 dure body; and

 <formal-parameter-list> is a list of declarations of formal parame-

 ters, each separated by a semicolon (;), just like declarations in

 a block. The declarations can be of simple variables, arrays and

 procedures.

 An identifier is local to a procedure if it is a formal parameter in

 the procedure declaration.

 Warning: Of necessity, this example and others in this section

 introduce procedure parameters which are of the default "name" type.

 There are excellent reasons for using the non-default ’value’, ’result’

 or ’value result’ types. Users are recommended to read the Section

 "Parameter Passing Conventions" later in this chapter before attempting

 to code procedures.

 Example:

 procedure Add(integer A, B);

 begin

 real Sum;

 Sum := A + B;

 Write(Sum)

 end;

 A and B are formal parameters and, as such, valid identifiers within the

 procedure Add. However, they are not accessible outside the procedure.

 Sum is local to the procedure block in which it is declared. Note that

 the identifier Add is itself part of a declaration and is local to the

 block which contains it.

 Each declaration in the formal parameter list has one of the

 following formats:

 102 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 (1) Simple variable declarations

 <simple-type> <identifiers>

 where:

 <simple-type> can be ’integer’, ’real’, ’long real’, ’com-

 plex’, ’long complex’, ’bits’, ’bits (32)’, ’string’,

 ’string (<integer-constant>)’, ’logical’, or ’reference

 (<record-class-identifier>)’; and

 <identifiers> is a sequence of identifiers, each separated

 from the next by a comma.

 Example:

 procedure Add(real X, Y; integer N);

 (2) Array declarations

 <simple-type> array <dimension-spec> <identifiers>;

 where:

 <simple-type> and <identifiers> are as defined above; and

 <dimension-spec> is a list of asterisks (*)’s, each sepa-

 rated from the next by a comma, each indicating a dimension

 of the array. Arrays declared as formal parameters in

 procedures do not specify the bounds of each dimension.

 The number of *’s given in the <dimension-spec> equals the

 number of dimensions in the array. By not requiring

 specification of array size in procedure declarations,

 Algol W provides the flexibility of allowing variable-

 length arrays to be passed as arguments to procedures.

 Examples:

 procedure Add(real array Score(*); integer N);

 procedure Deter(real array Matrix(*,*); integer Col, Row);

 (3) Procedure declarations

 A procedure declaration in a formal parameter list takes one of

 the following forms:

 procedure <identifiers>

 <simple-type> procedure <identifiers>

 where:

 Procedures 103

 MTS 16: ALGOL W in MTS

 September 1980

 <identifiers> and <simple-type> are as defined above;

 the first form indicates a proper procedure declaration;

 and

 the second form indicates a function procedure declaration

 (see below). Note that a procedure declared as a formal

 parameter cannot have a formal parameter list or a proce-

 dure body.

 The <procedure-statement> used to call a procedure with a formal

 parameter list is:

 <identifier> (<argument-list>)

 where:

 <identifier> is the name of the procedure; and

 <argument-list> is a sequence of items, each separated from the

 next by a comma, and corresponding in type and order to the

 parameters declared in the formal parameter list. The items can be

 variables, expressions, procedure identifiers, array identifiers

 and partial arrays. The <argument-list> must have the same number

 of entries as the <formal-parameter-list>. The <argument-list> is

 also known as the <actual-parameter-list>.

 The following is an example of a program using a procedure with

 formal parameters and a procedure statement with a corresponding

 argument list. It is another version of the same procedure Add

 previously given without parameters.

 begin

 real X, Y;

 integer N;

 procedure Add(real A, B);

 begin

 real Total;

 Total := A + B;

 Write(Total)

 end Add;

 comment Body of main program starts here;

 Read(N);

 for I:= 1 until N do

 begin

 Read(X, Y);

 Add(X, Y)

 end

 end.

 104 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 If the same data as above are used the output is identical. The

 difference is in the execution of the procedure statement. In both

 cases the body of the procedure Add is executed. However, in the

 program using the Add procedure with formal parameters, the names of the

 arguments are passed to the procedure and the argument items are

 evaluated in place of the formal parameters with which they correspond.

 In other words, the procedure with parameters is not dependent on

 specific global variables. The use of formal parameters allows greater

 flexibility and control of data flow than that provided by global

 variables.

 An example of a procedure used as a parameter:

 begin

 real array X(1::10);

 .

 .

 comment procedure Plot has a procedure

 as a formal parameter;

 procedure Plot(real procedure F; integer Size);

 begin

 for I := 1 until 10 do

 begin

 X(I) := X(I) + Size;

 X(I) := F(X(I))

 end

 end Plot;

 comment procedure Ellipsoid

 is a function procedure;

 real procedure Ellipsoid(real Z);

 begin

 real T;

 .

 . ;

 T

 end Ellipsoid;

 comment Main program calls Plot, passing the

 procedure Ellipsoid as the argument

 corresponding to the formal parameter F;

 Plot(Ellipsoid, 1);

 .

 .

 end.

 Note that procedure F is not followed by a parameter list when it is

 declared as a formal parameter of the procedure Plot. However, when the

 main program passes Ellipsoid to procedure Plot, the number of arguments

 given in the function invocation F(X(I)) must match the number of formal

 parameters declared in the procedure Ellipsoid.

 Procedures 105

 MTS 16: ALGOL W in MTS

 September 1980

 PARTIAL ARRAYS ______________

 The items in the <argument-list> can be variables (that is identi-

 fiers, subscripted variables, field designators or substring designa-

 tors), procedures and partial or whole arrays.

 Passing whole arrays as arguments in a procedure statement is legal

 if the number of dimensions in the argument array matches the number of

 *’s in the formal parameter array. It is also possible to pass part of

 an array.

 For example, if a procedure is written with a one-dimensional array

 as a formal parameter, it is legal to pass one row or one column of a

 two-dimensional array as an argument to this procedure. The array

 argument is expressed as follows: the integer expression of the

 dimension desired is given and the remaining dimensions are specified by

 *’s.

 Assume the following declarations in a partial program:

 real array Matrix(1::10,5::10);

 real array Cube(1::10,5::10,1::5);

 procedure Find(real array A(*));

 procedure Look(real array B(*,*));

 Examples of legal procedure statements:

 Find(matrix(6,*))

 calls the procedure Find for the 6th row, all columns of array

 Matrix.

 Look(Cube(*,4,*))

 calls the procedure Look for the 4th column of the 3-dimensional

 array Cube.

 Find(Cube(3,2,*))

 calls the procedure Find for the 3rd row, second column of the

 3-dimensional array Cube.

 Note that in a procedure statement passing a partial array as an

 argument, the number of *’s in the argument list must equal exactly the

 number of asterisks in the formal parameter list. This means that the

 correct number of dimensions is being passed.

 106 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 FUNCTION PROCEDURES ___________________

 A function procedure is a procedure that returns a value. The

 function itself is treated as an expression which means that its value

 can be assigned to variables with which it is assignment compatible and

 it can be used as an argument in procedure statements. Predeclared

 function procedures, such as Sqrt, Sin and Cos, are already written and

 accessible to the Algol W user. A function procedure is generally

 preferred over a proper procedure when only one value needs to be

 returned.

 Declarations ____________

 A function procedure declaration takes the following form:

 <simple-type> procedure <procedure-heading>; <expression>

 where:

 <simple-type> can be ’integer’, ’real’, ’long real’, ’complex’,

 ’long complex’, ’logical’, ’string’, ’string (<integer-constant>)’,

 ’bits’, ’bits (32)’ or ’reference (<record-class-identifier>)’;

 <procedure-heading> is either an identifier naming the procedure or

 an identifier followed by a parenthesized formal parameter list;

 the semicolon (;) is necessary to separate the <procedure-heading>

 from the <expression>, which in this context is called the

 <procedure-body>; and

 <expression> can be any legal expression, including a <block-

 expression>, assignment compatible with the <simple-type>; <block-

 expression> is a block (see "Block Expressions" in the section

 "Constants, Variables, Expressions and Values") of the following

 form:

 begin

 <declarations>;

 <statements>;

 <expression>

 end

 where:

 <declarations> in the <block-expression> is optional; <expres-

 sion> is as defined above.

 Note that the <expression> in a <block-expression> may never be followed

 by a semicolon.

 Procedures 107

 MTS 16: ALGOL W in MTS

 September 1980

 The value of the <expression> is the value of the function procedure.

 Function Procedures without Formal Parameters ___

 There is no function procedure statement. A function invocation is

 an expression and is invoked using the following form:

 <identifier>

 where:

 <identifier> is the name of the function procedure.

 The following program gives an example of a function procedure

 without parameters and a Write statement which uses the function as an

 argument:

 begin

 real X, Y;

 integer N;

 real procedure Max;

 if X < Y then Y else X;

 Read(N);

 for I := 1 until N do

 begin

 Read(X, Y);

 Write(Max)

 end

 end.

 This program reads a sequence of N pairs of numbers, and outputs the

 maximum of each pair. Using the data:

 3

 1.2 4.5

 5.6 10.8

 7 3.9

 the output from the program is:

 4.500000

 10.80000

 7.000000

 108 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 Function Procedures with Formal Parameters __

 The same reasons and rules for using parameters in proper procedures

 apply to function procedures. The function procedure is invoked using

 the following form:

 <identifier> (<argument-list>)

 where:

 <identifier> is the name of the function procedure and

 <argument-list> is a sequence of items, each separated from the

 next by a comma, and corresponding in type and order to the

 parameters declared in the formal parameter list. The items can be

 variables, expressions, procedure identifiers, array identifiers

 and partial arrays. The <argument-list> must have the same number

 of entries as the <formal-parameter-list>.

 The following program gives an example of a function procedure using

 parameters:

 begin

 real Sum_Prod, Num1, Num2;

 integer N;

 real procedure Product(real A, B);

 begin

 real X;

 X := A * B;

 X

 end Product;

 Sum_Prod := 0;

 Read(N);

 for I := 1 until N do

 begin

 Read(Num1, Num2);

 Sum_Prod := Sum_Prod + Product(Num1,Num2)

 end;

 Write(Sum_Prod)

 end.

 This program reads a sequence of N pairs of numbers, obtains the product

 of each pair, adds the products together, and outputs the sum of the

 products.

 Procedures 109

 MTS 16: ALGOL W in MTS

 September 1980

 PARAMETER PASSING CONVENTIONS _____________________________

 When a procedure is called, the execution of the calling program is

 temporarily suspended and the body of the procedure is executed. The

 formal parameters take on values in various ways depending on the

 parameter passing conventions specified by the user. After execution of

 the procedure body has terminated, control returns to the calling

 program immediately following the procedure statement or function

 invocation.

 There are several possible ways in which the arguments (that is

 actual parameters) can be passed to the procedure. Depending on the

 user’s specifications, the formal parameters of a procedure (proper or

 function) can be call by name, call by value, call by result or call by

 value result.

 Call by Name ____________

 The programs above have all been written using name parameters. When

 a procedure with this type of parameters is called, the names (as

 opposed to the values) of the arguments are passed to the procedure.

 This has several important implications. First, the types of the

 arguments and the corresponding formal parameters must match exactly.

 It is not enough to have assignment compatibility. Note that for

 passing strings, this means that the string lengths must be equal.

 Second, when a procedure with a call by name formal parameter is

 invoked, the value of the argument variable or expression is not

 evaluated at the time of the procedure call. In other words, when the

 arguments are assigned to the formal parameters of the procedure (which

 occurs at the time of the procedure call), only the name is associated.

 The value of the variable or expression is only evaluated during

 execution of the procedure, each time the formal parameter is

 referenced. Third, changing the value of the formal parameter inside

 the procedure has the effect of changing the value of the corresponding

 argument. This process obviously involves added expense and is the

 reason that call by name should not be used in most Algol W programs.

 In fact, call by name should be used only if it is necessary to

 re-evaluate the value of the argument, that is actual parameter, in the

 course of execution of the procedure. Arrays and procedures can only be

 name parameters. Otherwise, call by value (see below) is a better

 choice. However, call by name is the default in Algol W: the user must

 specify explicitly if another parameter passing convention is desired.

 An example of a partial program with a procedure using name

 parameters:

 110 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 .

 .

 real procedure Integrate(long real X, Val);

 begin

 real Integral;

 Integral := 0;

 while X <= 1.0 do

 begin

 X := X + 0.1;

 Integral := Integral + Val*0.1

 end While_Loop;

 Integral

 end Integrate;

 .

 .

 .

 Write("Integral of Z**2 = ", Integrate(Z,Z**2))

 end.

 The above procedure illustrates the main advantage of using name

 parameters. The procedure Integrate can be evaluated many times with

 different values for Z and Z squared each time. Each time X or Val is

 encountered during the execution of the procedure Integrate, the value

 of Z or Z**2 is evaluated, respectively. If a parameter passing

 convention other than call by name were used, the value of X would be

 initialized to the value of Z at the time of the function invocation:

 Integrate(Z,Z**2))

 and would only change when incremented within the procedure. The value

 of Val would be initialized to the value of Z**2 at the time of the

 function invocation and would remain the same value throughout the

 execution of the procedure. Using name parameters allows Z**2 to be

 re-evaluated for new values of Z.

 Call by Value _____________

 Call by value is specified by inserting the reserved word ’value’

 after the <simple-type> in the formal parameter declaration. Call by

 value is a legal specification for formal parameters other than arrays

 or procedures. Arrays and procedures must be name parameters.

 Call by value indicates that the value of the argument in the

 procedure statement or function call is to be passed to the procedure

 body. This means that the type of the argument need only be assignment

 compatible with the corresponding formal parameter. It does not have to

 match exactly. For example, it is legal to have a ’real value’ formal

 parameter and a corresponding ’integer’ argument. The length of a

 string argument can be less than or equal to the length of the

 Procedures 111

 MTS 16: ALGOL W in MTS

 September 1980

 corresponding formal parameter. An argument passed to a call by value

 formal parameter can be an expression, a variable or a constant. When a

 procedure with a call by value parameter is invoked, the value of the

 argument is evaluated only once at the time of parameter assignment.

 Call by value is thus "safer" than any other calling type, because, if

 the formal parameter is changed in the procedure body, this has no

 effect on the value of the argument. Call by value is more efficient

 than call by name and should be used whenever only the value of the

 argument is needed and when it is not necessary to change the value.

 After the procedure has been executed, the value of the argument

 corresponding to the ’value’ parameter still has the same value it did

 at the time the procedure was called initially. To retain the result of

 changes to the formal parameter without using name parameters, use call

 by result or value result (described later).

 This program uses name parameters and the next similar program uses

 value parameters: they show the different effects of the two types.

 begin

 procedure A(long real S, T);

 begin

 Write(S, T);

 S := 5;

 Write(S, T)

 end;

 procedure B;

 begin

 long real Z;

 Z := 10;

 A(Z, Z**2);

 Write(Z)

 end;

 comment Main program starts here;

 B

 end.

 The output from the program above, which declares name parameters in

 procedure A, is:

 10.00000 100.0000

 5.000000 25.00000

 5.000000

 112 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 Using value parameters, the program would be coded:

 begin

 procedure A(long real value S, T);

 begin

 Write(S, T);

 S := 5;

 Write(S, T)

 end;

 procedure B;

 begin

 long real Z;

 Z := 10;

 A(Z, Z**2);

 Write(Z)

 end;

 comment Main program starts here;

 B

 end.

 The output from the program above is:

 10.00000 100.0000

 5.000000 100.0000

 10.00000

 Note that the change in the value of the formal parameter S did not

 change the value of the argument Z in the program where S is call by

 value, but did change the value of Z in the program specifying S as call

 by name. Notice also that Z**2 is evaluated only once when T is call by

 value and retains the value 100. When T is call by name, Z**2 is

 evaluated twice: once for each reference to T and has a new value the

 second time. Another interesting comparison: if real had been used in

 place of long real, the program with ’value’ parameters would have

 produced the same output. However, the program with name parameters

 would have resulted in an error message:

 Mismatched parameter

 because Z**2 is always long real and thus, would not match its

 corresponding real formal parameter T.

 Call by Result ______________

 Call by result is specified by inserting the reserved word ’result’

 after the <simple-type> declaration of the formal parameter. The

 purpose of call by result is to assign the value of the ’result’ formal

 Procedures 113

 MTS 16: ALGOL W in MTS

 September 1980

 parameter at the end of the procedure to the corresponding argument in

 the procedure call. Therefore, the argument passed to a ’result’

 parameter must be a variable. It cannot be a constant or an expression.

 The reason for this rule is the same as the one requiring a variable on

 the left-hand side of the assignment operator := . Also, the type of

 the formal parameter must be assignment compatible with the type of the

 corresponding argument. The length of a string argument must be greater

 than or equal to the length of the corresponding formal parameter. Note

 that the direction of compatibility necessary is the reverse for ’value’

 parameters. This illustrates the principle that the length of the

 receiving string variable must be big enough to accommodate the other

 string. The value of an argument corresponding to a ’result’ formal

 parameter is undefined until the formal parameter is assigned a value in

 the procedure body.

 Call by Value Result ____________________

 When it is desirable both to initialize the value of a parameter and

 to save its modified value for use outside the procedure, it is possible

 to combine both call by value and call by result for a given parameter

 by specifying ’value result’ after the <simple-type> in the formal

 parameter declaration.

 The rules for value result arguments comprise both sets of rules for

 call by value and for call by result. The arguments must be variables,

 not expressions or constants. The assignment compatibility between the

 types of the formal parameter and the corresponding argument must exist

 in both directions. Note that this is still not as strict a requirement

 as the exact matching necessary for name parameters. For example a

 ’real’ argument and a ’long real’ formal parameter or vice versa would

 be legal for call by value result but not for call by name. However,

 string lengths of the formal parameter and corresponding argument must

 be equal.

 The sequence of events in a call by value result specification is as

 follows: when the procedure is invoked, the value of the argument is

 evaluated, the value is passed to the corresponding formal parameter,

 the procedure body is executed and the final value of the formal

 parameter is then assigned to the argument. Call by value result is

 often similar in effect to call by name. However, when call by value

 result is used, the value of the argument is evaluated only once. In

 call by name, the value is evaluated each time the corresponding formal

 parameter is referenced in the procedure body.

 Note that all four parameter passing conventions may be used freely

 within procedures, that is a given procedure (proper or function) may

 have different parameters using different conventions.

 The following program illustrates some of the above parameter passing

 conventions in its procedures:

 114 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 comment

 This program reads a given number Num of marks

 into an array Mark. It sorts the array Mark

 in descending order using the procedure

 Sort. It first prints the Marks in their original

 order, then in sorted order. Next, it

 calculates and prints the median,

 using the function procedure Median. Finally, it

 calls the procedure Mode to determine whether or

 not there is a mode and, if so, prints its value. ;

 begin

 integer Num;

 Read(Num);

 begin

 real array Mark(1::Num);

 logical Multiple;

 real Most_Freq_Mark;

 comment procedure Sort sorts an array of length

 N, in descending order. See sample

 program in the section "Arrays," for

 details of sorting method. ;

 procedure Sort(real array Score(*); integer value N);

 begin

 integer Large, First_Unor_Subs;

 for I := 2 until N do

 begin

 Large := First_Unor_Subs := I - 1;

 for J := I until N do

 if Score(Large) < Score(J)

 then Large := J;

 if Large ¬= First_Unor_Subs then

 begin

 real Temp;

 Temp := Score(First_Unor_Subs);

 Score(First_Unor_Subs) := Score(Large);

 Score(Large) := Temp

 end

 end

 end Sort;

 comment

 Mode is a proper procedure which inputs two ’value’

 parameters Score and N, which don’t change

 throughout the procedure. It returns two ’result’

 parameters Many and Hiscor, whose values are

 assigned to the arguments Multiple and

 Most_Freq_Mark, respectively.

 Mode searches the array and returns a logical

 value Many, indicating whether or not there is

 Procedures 115

 MTS 16: ALGOL W in MTS

 September 1980

 more than one mode, and a value for Hiscor, the

 mode, that is the unique value which occurs most

 frequently in the array. Curscore stands for the

 current element of the array. Oldscore is the

 previous element. Count is the number of times a

 Curscore has occurred in the already sorted array.

 Hifreq is the highest value of Count and shows

 the number of the times the current Hiscor has

 occurred. The scheme is as follows: the ’for’ loop

 goes down the ordered array, keeping track of how

 often the same Curscore occurs, by incrementing

 Count. When two scores differ, a check is made to

 see whether or not the Curscore occurred more

 often than the current Hiscor. If so, the logical

 variable Many is set to ’false’ and new values for

 Hiscor and Hifreq are set. If there is a tie,

 Many is set to ’true’ and the old values remain.

 If the Curscore occurred less often than Hiscor,

 nothing is changed. Now the procedure looks at

 the next score in the array, resetting the Count

 to 1. At the end of the procedure, Many indicates

 whether there is indeed one Hiscor and Hiscor is

 the mode. ;

 procedure Mode(real array Score(*); integer value N;

 logical result Many; real result Hiscor);

 begin

 real Curscore, Oldscore;

 integer Count, Hifreq;

 Oldscore := Score(1);

 Hifreq := 1;

 Many := true;

 Count := 1;

 for I := 2 until N do

 begin

 Curscore := Score(I);

 if Curscore ¬= Oldscore then

 begin

 if Count > Hifreq then

 begin

 Many := false;

 Hiscor := Oldscore;

 Hifreq := Count

 end else

 if Count = Hifreq then Many := true;

 Oldscore := Curscore;

 Count := 1

 end else

 Count := Count + 1

 end

 end Mode;

 comment

 116 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 Median is a function procedure which returns a

 real-valued expression. Its body consists of

 one conditional expression. If Number is even,

 the Median = the mean of the two middle scores.

 If Number is odd, the Median = the middle score. ;

 real procedure Median(real array Grades(*);

 integer value Number);

 if Number rem 2 = 0 then

 (Grades(Number div 2)

 + Grades(Number div 2 + 1)) / 2

 else

 Grades(Number div 2 + 1);

 comment Main program begins here ;

 comment The following three I/O commands to limit output

 to 1 decimal place. See the section "Basic

 Input and Output" ;

 R_Format := "A"; R_W := 5; R_D := 1;

 for I := 1 until Num do

 begin

 Readon(Mark(I));

 if (I rem 5) = 1 then Write(" ");

 Writeon(Mark(I))

 end;

 Write(" ");

 Sort(Mark, Num);

 for I := 1 until Num do

 begin

 if (I rem 5) = 1 then Write(" ");

 Writeon(Mark(I))

 end;

 Write(" ");

 Write("Median= ", Median(Mark,Num));

 Mode(Mark, Num, Multiple, Most_Freq_Mark);

 if ¬Multiple then

 Write("Mode =", Most_Freq_Mark)

 else

 Write("There is no unique mode")

 end

 end.

 The following data:

 20

 67.1 86.2 61.9 81.7

 66.4 31.7 98.1 89.4

 19.8 54.7 70.5 99.2

 58.2 70.5 96.4 58.2

 72.1 77.0 22.4 58.2

 Procedures 117

 MTS 16: ALGOL W in MTS

 September 1980

 produce the resulting output:

 67.1 86.2 61.9 81.7 66.4

 31.7 98.1 89.4 19.8 54.7

 70.5 99.2 58.2 70.5 96.4

 58.2 72.1 77.0 22.4 58.2

 99.2 98.1 96.4 89.4 86.2

 81.7 77.0 72.1 70.5 70.5

 67.1 66.4 61.9 58.2 58.2

 58.2 54.7 31.7 22.4 19.8

 Median = 68.8

 Mode = 58.2

 RECURSIVE PROCEDURES ____________________

 A recursive procedure is one which calls itself directly or indirect-

 ly. Recursive procedures are allowed in Algol W.

 An example of a recursive function procedure is the following one

 which calculates the number N! (N factorial):

 integer procedure Factorial(integer value N);

 if N = 0 then 1 else N * Factorial(N-1);

 The above example is traditionally used to introduce recursion. However

 it should be pointed out that if an actual program required factorial

 evaluation many times during a run, it would be more efficient to

 initialise an integer array with the values of the factorial subscripts

 rather than re-evaluate the factorial each time.

 The following program illustrates the use of a recursive procedure to

 solve the Towers of Hanoi problem. The Towers of Hanoi problem involves

 three rods with any number of disks. The disks are all of different

 sizes. To start with, all the disks are on one rod in order of size,

 the largest on the bottom. The problem is to move all the disks to

 another rod so that they are again in the same order. The constraints

 are that only one disk at a time can be moved, and that the disks on a

 rod always be in order of size, the largest on the bottom.

 The recursive procedure Movedisks moves a given number of disks from

 Rod_A to Rod_C. The smallest numbered disk corresponds to the smallest

 (and thus highest) disk.

 118 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 integer No_Disks;

 procedure Movedisks(integer value N;

 string(1) value Rod_A, Rod_C, Rod_B);

 begin

 if N > 0 then

 begin

 comment Moves top N-1 disks from Rod A to

 temporary Rod B;

 Movedisks(N-1, Rod_A, Rod_B, Rod_C);

 comment Moves last (bottom) disk from

 Rod A to Rod C;

 Write("Move disk number ", N, "from rod ",

 Rod_A, " to rod ", Rod_C);

 comment Moves same N-1 disks from Rod B

 to Rod C;

 Movedisks(N-1, Rod_B, Rod_C, Rod_A)

 end

 end Movedisks;

 comment Main program starts here;

 Read(No_Disks); I_W := 2;

 Write("Total number of disks is ", No_disks);

 Write(" ");

 Movedisks(No_Disks, "A", "C", "B")

 end.

 If the data file consists of:

 4

 meaning 4 disks, the output is:

 Total number of disks is 4

 Move disk number 1 from rod A to rod B

 Move disk number 2 from rod A to rod C

 Move disk number 1 from rod B to rod C

 Move disk number 3 from rod A to rod B

 Move disk number 1 from rod C to rod A

 Move disk number 2 from rod C to rod B

 Move disk number 1 from rod A to rod B

 Move disk number 4 from rod A to rod C

 Move disk number 1 from rod B to rod C

 Move disk number 2 from rod B to rod A

 Move disk number 1 from rod C to rod A

 Move disk number 3 from rod B to rod C

 Move disk number 1 from rod A to rod B

 Move disk number 2 from rod A to rod C

 Move disk number 1 from rod B to rod C

 Procedures 119

 MTS 16: ALGOL W in MTS

 September 1980

 EXTERNALLY DEFINED PROCEDURES _____________________________

 Procedures which are defined outside the Algol W program that calls

 them can either be Algol W procedures or else subprograms that follow

 O/S Type I (Fortran) linkage conventions. These are independently

 compiled and stand alone as programs (see the beginning of this

 chapter).

 For further details of how to code and call such procedures and

 subprograms, see the section "External Linkages."

 120 Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 STATEMENTS __________

 A program in Algol W takes one of the following forms:

 <statement>.

 <proper-procedure-declaration>.

 <function-procedure-declaration>.

 where:

 <statement> can be a <simple-statement>, an <iterative-statement>,

 or a <conditional-statement>; and

 <simple-statement> can be any of the following:

 <block>

 <assignment-statement>

 <procedure-statement>

 <goto-statement>

 <predeclared-procedure-statement>

 <assert-statement>

 <empty-statement>

 Note that all <statements> (including blocks) are <simple-

 statements>, except for iterative and conditional statements.

 For an explanation of <proper-procedure-declaration> and <function-

 procedure-declaration> see the section "Procedures." Note that a

 program which is just a procedure declaration cannot be executed

 directly. The corresponding procedures can be executed from other Algol

 W programs.

 A discussion of each kind of <statement> follows.

 SIMPLE STATEMENTS _________________

 Blocks ______

 A block is composed of the following Algol W elements:

 Statements 121

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 <declarations>

 <statements>

 end

 where:

 <declarations> is a series of zero or more <declaration>s of any

 type; and

 <statements> is a series of one or more <statement>s.

 Each <declaration> and <statement> is separated from the following

 <declaration> or <statement> by a semicolon (;).

 Since a block is a statement, a block with a period (.) following

 the ’end’ constitutes an entire Algol W program. The ordering within a

 block is significant. Note that all <declarations> precede all <state-

 ments>. The <declarations> part of a block is optional. A block is a

 legal statement even if it contains no <declarations>. This type of

 block is called a trivial block. All blocks, however, must contain at

 least one statement. Notice that this definition of a block is a

 recursive one, that is a block which is itself a statement contains

 statements, which in turn can be blocks. Nontrivial blocks (that is

 blocks which contain declarations) can be nested up to eight levels

 deep. A compiler error message is returned if more than eight levels of

 nesting occur. The limit on nesting for trivial blocks is 29 levels.

 ’begin’ and ’end’ are both reserved words.

 The syntax of Algol W requires every statement and declaration to be

 separated from its successor by a semicolon (;). The statement

 immediately preceding an ’end’ need not be followed by a semicolon (;)

 since an ’end’ alone does not constitute a statement. The Algol W rule

 is that the semicolon (;) is used to separate statements from each

 other, not to end a statement. For the same reason, a semicolon should

 not follow the ’begin’. If a semicolon is placed after the statement

 preceding an ’end’, an <empty-statement> is interpreted as preceding the

 ’end’ (see below for <empty-statement>). In general, this will not

 present any problems. However, if a semicolon appears after the last

 statement in a Case statement (see "Conditional Statements" later in

 this chapter) and the value of the <integer-expression> results in 1

 greater than the total number of statements in the Case block, the

 <empty-statement> will be executed (meaning nothing will happen) and no

 error message returned, although an error may in fact have occurred. It

 is illegal to place a semicolon after an expression before an ’end’.

 It is legal to begin a new block anywhere in an Algol W program. It

 is important to understand the concept of scope in Algol W. Scope

 refers to the range of blocks over which a given identifier is

 accessible. The scope of an identifier is determined by the following

 rules:

 122 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 (1) An identifier is only meaningful within a block in which it is

 declared or defined. (Some identifiers do not have to be

 explicitly declared - see the section "Identifiers".)

 (2) An identifier is local to a block if it is declared (or defined)

 within that block.

 (3) An identifier is global to a block if the identifier is local or

 global to the block which contains this block and the same

 identifier is not declared in this block.

 (4) An identifier local or global to a given block is not accessible

 to (that is has no significance within) a block which:

 (a) is not contained by the given block or

 (b) declares the same identifier within its block.

 (5) If an identifier is declared more than once, when it is

 referenced the identifier declared within the most recently

 activated but not yet terminated block (with respect to the

 reference position) is accessed.

 Example of a partial program:

 begin

 real X;

 ..position 1

 begin

 real Y;

 ..position 2

 end;

 ..position 3

 begin

 real Z;

 ..position 4

 begin

 real X;

 ..position 5

 begin

 real P;

 ..position 6

 end

 end

 ..position 7

 end

 ..position 8

 end.

 Y is not accessible to positions 1, 3, 4, 5, 6, 7 or 8. Z is

 accessible to positions 4, 5, 6 and 7, but not to 1, 2, 3 or 8. The

 first X declared is accessible to all positions but 5 and 6, while the

 second X declared is only accessible to position 5 and 6. P is only

 accessible to position 6.

 Statements 123

 MTS 16: ALGOL W in MTS

 September 1980

 Assignment Statements _____________________

 An assignment statement is the statement used to store a value into a

 storage location. It takes the form:

 <variable> := <expression>

 where:

 <variable> is an identifier (see the section "Identifiers"), a

 subscripted variable indicating an element of an array (see

 "Subscripts" in the section "Arrays"), a field designator indicat-

 ing a field of a record occurrence (see "Accessing Fields and Field

 Assignment Statements" in the section "Records and References") or

 a substring designator indicating a portion of a string (see

 "String Expressions" in the section "Strings");

 <expression> is any legal expression whose type is compatible with

 the variable type.

 Note that the assignment operator := is considered an operator, just

 like * (multiplication) and / (division). This implies that the order

 of evaluation of the <variable> and the <expression> is arbitrary. In

 general, this has no effect on the outcome of an assignment statement.

 Occasionally, however, it can be a problem. The following partial

 program using a function procedure with a value result parameter

 illustrates this point:

 .

 .

 integer array A(1::10);

 integer procedure Func(integer value result N);

 begin

 N := N + 1;

 0

 end Func;

 .

 .

 .

 I := 1;

 A(I) := Func(I);

 Write(A(1), A(2));

 .

 If the variable A(I) is evaluated first, then A(1) will be assigned the

 value 0. If the function Func(I) is evaluated first, then A(2) will be

 assigned the value 0. The user has no way of determining which

 evaluation will take place first.

 The various legal assignment statements are given in the section

 "Arithmetic Expressions and Assignment Statements"; "Logical Assignment

 124 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 Statements" in the section "Logicals"; "String Assignment Statements" in

 the section "Strings"; "Bits Assignment Statements" in the section

 "Bits"; and "Creating Records," "Accessing Fields and Field Assignment

 Statements,"and "Reference Assignment Statements" in the section "Re-

 cords and References."

 Assignment Compatibility ________________________

 Assignment compatibility for arithmetic expressions is explained in

 the section "Arithmetic Expressions and Assignment Statements." For all

 other than arithmetic types, compatibility means that both the type on

 the right side and the left side of the assignment operator := have to

 be the same. In other words, only string values can be assigned to

 string variables, reference values to reference variables, bits to bits

 variables, and logicals to logical variables. If the types are strings,

 the length of the variable on the left side of the assignment operator

 must be greater than or equal to the length of the string being

 assigned. If the types are references, the reference to be assigned

 must be ’null’ or be pointing to a record occurrence belonging to one of

 the same record classes that the reference variable on the left side of

 the assignment operator is eligible to point to.

 Procedure Statements ____________________

 See the section "Procedures."

 Goto Statements and Labels __________________________

 Algol W provides the Goto statement to allow the programmer to change

 the flow of control in the program. Using Goto statements almost always

 makes a program less readable and more error prone. Therefore, the use

 of Goto statements is strongly discouraged. The Goto statement takes

 one of the following forms:

 go to <label>

 goto <label>

 where:

 ’go to’ and ’goto’ are reserved words with the same meanings; and

 <label> is any legal identifier elsewhere defined as a label.

 Statements 125

 MTS 16: ALGOL W in MTS

 September 1980

 The form of a <label> in front of a <statement> is:

 <identifier> : <statement>

 where:

 <statement> can be any legal <statement>.

 The Goto statement sends control to the statement labelled by the

 label specified in the Goto statement. It is illegal to place a label

 in front of a declaration, a ’begin’, an ’end’ or immediately following

 a ’then’ or an ’else’. The reason for this restriction is to maintain a

 minimum of structured programming even with the use of a ’goto’. The

 restriction prevents jumping into the middle of an If, While or For

 statement. If a label appears before an ’end’ and after a semicolon(;),

 the label is interpreted as labelling an <empty-statement> (see "Empty

 Statements" later in this chapter).

 Note that a label is not declared. It is defined automatically by

 its usage. The <identifier> may be separated from the colon (:) by 0

 or more blanks and the colon (:) may be separated from the <statement>

 by 0 or more blanks. It does not have to start in column 1 or any other

 specified column.

 Example:

 .

 .

 Sum := 0;

 for I := 1 until N do

 begin

 .

 .

 for J := 1 until N do

 begin

 .

 .

 if abs(Denom(I,J)) > 1.’-5

 then

 Sum := Sum + Num(I,J)/Denom(I,J)

 else

 begin

 Write("J=", J, "I=", I);

 goto Exit

 end

 end For_J_Loop

 end For_I_Loop;

 Exit: Write("Current sum =", Sum)

 end.

 The conditions in the above program are sometimes considered justifi-

 cation for the use of a Goto statement in a structured program. This

 example has an error statement deeply nested in a loop, a cumulative Sum

 126 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 which depends on all values of Num and Denom, and a normal ending of

 execution. If the Denom value is close to 0, the division should not

 take place. Instead, an error message giving the I and J values is

 printed, as well as the value of the current Sum. If an Assert

 statement were used instead of the If, execution would terminate in the

 event of a 0 value for the Denom element, without printing values of I,

 J, and Sum. The Goto statement is necessary to permit immediate exit

 from the loops, since Sum is only meaningful while the Denom values are

 not equal to 0. This illustrates the general principle that one can use

 a ’goto’ to exit from deep within a loop. This program could be

 rewritten with While and If statements (see "Iterative Statements" and

 "Conditional Statements" later in this chapter) but perhaps not as well.

 The scope of a label is determined in the same way as that of any

 variable identifier. A label identifier is local to a block if it is

 defined within that block. A label identifier is global to a block if

 the identifier is local or global to the block which contains the

 current block and the same identifier is not defined in the current

 block. An identifier local or global to a given block is not accessible

 to (that is has no significance within) a block which is not contained

 by the given block or defines the same identifier within its block.

 begin

 integer I;

 I := 1;

 Loop: I := I + 1;

 if I > 6 then goto Stop;

 begin

 integer J;

 Newloop: J := I + 1;

 go to Loop;

 Stop:

 end;

 begin

 integer K;

 K := 2;

 I := K;

 goto Newloop

 end

 end.

 In the above example, the Goto statement ’goto Loop’ is legal. However,

 ’goto Newloop’ is not legal because Newloop is not defined within the

 block including that Goto statement. It is only defined in a parallel

 block. If that statement were ’goto Loop’ instead, it would be legal

 since Loop is defined in the outermost block, meaning that all

 statements in the whole program have access to it. ’goto Stop’ is not

 legal, because Stop is only defined in an inner block and the ’goto

 Stop’ statement is in the main program. Note that the label Stop is

 actually labelling an <empty-statement> inserted after the semicolon (;)

 before the ’end’.

 Statements 127

 MTS 16: ALGOL W in MTS

 September 1980

 If there is more than one label represented by the same identifier,

 the flow of control passes to the statement within the most recently

 activated but not yet terminated block.

 Example:

 begin

 integer Num;

 Num := 1;

 Loop: Num := 2 * Num;

 if Num < 10 then goto Loop;

 begin

 integer M;

 Loop: M := 3 * Num;

 Num := Num + 1;

 if M > 18 then goto Stop

 else goto Loop;

 Stop:

 end

 end.

 The first ’goto Loop’ statement passes control to the statement

 within the current block, that is the Loop statement ’Num := 2 * Num’.

 The second ’goto Loop’ statement passes control to the Loop statement

 ’M := 3 * Num’.

 Note that the use of labels and Goto statements (with some excep-

 tions) could lead to programs that are not well structured. Therefore,

 the compiler responds with a warning message if any ’goto’ is found in

 an Algol W program.

 Predeclared Procedure Statements ________________________________

 See the sections "Basic Input and Output," "Multiple Input and Output

 Streams," "Stream Directed Input and Output," and "Miscellaneous Topics"

 for details of the way predeclared procedures are provided. A list is

 given in Appendix E.

 Assert Statements _________________

 An Assert statement takes the following form:

 assert <logical-expression>

 where:

 128 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 <logical-expression> is as defined in the section "Logicals"; and

 ’assert’ is a reserved word.

 The Assert statement evaluates the logical expression. If the value

 equals ’true’, execution of the program continues normally. It is an

 error for an ’assert’ logical expression to evaluate to ’false’. If

 this happens, the program terminates with an error message. See the

 "Assertion failed" error message under "Run-Time Error Messages" in

 Appendix C. Assert statements are useful in debugging.

 A predeclared integer variable A_Count is initialized to 1 and

 incremented by 1 for each successful assertion. It may be inspected at

 any time by an executing program and in the event of a failed assertion

 its value is printed as part of the error message.

 Example:

 assert Length > 0

 Empty Statements ________________

 An empty statement takes the following form:

 <empty>

 where:

 <empty> is the symbol for nothing.

 An empty statement can be used anywhere in an Algol W program where a

 simple statement is appropriate. When a semicolon (;) precedes an

 ’end’, it is interpreted as separating the previous statement from an

 empty statement. There are several possible uses of the <empty-

 statement>. One is to allow branching to the end of a loop. It is

 illegal to place a label in front of an ’end’ since an ’end’ is not a

 <statement>. Therefore, an example of a legal construction accomplish-

 ing the same purpose is:

 for I := 1 until N do

 begin

 .

 if <logical-expression> then goto Label;

 .

 ;

 Label:

 end

 Because a semicolon precedes the ’end’, an <empty-statement> is

 inserted, and Label is labelling the <empty-statement>. The effect of

 Statements 129

 MTS 16: ALGOL W in MTS

 September 1980

 the Goto statement is to send control to the next cycle of the For

 statement loop. This use of the <empty-statement> parallels labelling

 the CONTINUE statement in a Fortran DO loop.

 Another possible use of the <empty-statement> is in a situation where

 it is desirable to test a condition at the end of a loop. For example,

 the following construction (possible in some languages like Pascal, but

 not in Algol W):

 repeat

 <statement>

 until <logical-expression>

 can be translated to Algol W as:

 while begin <statement>; ¬<logical-expression> end do;

 The <empty-statement> is inserted after the ’do’ and before the ’;’ in

 this While statement loop. The block expression inside the ’while’ loop

 performs the <statement> while the condition is not met, or in other

 words, until it is met. (See "While Statements" later in this chapter

 for an example of inserting a block expression in a ’while’ loop.)

 Another instance in which the <empty-statement> might be useful is in

 a Case statement where it is appropriate to do nothing in one of the

 cases.

 Example:

 case I of

 begin

 D := -1;

 ;

 D := 1;

 D := 2

 end

 In the above example, if I equals 1, 3, or 4, D becomes -1, 1, or 2,

 respectively. If I equals 2, nothing happens. See "Blocks" earlier in

 this chapter for a problem caused by the unintentional use of an

 <empty-statement> in a Case statement.

 ITERATIVE STATEMENTS ____________________

 Algol W has two types of iterative statements: While and For

 statements.

 130 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 While Statements ________________

 The While statement (also known as ’while’ loop) takes the form:

 while <logical-expression> do <statement>

 where:

 <logical-expression> has the value ’true’ or ’false’ and is as

 defined in the section "Logicals" and

 <statement> can be any legal Algol W statement (including a block).

 Both ’while’ and ’do’ are reserved words.

 The purpose of the While statement is to execute the statement

 following the ’do’ (possibly a block statement) repeatedly, as long as

 the given logical expression is ’true’. When the value of the

 expression is ’false’, execution of the program continues with the

 statement succeeding the ’while’ loop. Note that the While statement is

 exactly equivalent to the following:

 Label: if <logical-expression> then

 begin

 <statement>;

 go to Label

 end

 where it is understood that Label represents an identifier which is not

 defined at the place from which the While statement is entered.

 Example of a ’while’ loop:

 begin

 real Num, Sum;

 Num := 10.0;

 Sum := 0;

 while Num <= 20.0 do

 begin

 Sum := Sum + Num;

 Num := Num + 0.2

 end;

 Write(Sum)

 end.

 The above program uses the ’while’ loop to calculate the sum of all

 numbers from 10 to 20 at 0.2 intervals. It then prints the result Sum.

 Because it is legal to insert a block expression (see "Expressions"

 in the section "Constants, Variables, Expressions and Values") wherever

 an expression may appear in an Algol W program, it is possible, and

 often very convenient, to have a ’while’ loop execute one or more

 Statements 131

 MTS 16: ALGOL W in MTS

 September 1980

 statements before testing the logical expression. The following program

 illustrates this point:

 begin

 integer Num, Sum;

 integer array A(1::100);

 Sum := 0;

 while

 begin

 Read(Num);

 Write(Num);

 Num ¬= 0

 end do

 begin

 Sum := Sum + Num;

 A(Num) := 0

 end;

 Write(Sum)

 end.

 The above program reads and writes a set of numbers until it reads in a

 zero. The ’while’ loop adds the numbers and initializes the correspond-

 ing elements of the array A to zero. The ’while’ loop is left when Num

 equals zero. Finally, the Sum is printed out. The program is

 equivalent to :

 begin

 integer Num, Sum;

 integer array A(1::100);

 Sum := 0;

 Read(Num);

 Write(Num);

 while Num ¬= 0 do

 begin

 Sum := Sum + Num;

 A(Num):=0;

 Read(Num);

 Write(Num)

 end;

 Write(Sum)

 end.

 For Statements ______________

 The For statement (also known as the ’for’ loop) takes one of the

 following forms:

 for <control-identifier> := <integer-expressions> do <statement>

 132 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 for <control-identifier> := <integer-expression-1> step <integer-

 expression-3> until <integer-expression-2> do <statement>

 for <control-identifier>:=<integer-expression-1> until <integer-

 expression-2> do <statement>

 where:

 <control-identifier> is any legal identifier;

 <integer-expressions> are one or more <expressions> of type inte-

 ger, each separated from the next by a comma;

 <integer-expression-1> gives the initial value of the variable

 represented by the control identifier;

 <integer-expression-2> gives the final value of the control

 variable;

 <integer-expression-3> gives the increment value for the control

 variable; and

 <statement> can be any legal Algol W <statement> (including a

 block).

 ’for’, ’do’, ’until’ and ’step’ are reserved words.

 The purpose of the ’for’ loop is to be able to execute a statement

 (possibly a block) repeatedly for different specified values of the

 control variable. In the first form of the ’for’ loop, the <statement>

 following the ’do’ is performed as often as there are expressions in the

 <integer-expressions>. The first time, the control variable has the

 first value listed, the second time, the second value, and the last

 time, the last value.

 Example:

 for I := 1, 4, 2*A, N do

 begin

 Write(I);

 B(I) := 0

 end

 The above statement writes the specified values and sets the

 corresponding array elements to 0. Note that both A and N must have

 been declared as integers to be legal expressions in the For statement.

 The second form of the ’for’ loop starts performing the <statement>

 following the ’do’, with the value of the control variable set at the

 value of <integer-expression-1>, and continues to execute the <state-

 ment>, incrementing the value of the control variable each time by the

 value of <integer-expression-3>, until the control variable reaches the

 value given by <integer-expression-2>. The last time the <statement> is

 Statements 133

 MTS 16: ALGOL W in MTS

 September 1980

 performed occurs when the control variable is set either at the value of

 <integer-expression-2> or at the integer value less than <integer-

 expression-2> by an amount less than <integer-expression-3>. Note that

 the value of <integer-expression-3> following ’step’ should not be equal

 to 0, or the statement will never terminate. It can, however, be

 negative. In other words, this is a legal For statement:

 for I := 10 step -2 until 0 do Write(I)

 which produces the following output:

 10

 8

 6

 4

 2

 0

 An example of a For statement which stops executing the <statement>

 part, with the value of the control variable less than the value of

 <integer-expression-2>:

 for I := 1 step 2 until 10 do

 Write(I)

 produces the following output:

 1

 3

 5

 7

 9

 The third form of the ’for’ loop is really a subset of the second

 form. It just assumes that the ’step’ value equals 1.

 Example:

 for I := 1 until N do

 begin

 Read(Score(I));

 if Score(I) > Big then Big := Score(I)

 else

 if Score(I) < Small

 then Small := Score(I)

 end

 This ’for’ loop reads N values and makes N comparisons. I takes on

 the values 1, 2, ..., N, that is all values between 1 and N inclusive,

 at 1 step intervals.

 134 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 The <control-identifier> is not declared. It is defined by its usage

 in the For statement. A control identifier is local to the statement

 following the ’do’. It cannot be accessed outside of this statement.

 for I := 1 until N do write(A(I))

 The control identifier I is meaningful only within the For statement.

 If I is used in another part of the program, it does not represent the

 same variable, and has to be defined in one of the ways discussed in the

 section "Identifiers." The value of the control variable cannot be

 changed within the <statement> following the ’do’. Similarly the limit

 <integer-expression-2> and the step size <integer-expression-3> are

 evaluated once only, on entry to the ’for’ loop.

 If the <integer-expression-1> equals the <integer-expression-2>, then

 the ’for’ loop is executed exactly once. For example:

 for I := 2 until 2 do <statement>

 is exactly equivalent to

 for I := 2 do <statement>

 If <integer-expression-2> is less than <integer-expression-1> and the

 ’step’ value is positive, the <statement> following ’do’ is not executed

 at all and control passes to the statement following the ’for’ loop.

 The same result occurs for the reverse conditions, that is <integer-

 expression-2> is greater than <integer-expression-1>, and the ’step’

 value is negative.

 Example of a partial program:

 A := 4;

 B := 2;

 C := 3;

 for I := B + C until A do

 <statement>;

 Write(D(A), D(B), D(C))

 The above <statement> does not get executed at all; control passes

 immediately to the Write statement. Note that A, B, and C must have

 been declared as integers.

 Example of ’for’ loop:

 begin

 integer Sum;

 Sum := 0;

 for I := 1 until 100 do

 Sum := Sum + I

 end.

 Statements 135

 MTS 16: ALGOL W in MTS

 September 1980

 The above program adds all the integers from 1 to 100 inclusive.

 CONDITIONAL STATEMENTS ______________________

 Algol W has two types of conditional statements: If statements and

 Case statements.

 If Statements _____________

 The If statement takes one of the following forms:

 if <logical-expression> then <statement>

 if <logical-expression> then <simple-statement> else <statement>

 where:

 <logical-expression> is as defined in the section "Logicals";

 <simple-statement> can be any legal <statement> (including a

 block), except for an iterative or a conditional statement and

 <statement> is as defined at the beginning of the current chapter.

 ’if’, ’then’ and ’else’ are reserved words.

 The purpose of the first form of the If statement is to execute a

 statement (possibly a block) only if a given condition is true. If the

 <logical-expression> is ’true’, the statement following the ’then’ is

 executed. If the <logical-expression> is ’false’, the statement follow-

 ing the ’then’ is skipped and control passes to the statement following

 the If statement. Note that the <statement> following the ’then’ in the

 first form of the If statement can be any legal statement, not just a

 simple one. In other words, an iterative statement or a conditional

 statement can follow the ’then’.

 Examples of legal If statements:

 if (A > B) and (Next(Place) ¬= null) then

 if Name(Place) = Coursename then

 Write(Coursename)

 if Line(K|1) ¬= " " and K <= 79 then

 for I := 0 until K do

 begin

 Write(Line(I|1));

 Letters := Letters + 1

 end

 136 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 if (A > B) and (Next(Place) ¬= null)

 then Write(Name(Place))

 The purpose of the second form of the If statement is to execute a

 statement (possibly a block) if the logical expression is true and to

 execute a different statement if the logical expression is false. Note

 that the statement following the ’then’ in this form of the If statement

 must be a simple one. However, any statement may follow the ’else’.

 Examples of legal If statements:

 if Grade > Big

 then Big := Grade

 else if Grade < Small

 then Small := Grade

 In the above, a simple assignment statement follows the ’then’ and a

 conditional statement follows the ’else’.

 if Switch_Them then

 begin

 Temp := Next;

 Next := First;

 First := Temp

 end

 else

 Write("OK as is")

 Here a block, which is a type of simple statement, follows the ’then’.

 Example of an illegal If statement:

 if Number(Place) = Num

 then

 if Oldplace = Place

 then First := Next(Place)

 else

 Next(Oldplace) := Next(Place)

 else

 Write("No record with number", Num)

 The statement above is illegal because a conditional statement, which is

 not a simple statement, follows the ’then’. The If statement can be

 modified to be correct syntactically and still express the same meaning:

 if Number(Place) = Num then

 begin

 if Oldplace = Place

 then First := Next(Place)

 else Next(Oldplace) := Next(Place)

 end

 else Write("No record with number", Num)

 Statements 137

 MTS 16: ALGOL W in MTS

 September 1980

 With the insertion of ’begin’ and ’end’, the inner conditional statement

 is enclosed in a block, which is a simple statement.

 Since ’then’ and ’else’ clauses are part of an If statement, it is

 not legal to have a semicolon preceding a ’then’ or an ’else’ (except if

 a ’comment’ occurs immediately in front of a ’then’ or an ’else’).

 It is not legal to have a label immediately following a ’then’ or an

 ’else’. This rule forces a minimum of structured programming by not

 permitting a jump into the middle of an If statement. It is legal,

 however, to have a label within a block, following a ’then’ or an

 ’else’. This causes the label to be local to the given block. Thus,

 Goto statements within that block can jump to the labelled statement but

 Goto statements outside the block cannot.

 A sample program using If statements:

 begin

 real A, B, C, X1, X2;

 while

 begin

 Read(A, B, C);

 Write(A, B, C);

 A < 1000

 end do

 begin

 if A = 0 then

 begin

 if B ¬= 0 then

 begin

 X1 := -C/B;

 Write("X =", X1)

 end

 else Write("Meaningless")

 end

 else

 begin

 if B**2 - 4*A*C < 0

 then Write("Imaginary roots")

 else

 begin

 X1 := (-B + Sqrt(B**2 - 4*A*C)) / (2*A);

 X2 := (-B - Sqrt(B**2 - 4*A*C)) / (2*A);

 Write("X =", X1, "or", X2)

 end

 end

 end

 end.

 The program above solves quadratic equations for given values of A, B

 and C. It checks for 0 values which would make the equation linear or

 meaningless. It only computes equations with real roots. It ends when

 138 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 A has a value greater than or equal to 1000. Using the following sample

 data:

 5. 4. 2.

 3. 8. 1.

 0. 4. 3.

 0. 0. 5.

 1001. 0. 0.

 the output from the program is:

 5.000000 4.000000 2.000000

 Imaginary roots

 3.000000 8.000000 1.000000

 X= -0.1314829 or -2.535183

 0 4.000000 3.000000

 X= -0.7500000

 0 0 5.000000

 Meaningless

 1000.000 0 0

 Case Statements _______________

 The Case statement takes the form:

 case <integer-expression> of begin <statements> end

 where:

 <integer-expression> can be any legal expression of type integer;

 and

 <statements> are a list of any type of <statement>s, each separated

 from the next by a semicolon (;).

 ’case’, ’of’, ’begin’ and ’end’ are all reserved words.

 The purpose of the Case statement is to offer more than the two

 choices available in the If statement. The value of the integer

 expression indicates which of the <statements> listed is to be executed.

 If the value equals 1, then the first statement is executed, if the

 value equals 2, then the second statement is executed, etc. The value

 must be greater than zero and must not be greater than the number of

 <statements> listed.

 A sample program using a Case statement:

 Statements 139

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 real X; integer Num;

 X := 0;

 while

 begin

 Read(Num);

 Num ¬= 0

 end do

 case Num of

 begin

 X := X + 1;

 X := X - 1;

 X := X**2

 end;

 Write(X)

 end.

 The sample program adds 1 to X if Num equals 1, subtracts 1 from X if

 Num equals 2 and squares X if Num equals 3. When Num equals 0, the

 ’while’ loop is left and the final value of X is printed.

 Note that each statement within a Case statement can itself be a

 block or even a nonsimple statement, that is a conditional or iterative

 statement.

 An example of Case statement:

 case (I + J) of

 begin

 begin comment (I + J) = 1;

 X := X + 1;

 Y := Y + 1

 end;

 begin comment (I + J) = 2;

 X := X - 1;

 Y := Y - 1

 end;

 begin comment (I + J) = 3;

 X := 0;

 Y := 0

 end;

 begin comment (I + J) = 4;

 X := X**2;

 Y := Y**2

 end

 end

 See "Blocks" earlier in this chapter, for a potential problem caused

 by an <empty-statement> being inserted in a Case statement.

 140 Statements

 MTS 16: ALGOL W in MTS

 September 1980

 RECORDS AND REFERENCES ______________________

 A record is a group of simple variables placed together. A record

 value is an ordered set of values each of which may be a different

 simple type. The word "record" is ambiguous in that it is often used to

 denote two distinct concepts: record class and record occurrence. A

 record class is defined as a group of variable types placed together.

 Each variable type specified is known as a field. The value of each

 field is of the type declared for that field. A record class defines a

 class of record occurrences all with the same fields but with different

 values for each field. Note that the fields cannot be of structured

 variable types, that is there are no record classes of arrays or record

 classes of records.

 RECORD CLASS DECLARATIONS _________________________

 A record class declaration takes the following form:

 record <identifier> (<simple variable declarations>)

 where:

 <identifier> is any legal name denoting the record class; and

 <simple-variable-declarations> are one or more legal declarations

 of variables of type integer, real, long real, complex, long

 complex, logical, string, bits or reference.

 Example:

 record Personnel(string(20) Name; integer Socsecno, Age;

 reference(Personnel) Next);

 declares a record class Personnel with four fields: Name,

 Socsecno, Age and Next.

 No more than fifteen record classes can be declared within a given

 Algol W program.

 Records and References 141

 MTS 16: ALGOL W in MTS

 September 1980

 REFERENCES __________

 Since there is usually more than one record occurrence per record

 class, it is not enough to specify the field name of a record class in

 order to access a given record occurrence. Therefore, to access a

 particular record occurrence, one must use a variable of type reference.

 A reference variable points to occurrences of the record class defined

 in the declaration of the reference. A field of a record occurrence is

 accessed by giving the field name and the reference to the record class

 desired.

 A reference declaration takes the following form:

 reference (<record-class-identifiers>) <identifiers>

 where:

 <record-class-identifiers> is a list of all the record classes

 (previously declared) which the reference can point to, each one

 separated from the next by a comma, and

 <identifiers> is a list of identifiers specifying the reference

 variables being declared, each one separated from the next by a

 comma.

 Example:

 reference(Personnel) List;

 CREATING RECORDS ________________

 The declarations of record classes alone do not set aside storage

 space as is the case with other variable declarations. They just define

 the structure of the record class. In order to assign storage space for

 record occurrences, the following type of assignment statement is used:

 <reference-variable> := <reference-expression>

 where:

 <reference-expression> is either of two forms:

 <record-class-identifier>

 <record-class-identifier> (<expressions>)

 <reference-variable> is either an identifier, a subscripted varia-

 ble, or a field designator of type reference (see "Accessing Fields

 and Field Assignment Statements" later in this section);

 142 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 <record-class-identifier> is as defined above; and

 <expressions> is a list of expressions, one for each field

 specified in the record class declaration and each matching the

 type of its corresponding field. Each expression is separated from

 the next by a comma. The <empty> symbol can be used as one or more

 of the expressions listed. In other words, if values of only some

 fields are to be assigned, the other fields can be skipped over by

 putting nothing in between the commas separating the values of the

 fields.

 The <reference-variable> must have been previously declared a refer-

 ence to the record class given.

 In either form of the assignment statement, the value of the

 reference variable is the address of the record occurrence defined. If

 the first form is used, an empty record occurrence is created. If the

 second form is used, a record occurrence with the specified values is

 created.

 Using the these declarations in a partial program:

 record Personnel(string(20) Name; integer Socsecno, Age;

 reference(Personnel) Next);

 reference(Personnel) List;

 the statement:

 List := Personnel;

 creates the following empty record occurrence:

 List Name Socsecno Age Next

 ┌────┐ ┌─────────────────────────┐ ┌ ┌ ┌
 | . |────| | | | | ┌ ┘
 └────┘ └─────────────────────────┘ ┘ ┘ ┘

 and the statement:

 List := Personnel("Joe Smith", 562487809, 35, null);

 would create the first record occurrence in the following figure, except

 that the Next field would contain the value ’null’ (a reserved word)

 instead of a pointer.

 In order to create a second record occurrence in this list, one would

 say:

 Next(List) := Personnel("Tom Jones", 468362112, 49, null);

 which has the effect of creating a new record occurrence whose address

 is stored in the Next field of the first record occurrence.

 Records and References 143

 MTS 16: ALGOL W in MTS

 September 1980

 Next(Next(List)) := ("Mary Doe", 723458899, 28, null);

 creates the final record occurrence in the list.

 Personnel Record Class

 ┌────┐
 | . |───┐ ┌
 └────┘ |
 List |

 | Name Socsecno Age Next

 ┌─────────────────────────────────────┐ ┘ ┌ ┌ ┌
 | Joe Smith| 562487809 | 35 | . |

 └─────────────────────────────────────┘ ┘ ┘ ┘ ┌
 ┌─────────────────────────────────┘
 ┌─────────────────────────────────────┐ ┘ ┌ ┌ ┌
 | Tom Jones| 468362112 | 49 | . |

 └─────────────────────────────────────┘ ┘ ┘ ┘ ┌
 ┌─────────────────────────────────┘
 ┌─────────────────────────────────────┐ ┘ ┌ ┌ ┌
 | Mary Doe | 723458899 | 28 | null|

 └─────────────────────────────────────┘ ┘ ┘ ┘

 Now the entire list is created as shown. The Next field of each

 record occurrence in this list points to the next one in the list. The

 last has a ’null’ value in its Next field indicating that the end of the

 list has been reached.

 Example of the use of the <empty> symbol in record creation:

 List := Personnel("Bill Evans",,,null);

 creates a record occurrence in the record class Personnel with no values

 for the Age and Socsecno fields. These fields remain undefined.

 Example of a <reference-expression> as one field value in <expressions>:

 Next(List) := Personnel("Tom Jones", 468362112, 49,

 Personnel("Mary Doe", 723458899, 28, null));

 could have been used to create the last two record occurrences in the

 list above (after only the Joe Smith record occurrence existed) with one

 statement.

 144 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 ACCESSING FIELDS AND FIELD ASSIGNMENT STATEMENTS __

 In order to access a field of a record occurrence, the following

 form, called a <field-designator>, is used:

 <field name> (<reference-variable>)

 where:

 <field-name> is an identifier declared in the record class declara-

 tion, referring to a given field; and

 <reference-variable> is an identifier, a subscripted variable or a

 field designator of type reference.

 For example, given the records as shown above,

 Name(Next(List)) = "Tom Jones"

 has the value ’true’.

 A field of a record occurrence is assigned a value in the same way as

 any variable of that field type. The form is:

 <field-designator> := <expression>

 where:

 <field-designator> is as defined above; and

 <expression> can be any legal expression which is assignment

 compatible with the field on the left-hand side of the operator

 := . Multiple assignment statements are legal as long as the

 <expression> part is never on the left-hand side of the operator

 := .

 Examples of field assignment statements:

 Age(List) := 36

 updates the age of Joe Smith’s record.

 Socsecno(Next(Next(List))) := 723458999

 changes Mary Doe’s social security number. Note that Next(Next(

 List)) is a single reference variable.

 Records and References 145

 MTS 16: ALGOL W in MTS

 September 1980

 REFERENCE ASSIGNMENT STATEMENTS _______________________________

 A reference assignment statement takes one of the following forms:

 <reference-variable> := <reference-variable>

 <reference-variable> := null

 where:

 <reference-variable> is as defined above and

 ’null’ is the reference constant indicating that the <reference-

 variable> is currently not pointing to any record occurrences.

 The result of the first type of reference assignment statement is to

 cause both references to point to the same record occurrence.

 Multiple assignment statements are legal as long as ’null’ is never

 on the left-hand side of the operator :=.

 Assume the following declarations and assignments in a partial

 program:

 record State(string(20) Statename;

 integer State_Pop, Order_Of_Admis_To_Union;

 logical Birth_State_Of_At_Least_1_Pres);

 reference(State) Statelist, List1, List2;

 Sets aside three reference storage locations.

 List1 := State;

 Creates an empty record occurrence of record class State whose

 address is stored in List1.

 Order_Of_ Birth_State_

 Admis_ Of_At_Least

 List1 Statename State_Pop To_Us _1_Pres

 ┌─────┐ ┌──┐ ┌ ┌ ┌
 | . |─────────| | | | | ┌ ┘
 └─────┘ └──┘ ┘ ┘ ┘

 List2 := State("Alabama",2000000,29,false);

 creates the following record occurrence whose address is stored

 in List2.

 List2

 ┌─────┐ ┌──┐ ┌ ┌ ┌
 | . |─────────| Alabama |2000000 | 29 | false | ┌ ┘
 └─────┘ └──┘ ┘ ┘ ┘

 146 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 Examples of reference assignment statements:

 Statelist := List1;

 stores the reference value of List1 in the variable Statelist,

 causing both to point to the empty record occurrence.

 List1

 ┌────┐
 | . |

 └────┘ ┌
 Statelist |

 ┌──────────┐ ┌──┐ ┘ ┌ ┌ ┌
 | . |────| | | | | ┌ ┘
 └──────────┘ └──┘ ┘ ┘ ┘

 List2 :=List1;

 stores the reference value of List1 in the variable List2,

 causing all three reference variables to point to the empty

 record occurrence, and no reference pointing to the record

 occurrence with values in it.

 List1

 ┌────┐
 | . |

 └────┘ ┌
 List2 |

 ┌─────┐ ┌──┐ ┘ ┌ ┌ ┌
 | . |─────────| | | | | ┌ ┘
 └─────┘ └──┘ ┌ ┘ ┘ ┘
 Statelist |

 ┌──────────┐ |
 | . |──────────┘ ┌
 └──────────┘

 ┌──┐ ┌ ┌ ┌
 | Alabama |2000000 | 29 | false |

 └──┘ ┘ ┘ ┘

 Since there are no pointers to the Alabama record occurrence, it is

 now inaccessible.

 REFERENCE ARRAYS ________________

 The following program makes use of a reference array variable to read

 and store 50 sets of values for record occurrences belonging to the

 record class State declared above. The input data for the program has

 the States ordered according to Order_Of_Admis_To_Union, that is order

 of admission to the United States.

 Records and References 147

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 record State(string(20) Statename; integer State_Pop,

 Order_Of_Admis_To_Union;

 logical Birth_State_Of_At_Least_1_Pres);

 reference(State) array Statelist(1::50);

 string(20) Name;

 integer Pop, Order;

 logical Home_State;

 for I := 1 until 50 do

 begin

 Read(Name, Pop, Order, Home_State);

 Statelist(Order) := State(Name, Pop, Order, Home_State)

 end

 end.

 The 50 record occurrences are not stored contiguously but the

 references to the record occurrences are in order from 1 to 50 according

 to order of admission.

 LINKED LISTS ____________

 Using arrays of references is one way to store record occurrences.

 The other way is by making use of a data structure called linked lists.

 A linked list is a list of record occurrences belonging to a record

 class, which includes a reference variable as one of its fields. The

 examples above, in which Next was a field of the record class declared,

 were examples of linked lists. Each record occurrence in the list

 pointed to the succeeding record occurrence.

 Insertions of Records at the Beginning of a List __

 The following program makes use of the procedure Inserttop to insert

 records at the beginning of a list.

 begin

 record Course(integer Num; string(20) Name;

 reference(Course) Next);

 reference(Course) First;

 procedure Inserttop(integer value Count;

 string(20) value Coursename;

 reference(Course) value result Follow);

 Follow := Course(Count, Coursename, Follow);

 comment Main program starts here;

 First := null;

 for I := 1 until 4 do

 148 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 Inserttop(I, "Math", First)

 end.

 This example program goes through the following steps:

 Initialize first to null:

 First

 ┌────────┐
 | null |

 └────────┘

 Create first record:

 First Num Name Next

 ┌────┐ ┌────────────────────┐ ┌ ┌
 | . |────| 1 | Math | null | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘

 Add a second record to from a linked list chain:

 First Num Name Next

 ┌────┐ ┌────────────────────┐ ┌ ┌
 | . |────| 2 | Math | . | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘ ┌
 ┌──────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 1 | Math | null |

 └────────────────────┘ ┘ ┘

 Add a third record to the list:

 First Num Name Next

 ┌────┐ ┌────────────────────┐ ┌ ┌
 | . |────| 3 | Math | . | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘ ┌
 ┌──────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 2 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌──────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 1 | Math | null |

 └────────────────────┘ ┘ ┘

 Finally add a fourth record:

 Records and References 149

 MTS 16: ALGOL W in MTS

 September 1980

 First Num Name Next

 ┌────┐ ┌────────────────────┐ ┌ ┌
 | . |────| 4 | Math | . | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘ ┌
 ┌──────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 3 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌──────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 2 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌──────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 1 | Math | null |

 └────────────────────┘ ┘ ┘

 Insertions of Records at the End of a List __

 The following program makes use of the procedure Insertend to insert

 records at the end of a list.

 begin

 record Course(integer Num; string(20) Name;

 reference(Course) Next);

 reference(Course) First, Place;

 procedure Insertend(integer value Count;

 string(20) value Coursename;

 reference(Course) value result Last);

 Last := Next(Last) := Course(Count, Coursename, null);

 comment Main program begins here;

 Place := First := Course(1, "Math", null);

 for I:= 2 until 4 do

 Insertend(I, "Math", Place)

 end.

 This sample program goes through the following steps:

 First

 ┌────┐
 | . |

 └────┘ ┌
 Place |Num Name Next

 ┌────┐ ┌────────────────────┐ ┘ ┌ ┌
 | . |────| 1 | Math | null | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘

 150 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 Start ’for’ loop

 First

 ┌────┐
 | . |

 └────┘ ┌
 |Num Name Next

 ┌────────────────────┐ ┘ ┌ ┌
 | 1 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌────────────┘
 Place |

 ┌────┐ ┌────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | null | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘

 First

 ┌────┐
 | . |

 └────┘ ┌
 |Num Name Next

 ┌────────────────────┐ ┘ ┌ ┌
 | 1 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 2 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌────────────┘
 Place |

 ┌────┐ ┌────────────────────┐ ┘ ┌ ┌
 | . |────| 3 | Math | null | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘

 Records and References 151

 MTS 16: ALGOL W in MTS

 September 1980

 First

 ┌────┐
 | . |

 └────┘ ┌
 |Num Name Next

 ┌────────────────────┐ ┘ ┌ ┌
 | 1 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 2 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌────────────┘
 ┌────────────────────┐ ┘ ┌ ┌
 | 3 | Math | . |

 └────────────────────┘ ┘ ┘ ┌
 ┌────────────┘
 Place |

 ┌────┐ ┌────────────────────┐ ┘ ┌ ┌
 | . |────| 4 | Math | null | ┌ ┘
 └────┘ └────────────────────┘ ┘ ┘

 Inserting Records in Sequential Order into an Ordered List and Deleting ___

 Records from a List ___________________

 The following program makes use of two procedures: procedure Inseq

 inserts records in sequential order into an ordered list and procedure

 Delete deletes records from the list.

 begin

 record Course(integer Number; string(20) Name;

 reference(Course) Next);

 reference(Course) First;

 string(20) Coursename;

 integer Num, N;

 comment procedure Inseq inserts records sequentially

 into an ordered list;

 procedure Inseq(integer value Key;

 string(20) value Title;

 reference(Course) value result Start);

 begin

 comment Oldplace is kept as a trailing pointer

 to facilitate insertion. It always points

 to the record before the one pointed to by

 Place;

 reference(Course) Oldplace, Place;

 comment initialize;

 152 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 Oldplace := null;

 Place := Start;

 comment While statement traverses list from low to high,

 stopping as soon as new entry belongs before

 Place, or when end of list is reached;

 while (Place ¬= null) and (Key > Number(Place)) do

 begin

 Oldplace := Place;

 Place := Next(Place)

 end Find_Place;

 comment Four cases:

 1 - Place, Oldplace both not null -> Insert

 between them

 2 - Place = null, Oldplace ¬= null -> Insert

 at end of list

 (Oldplace points to last entry)

 3 - Place ¬= null, Oldplace = null -> Insert

 at beginning of list (Place = first)

 4 - Place = Oldplace = null -> Insert in empty list

 Note that 2 is a special case of 1 and 4 is a special

 case of 3;

 if Oldplace = null

 then Start:= Course(Key, Title, Start)

 else Next(Oldplace) := Course(Key, Title, Place)

 end Inseq;

 comment procedure Delete deletes records from a list;

 procedure Delete(integer value Key;

 reference(Course) value result Start);

 begin

 comment Oldplace is kept as a trailing pointer, to

 facilitate deletion. It always points to the

 record before the one pointed to by Place;

 reference(Course) Oldplace, Place;

 comment Initialize Oldplace, Place to Start

 record in list;

 Oldplace := Place := Start;

 comment If list empty, write error message;

 if Place = null

 then Write("Nothing left in list")

 else

 begin

 comment While statement loop searches for given record,

 or end of list -- moves Place and

 Oldplace down list;

 while (Next(Place) ¬= null)

 and (Number(Place) ¬= Key) do

 begin

 Oldplace:= Place;

 Place := Next(Place)

 end Find_Place;

 Records and References 153

 MTS 16: ALGOL W in MTS

 September 1980

 comment If find record to be deleted, then put

 address of following record in Next field

 of previous record. Now only Place points

 to the deleted record;

 if Number(Place) = Key then

 begin

 comment Check if deletion at

 beginning of list;

 if Oldplace = Place

 then Start := Next(Place)

 else Next(Oldplace) := Next(Place)

 end Pointer_Change

 else Write("No record with number", Key)

 end Else_Block

 end Delete;

 comment Main program starts here;

 comment Initialize;

 First := null;

 comment Read first card to see how many record

 occurrences to be inserted in sequential order;

 Read(N);

 comment For N set of values, read and create

 corresponding records by calling procedure Inseq;

 for I := 1 until N do

 begin

 Read(Coursename, Num);

 Inseq(Num, Coursename, First)

 end;

 comment Read next card to see how many record

 occurrences to be deleted;

 Read(N);

 comment For N sets of values, read Num and delete

 corresponding records by calling procedure

 Delete;

 for I := 1 until N do

 begin

 Read(Num);

 Delete(Num, First)

 end

 end.

 154 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 Using the following data as input:

 4

 "Math" 2

 "Math" 5

 "Math" 1

 "Math" 4

 5

 2

 5

 1

 4

 2

 the program would go through these steps:

 Insertion part ______________

 At end of ’while’ loop in procedure Inseq during 1st pass through

 ’for’ loop of main program:

 Num First Oldplace Place

 ┌───┐ ┌───────┐ ┌────────┐ ┌────────┐
 | 2 | | null | | null | | null |

 └───┘ └───────┘ └────────┘ └────────┘

 At end of 1st pass through ’for’ loop, i.e., at end of first call to

 procedure Inseq:

 Num First

 ┌───┐ ┌───────┐
 | 2 | | . |

 └───┘ └───────┘ ┌
 |Number Name Next

 ┌─────────────────────────┐ ┘ ┌ ┌
 | 2 | Math | null |

 └─────────────────────────┘ ┘ ┘

 At end of ’while’ loop in procedure Inseq during 2nd pass through ’for’

 loop of main program:

 Num First Place

 ┌───┐ ┌───────┐ ┌────────┐
 | 5 | | . | | null |

 └───┘ └───────┘ └────────┘ ┌
 Oldplace |Number Name Next

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | null | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘

 Records and References 155

 MTS 16: ALGOL W in MTS

 September 1980

 At end of 2nd pass through ’for’ loop, i.e., at end of 2nd call to

 procedure Inseq:

 Num First

 ┌───┐ ┌───────┐
 | 5 | | . |

 └───┘ └───────┘ ┌
 OldPlace |Number Name Next

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | . | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 ┌─────────────────────────┐ ┘ ┌ ┌
 | 5 | Math | null |

 └─────────────────────────┘ ┘ ┘

 At end of ’while’ loop in procedure Inseq during 3rd pass through ’for’

 loop in main program:

 Num First OldPlace

 ┌───┐ ┌───────┐ ┌────────┐
 | 1 | | . | | null |

 └───┘ └───────┘ └────────┘ ┌
 Place |Number Name Next

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | . | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘ ┌
 |

 ┌─────────────────┘
 ┌─────────────────────────┐ ┘ ┌ ┌
 | 5 | Math | null |

 └─────────────────────────┘ ┘ ┘

 156 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 At end of 3rd pass through ’for’ loop, i.e., at end of 3rd call to

 procedure Inseq:

 Num First

 ┌───┐ ┌───────┐
 | 1 | | . |

 └───┘ └───────┘ ┌
 |Number Name Next

 ┌─────────────────────────┐ ┘ ┌ ┌
 | 1 | Math | . |

 └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 Place |

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | . | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘ ┌
 |

 ┌─────────────────┘
 ┌─────────────────────────┐ ┘ ┌ ┌
 | 5 | Math | null |

 └─────────────────────────┘ ┘ ┘

 At end of ’while’ loop in procedure Inseq during 4th pass through ’for’

 loop in main program:

 Num First

 ┌───┐ ┌───────┐
 | 4 | | . |

 └───┘ └───────┘ ┌
 |Number Name Next

 ┌─────────────────────────┐ ┘ ┌ ┌
 | 1 | Math | . |

 └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 OldPlace |

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | . | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 Place |

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 5 | Math | null | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘

 Records and References 157

 MTS 16: ALGOL W in MTS

 September 1980

 At end of 4th pass through ’for’ loop, i.e., at end of 4th call to

 procedure Inseq:

 Num First

 ┌───┐ ┌───────┐
 | 4 | | . |

 └───┘ └───────┘ ┌
 |Number Name Next

 ┌─────────────────────────┐ ┘ ┌ ┌
 | 1 | Math | . |

 └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 OldPlace |

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 2 | Math | . | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 ┌─────────────────────────┐ ┘ ┌ ┌
 | 4 | Math | . |

 └─────────────────────────┘ ┘ ┘ ┌
 ┌─────────────────┘
 Place |

 ┌─────────┐ ┌─────────────────────────┐ ┘ ┌ ┌
 | . |────| 5 | Math | null | ┌ ┘
 └─────────┘ └─────────────────────────┘ ┘ ┘

 Deletion part _____________

 Recall that the data relevant to this portion of the program are:

 5

 2

 5

 1

 4

 2

 (1) Example of deletion in middle of list:

 158 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 At end of ’while’ loop in procedure Delete during 1st pass through ’for’

 loop in main program:

 Num First

 ┌───┐ ┌────┐
 | 2 | | . |

 └───┘ └────┘ ┌
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 1 | | . | ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 Place |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 2 | | . | ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 ┌──────────────┐ ┘ ┌ ┌
 | 4 | | . |

 └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 ┌──────────────┐ ┘ ┌ ┌
 | 5 | |null|

 └──────────────┘ ┘ ┘

 At end of 1st pass through ’for’ loop, i.e., at end of 1st call to

 procedure Delete:

 Num First

 ┌───┐ ┌────┐
 | 2 | | . |

 └───┘ └────┘ ┌
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────|1 | | . | ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 Place |

 ┌────┐ ┌──────────────┐ ┌──────────────┐ ┌ ┌ ┘ ┌ ┌
 | . |────| 2 | | . |────| 4 | | . | ┌ ┘ ┌ ┘
 └────┘ └──────────────┘ └──────────────┘ ┘ ┘ ┘ ┘ ┌
 ┌──────────┘
 ┌──────────────┐ ┘ ┌ ┌
 | 5 | |null|

 └──────────────┘ ┘ ┘

 Record 2 is no longer in the list.

 Records and References 159

 MTS 16: ALGOL W in MTS

 September 1980

 (2) Example of deletion at end of list:

 At end of ’while’ loop in procedure Delete during 2nd pass through ’for’

 loop in main program:

 Num First

 ┌───┐ ┌────┐
 | 5 | | . |

 └───┘ └────┘ ┌
 ┌──────────────┐ ┘ ┌ ┌
 | 1 | | . |

 └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 4 | | . | ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 Place |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 5 | |null| ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘

 At end of 2nd pass through ’for’ loop, i.e., at end of 2nd call to

 procedure Delete:

 Num First

 ┌───┐ ┌────┐
 | 5 | | . |

 └───┘ └────┘ ┌
 ┌──────────────┐ ┘ ┌ ┌
 | 1 | | . |

 └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 4 | |null| ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘
 Place

 ┌──────────────┐ ┌──────────────┐ ┌ ┌
 | . |────| 5 | |null| ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘

 Record 5 is no longer in the list.

 160 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 (3) Example of deletion at top of list:

 At end of ’while’ loop in procedure Delete during 3rd pass through ’for’

 loop in main program:

 Num First

 ┌───┐ ┌────┐
 | 1 | | . |

 └───┘ └────┘ ┌
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 1 | | . | ┌ ┘
 └──────────────┘ └──────────────┘ ┌ ┘ ┘ ┌
 Place | |

 ┌──────────────┐ | |
 | . |──────┘ | ┌
 └──────────────┘ |
 ┌─────────┘
 ┌──────────────┐ ┘ ┌ ┌
 | 4 | |null|

 └──────────────┘ ┘ ┘

 At end of 3rd pass through ’for’ loop, i.e., at end of 3rd call to

 procedure Delete:

 Num Place

 ┌───┐ ┌────┐
 | 1 | | . |

 └───┘ └────┘ ┌
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 1 | | . | ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘ ┌
 ┌──────────┘
 First |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 4 | |null| ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘

 Record 1 is no longer in the list since no global variable points to

 it. Only local variables, Oldplace and Place, which change at the

 beginning of every pass, point to record 1.

 Records and References 161

 MTS 16: ALGOL W in MTS

 September 1980

 (4) At end of ’while’ loop in procedure Delete during 4th pass through

 ’for’ loop:

 Num First

 ┌───┐ ┌────┐
 | 4 | | . |

 └───┘ └────┘ ┌
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 4 | |null| ┌ ┘
 └──────────────┘ └──────────────┘ ┌ ┘ ┘
 Place |

 ┌──────────────┐ |
 | . |──────┘ ┌
 └──────────────┘

 At end of 4th pass through ’for’ loop, i.e., at end of 4th call to

 procedure Delete:

 Num First

 ┌───┐ ┌────┐
 | 4 | |null|

 └───┘ └────┘

 Place

 ┌────┐
 | . |

 └────┘ ┌
 Oldplace |

 ┌──────────────┐ ┌──────────────┐ ┘ ┌ ┌
 | . |────| 4 | |null| ┌ ┘
 └──────────────┘ └──────────────┘ ┘ ┘

 (5) At end of program:

 Num First

 ┌───┐ ┌────┐
 | 2 | |null|

 └───┘ └────┘
 Oldplace

 ┌────┐
 |null|

 └────┘
 Place

 ┌────┐
 |null|

 └────┘

 Output: Nothing left in list

 162 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 MULTIPLE RECORD CLASS DECLARATIONS __________________________________

 As indicated by the <record-class-identifiers> section in a reference

 declaration, it is possible for a reference variable to point to an

 occurrence of any of several record classes. This means that at any

 given time, a reference variable may have a value which points to a

 record occurrence of one record class, and at another time, the same

 variable may have a value pointing to a record occurrence of a different

 record class.

 In certain situations, it may be desirable to find out to which

 record class a reference is currently pointing. A logical expression of

 the following form is used:

 <reference-variable> is <record-class-identifier>

 where:

 <reference-variable> is an identifier, a subscripted variable or a

 field designator of type reference;

 <record-class-identifier> is an identifier previously declared a

 record class and

 ’is’ is a logical operator with the same precedence as the

 relational operators =, ¬=, etc. (see "Precedence" in the section

 "Logicals").

 Note that reference variable must have been declared such that it

 could be pointing to the <record-class-identifier>.

 The value of the logical expression is true if, and only if, the

 reference is pointing to a record occurrence belonging to the specified

 record class. It is false if the value of the reference is ’null’ or if

 pointing to a record occurrence of a different record class.

 A sample program using multiple record-class declarations and the

 operator ’is’ is:

 comment

 This program creates one linked list containing two different

 record types: Adult and Child. Values for the fields of each

 record occurrence are read and, depending on the value of

 age, either an Adult or a Child record occurrence created.

 Because different fields are required: Soc_Sec_No for adults

 and Guardian_Name for children, two record types are needed.

 Later, the list is processed from beginning to end and a

 different output printed for Adult and Child record types.

 The operator ’is’ is used to determine to which record type a

 given record occurrence belongs. ;

 begin

 Records and References 163

 MTS 16: ALGOL W in MTS

 September 1980

 integer Age, Socsecno, N;

 string(10) Name, Guardian;

 comment

 Both record types have reference fields which can

 point to occurrences of either record type. However,

 Anext can only point from Adult records and Cnext only

 from Child records ;

 record Adult(string(10) Aname; integer Soc_Sec_No;

 reference(Adult, Child) Anext);

 record Child(string(10) Cname; string(10) Guardian_Name;

 reference(Adult, Child) Cnext);

 reference(Adult, Child) Current, First;

 comment N is the total number of record occurrences to be

 created;

 Read(N);

 Read(Age);

 if Age < 12

 comment

 Keep track of the first record occurrence in the

 list. Create either a Child or an Adult record

 occurrence, depending on the age ;

 then

 begin

 Readon(Name, Guardian);

 First := Child(Name, Guardian, null)

 end

 else

 begin

 Readon(Name, Socsecno);

 First := Adult(Name, Socsecno, null)

 end;

 comment

 Current is used to keep track of the record

 occurrence being processed currently ;

 Current := First;

 comment Build the linked list ;

 for I := 1 until N - 1 do

 begin

 Read(Age);

 comment

 If the current record occurrence is an Adult, then

 Anext points to the next record occurrence in the

 list. If it is a Child, Cnext points to the next

 record occurrence ;

 if Current is Adult then

 begin

 if Age < 12 then

 begin

 Readon(Name, Guardian);

 164 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 Anext(Current) := Child(Name, Guardian, null);

 Current := Anext(Current)

 end

 else

 begin

 Readon(Name, Socsecno);

 Anext(Current) := Adult(Name, Socsecno, null);

 Current := Anext(Current)

 end

 end

 else

 begin

 if Age < 12 then

 begin

 Readon(Name, Guardian);

 Cnext(Current) := Child(Name, Guardian, null);

 Current := Cnext(Current)

 end

 else

 begin

 Readon(Name, Socsecno);

 Cnext(Current) := Adult(Name, Socsecno, null);

 Current := Cnext(Current)

 end

 end

 end;

 comment Start at the beginning of the list ;

 Current := First;

 comment

 While statement goes from beginning to end of list, using

 ’is’ to check for Adult or Child record types and

 printing appropriate outputs ;

 while Current ¬= null do

 begin

 if Current is Adult then

 begin

 Write(Aname(Current), "Adult dosage prescribed");

 Current := Anext(Current)

 end

 else

 begin

 Write(Cname(Current), "Child dosage prescribed");

 Current := Cnext(Current)

 end

 end

 end.

 Records and References 165

 MTS 16: ALGOL W in MTS

 September 1980

 The following data:

 5

 25 "Benson" 145627431

 30 "Carp" 256483928

 8 "Dole" "Dole"

 40 "Hahn" 456836672

 10 "Salter" "Smith"

 produce the resulting output:

 Benson Adult dosage prescribed

 Carp Adult dosage prescribed

 Dole Child dosage prescribed

 Hahn Adult dosage prescribed

 Salter Child dosage prescribed

 166 Records and References

 MTS 16: ALGOL W in MTS

 September 1980

 BASIC INPUT AND OUTPUT ______________________

 Algol W provides several predeclared procedures to deal with input

 and output. All of these are accessible to any part of an Algol W

 program. One can imagine a "supplied" block containing all predeclared

 procedures. Since the user’s program is (conceptually) inserted in this

 block after the declarations, all such procedures are global to the

 entire program.

 All of the procedures described in this section assume that Algol W

 programs run in an environment which has a single input stream and a

 single output stream. The input stream is known to Algol W as INPUT and

 corresponds to the MTS logical I/O unit SCARDS. The output stream is

 known within Algol W as PRINT and corresponds to the MTS logical I/O

 unit SPRINT.

 In fact Algol W programs run in an environment in which there are

 many input and output streams. Additional predeclared procedures, which

 are described in subsequent sections, allow Algol W programs to

 reference all of these streams either by the free format methods

 described in this section or by interpreting string format fields in a

 similar manner to that used by Fortran.

 For most simple programs, the procedures described in this section

 will be sufficient when a single stream of data is being read in and a

 single set of results are to be sent to a printer.

 INPUT DATA __________

 Data to be read by an Algol W program can appear in any of the first

 256 columns of a data record. Data appearing after column 256 is

 ignored. Each data element is separated by one or more blanks or a

 comma from the next one. These blanks or commas are known as break

 characters. An input record (that is a line in a file or a card in a

 batch job) is considered to have 256 characters. If the physical line

 read in contains less than 256 characters, then it is padded on the

 right by blanks to a length of 256. Input records are read in sequence,

 as many as necessary to fulfill the requirements of the input statement.

 Data items input by the free format procedures described in this section

 must appear completely on one input record; such data items cannot be

 continued from one record to the next. Apart from this one restriction,

 the input records are viewed as being next to each other in one

 continuous stream.

 Basic Input and Output 167

 MTS 16: ALGOL W in MTS

 September 1980

 Input data items may be written as constants of the appropriate

 types. The exception is that the trailing "L" of a long precision

 floating point quantity is never legal on an input data item. All

 floating point quantities read in by Algol W are converted initially to

 approximately the full double precision form. If data items specify a

 short precision floating point simple type, that is real or complex,

 then the value is truncated to short precision on assignment to the

 receiving variable.

 Many additional forms are allowed for input data items for the

 convenience of Algol W programmers. Those for each simple type are

 described separately in the following subsections.

 Integer _______

 Integer data items are normally supplied as optionally signed integer

 constants.

 They may also be supplied as a bits constant, that is as a hash mark

 (#) followed by 1 to 8 hexadecimal digits. In this case the assignment

 to the receiving variable is of the integer equivalent of the bits

 quantity specified. The effect is as if the Number predeclared function

 had been called with the data item as its argument.

 Examples:

 0

 1234

 +99

 -1001

 #A9 (equivalent to integer constant 169)

 The first four items are valid integer constants within an Algol W

 program. All five are valid as input data items and supply a 32-bit

 integer value.

 Real and Long Real __________________

 When floating point quantities are converted to their internal form

 during an input operation, the conversion is always done to approximate-

 ly full double precision. For this reason, there is no need for an

 input data item to specify long precision by a trailing "L" as would be

 necessary when specifying a long real constant in Algol W program text.

 An optionally signed real constant is a valid input data item for

 assignment to either a real or a long real variable. This real constant

 may however specify up to 17 significant digits. A long real constant

 (as specified by a trailing "L") is not legal as a floating point input

 item.

 168 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 When a floating point quantity is being read into a real variable the

 double precision internal value is truncated to a short precision one

 before assignment to the variable. Any additional accuracy specified in

 the input data item is simply lost at this point. Short precision

 (real) variables can represent approximately 7 significant decimal

 figures; for long precision (long real) approximately 17 significant

 decimal figures may be held.

 For convenience certain variations of the rigid format of a real

 constant are allowed for input data items. The exponent separator

 character, which must be a prime (’) when specified in program text, is

 relaxed to include any of the following characters:

 ’ E e D d

 Examples:

 0

 -1.234

 ’5

 1.36’-34

 -3E7

 +9.7d-8

 The first four items above are valid real constants within Algol W

 program text where they would specify a number to short precision

 accuracy only. As input data items all six are valid and specify

 numbers to long precision accuracy.

 Complex and Long Complex ________________________

 There are two forms allowed for data items to be input into complex

 or long complex variables.

 The first form is similar to complex constants which may be specified

 within program text, but with the same changes and relaxations as

 specified in the previous section for real and long real data items.

 In this form a complex number consists of an optionally signed

 floating point number (specifying the real or long real part) followed

 immediately by a signed floating point number suffixed by the letter "I"

 (specifying the imaginary or long imaginary part). No spaces may appear

 within this sequence. The presence of a trailing "L" on any floating

 point constant is illegal and the trailing "I" on the imaginary part may

 be specified in either upper or lower case.

 If the imaginary part of the complex quantity is zero, then the

 signed floating point number specifying the imaginary part may be

 omitted together with its trailing I. If the real part of the quantity

 is zero then the number may be specified by a single optionally signed

 floating point number followed by a suffix of "I" or "i".

 Basic Input and Output 169

 MTS 16: ALGOL W in MTS

 September 1980

 Examples:

 0

 -2.3

 4.9I

 3+4I

 4.5’5+8.9’6i

 6.9e-3-8.45e-4i

 The first five values are valid complex constants within Algol W program

 text. All six values are valid complex or long complex data items and

 specify quantities to approximately full long precision. In the first

 two items the imaginary part of the number is zero. In the first and

 third items the real part of the number is zero. Note that if both

 parts of the number are zero, zero must still be given.

 The second form is provided so that complex quantities output from an

 Algol W program may be subsequently re-input to another Algol W program.

 In this form the real and imaginary parts of the number are specified

 as two optionally signed floating point data items, separated by a comma

 and with the whole group enclosed in parentheses. If the imaginary part

 of the number is zero it may be omitted. The real part must always be

 specified. Within the parentheses any number of spaces may be given

 provided that they do not occur within one of the floating point data

 items. Note that the imaginary part does not have a trailing "I" and

 that this character is illegal in this context.

 Examples:

 The examples given after the description of the first format may be

 written in the second format as:

 (0, 0)

 (-2.3, 0) or: (-2.3)

 (0, 4.9)

 (3,4)

 (4.5’5, 8.9’6)

 (6.9e-3, -8.45e-4)

 Note that, while all of the numbers given in this second set of examples

 are valid complex or long complex data items, none of them are valid as

 complex constants within Algol W program text. This form is very

 similar to the format in which Algol W outputs complex floating point

 quantities.

 As with real variables, the two halves of a complex data item are

 converted on input to approximately the full double precision accuracy.

 When the value is assigned to a receiving complex variable both the real

 and imaginary parts are truncated to short precision. Extra significant

 figures are simply lost at this point.

 170 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Of course with a long complex receiving variable no such truncation

 will occur.

 Logical _______

 There are two valid logical constants within Algol W program text.

 These are:

 true

 false

 Both of these constants, in any mixture of upper and lower case, are

 valid logical data items. For convenience any abbreviation down to "T"

 or "F" is also a valid data item. Any combination of mixed upper and

 lower case characters is valid.

 Examples:

 TRUE

 False

 T

 F

 tr

 fa

 Only the first two values are valid logical constants within Algol W

 program text. However all six are valid logical data items.

 Strings _______

 Within Algol W program text, a string constant may be specified as a

 sequence of characters enclosed in quotes ("). If any quote occurs as a

 character within the string then two quotes must be specified. Such

 constants are valid data items for input into a variable of simple type

 string. Note however that the data item must be entirely on one

 physical input record: it may not be broken across a record boundary.

 For convenience two other forms of string constants are allowed when

 the constant is an input data item.

 In the second form the quote delimiters of a normal string constant

 are replaced by the prime (’). Note that in this form a quote as a

 character is not doubled but a prime must be. Primes in string

 constants which are delimited by quotes are not doubled.

 The third form allows strings to be input without either quotes or

 primes as delimiters. In this form the string to be input may not

 Basic Input and Output 171

 MTS 16: ALGOL W in MTS

 September 1980

 contain any embedded break characters (spaces or commas). Furthermore

 the first character of the string may not be a quote or a prime if such

 a character occurs elsewhere in the line, that is outside the bounds of

 the string being input.

 Examples:

 "JOHN BULL"

 """"

 ’There’’s an east wind coming, Watson.’

 ’"XX"’

 Watson

 Sherlock Holmes

 Of the six data items given above, the first two are valid string

 constants within Algol W program text. Note that the second example

 sends only one character, a quote ("), but the fourth sends four

 characters because, in this case, the string delimiters are primes. In

 the sixth example the string sent is "Sherlock"; "Holmes" is the next

 data item because it is separated from the first string by a break

 character, the space.

 The following rules apply to string data items:

 (1) If the characters to be input into the string variable include

 break characters, that is spaces or commas, then the characters

 must be surrounded by delimiters. These are either quotes (")

 or primes (’). A string must be terminated by the same

 delimiter as that used to start it.

 (2) If a character string delimited by quotes contains a quote

 character, then for this two quotes must be given.

 (3) If a character string delimited by primes contains a prime

 character, then for this two primes must be given.

 (4) If the character string to be input contains a quote or a prime

 as its first character and the same character occurs later in

 the same input record, then the string should be surrounded by

 delimiters.

 (5) If the string to be input includes neither break characters nor

 a quote or a prime as its first character, then the input data

 item need not be surrounded by delimiters. In this case

 characters will be input from the first non-break character to

 the following break character or the end of the current physical

 data record, whichever occurs sooner.

 (6) When a string is input between two delimiters, these are

 stripped from the characters as they are input and any double

 delimiters within the string are replaced by the equivalent

 single one.

 172 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 (7) If the number of characters input into a receiving variable is

 greater than the length of the variable then a fatal error

 condition is recognized.

 (8) If the number of characters input into a receiving variable is

 less than the length of the variable then the data item is

 padded on the right with blanks.

 These rules reflect the default behavior of the string recognition

 algorithm used by Algol W. The rules may either be changed to remove

 recognition of primes or quotes as delimiters, or extended to recognize

 parenthesized groups, by suitable calls to the predeclared procedure

 Iocontrol. These facilities are described in "Modification of the

 String Recognition Algorithm" in the section "Miscellaneous Topics."

 Bits ____

 Any bits constant valid within Algol W program text is also valid as

 a bits input data item. It is composed of a hash mark (#) followed by 1

 to 8 hexadecimal digits. If less than 8 digits are given then the

 constant is assumed to be padded on the left by hexadecimal zeros. The

 hexadecimal digits A to F may be given in any mixture of upper and lower

 case characters.

 For convenience, when a bits constant is specified as an input data

 item, the hash mark may be omitted.

 Examples:

 #0

 #1234

 #FF

 #c1c2c3d4

 abc

 100

 Of these six bits constants, only the first four are valid within Algol

 W program text. All six are valid as bits input data items. Note

 carefully that the final item specifies three hexadecimal digits, that

 is it will translate to an internal bits value of #00000100, not integer

 100.

 Reference _________

 Reference variables may not be assigned through an input statement.

 To assign a value to a record through an input statement, the individual

 field designators must be specified and, even so, reference pointers may

 not be read in.

 Basic Input and Output 173

 MTS 16: ALGOL W in MTS

 September 1980

 INPUT STATEMENTS ________________

 The following predeclared input procedures are available:

 Read

 Readon

 Readcard

 Input statements take the following form:

 <procedure-identifier> (<input-parameter-list>)

 where:

 <procedure-identifier> is Read, Readon or Readcard;

 <input-parameter-list> is a list of <variables> and/or <simple-

 statements>, each separated from the next by a comma;

 <variable> is an identifier, a subscripted variable indicating an

 element of an array, a field designator indicating a field of a

 record occurrence or a substring designator indicating a portion of

 a string; and

 <simple-statement> can be any simple statement but, in general, is

 a format assignment statement or a control statement.

 Format assignment and control statements, although legal in input

 statements, are mainly relevant to output ones (see exception of

 Iocontrol("NEXTCARD") under "Control of Basic Input and Output" later in

 this section). Therefore the typical input statement is of the form:

 <procedure-identifier> (<variables>)

 Read and Readon _______________

 Both Read and Readon are free format procedures. In other words,

 values on data records do not have to be spaced in any particular way,

 except for requiring one or more break characters to separate them.

 Values are read, matched with the variables in the input parameter list

 in order of appearance and assigned to the corresponding variables.

 The type of each data item must be assignment compatible with that of

 the corresponding variable. The types of variables which may be read

 are: arithmetic (that is integer, real, long real, complex and long

 complex), string, bits and logical. Values of reference variables may

 not be read in as input data.

 174 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 A Read statement begins reading at the beginning of a new input

 record, whereas a Readon begins reading on the same input record as the

 previous Read or Readon statement. Both Read and Readon continue

 reading values until all variables in the input parameter list have been

 matched. If necessary, either predeclared procedure will read in more

 than one physical input record to satisfy the request. If more

 variables are listed in the input statement than there are values on the

 data records, then an error condition is recognized.

 Examples:

 begin

 real A, B;

 integer I, J;

 Read(A, I);

 Read(B, J)

 end.

 If the data records are as follows:

 -4.2 6

 5.1 -19

 A has the value -4.2, I the value 6, B the value 5.1 and J the value

 -19.

 begin

 real A, B;

 integer I, J;

 Read(A, I, B);

 Readon(J)

 end.

 If the data records are as follows:

 -8.9 9

 1.5 -32

 A has the value -8.9, I the value 9, B the value 1.5 and J the value

 -32. The Read statement reads two values from the first input record

 and goes to the second one for the third value.

 begin

 complex C;

 integer I, J, K;

 real A, B;

 Read(C, A, K);

 Readon(B, I);

 Read(J)

 end.

 If the data input records are as follows:

 Basic Input and Output 175

 MTS 16: ALGOL W in MTS

 September 1980

 -4.2+3I 60.4

 -15 -4.3’8

 49 64

 28

 C receives the value -4.2+3I, A the value 60.4, K the value -15, B the

 value -4.3’8, I is 49 and J is 28. The 64 is ignored.

 Note that a data item input by a Read or a Readon statement may not

 be broken across two physical input records. This applies to all data

 types including strings.

 Readcard ________

 Readcard designates a procedure which reads all the characters of an

 input record into a corresponding string variable. The data characters

 read by a Readcard statement are not enclosed by quotes or primes unless

 these characters are to be input. A Readcard statement causes reading

 to start at the beginning of a new input record. Any subsequent input

 statement begins at the first character of the following record. The

 string variable may be of any length. If a string variable listed in

 the Readcard input parameter list is longer than the number of

 characters input, the remaining characters of the variable are padded

 with blanks. If a string variable is shorter than the number of

 characters input, then the input record is truncated on the right and

 just those characters which will fit are transferred to the variable.

 Note that all variables in the Readcard input parameter list must be

 string ones. They may be entire strings or substring designators.

 Examples:

 begin

 string(24) Text; string(100) Line;

 Readcard(Text, Line(10|85))

 end.

 Text now contains the string value of the first 24 characters of the

 first data input record. Line has the following composition: charac-

 ters 1 to 10 are undefined, 11 to 95 contain the string value of the

 first 85 characters of the second data input record and 96 to 100 are

 undefined.

 begin

 string(80) Line, Text, Word;

 Readcard(Line, Text);

 Read(Word);

 Write(Line);

 Write(Text);

 Write(Word)

 end.

 176 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 If the data lines are:

 "Quotes are not always needed"

 Quotes are not always needed

 "Quotes are not always needed"

 the output is:

 "Quotes are not always needed"

 Quotes are not always needed

 Quotes are not always needed

 OUTPUT STATEMENTS _________________

 Algol W provides the following predeclared output procedures:

 Write

 Writeon

 Writecard

 Output statements take the following form:

 <procedure-identifier> (<output-parameter-list>)

 where:

 <procedure-identifier> is either Write, Writeon or Writecard;

 <output-parameter-list> is a list of expressions and/or <simple-

 statements>, each separated from the next by a comma;

 <expression> is any legal expression; and

 <simple-statement> can be any legal simple statement but, in

 general, is a format assignment statement or a control statement

 (see "Format Specifications and Assignment Statements" later in

 this section).

 Write and Writeon _________________

 Format conversion for Write and Writeon is performed automatically.

 In other words, no statements equivalent to Fortran format statements

 are required. The values of the variables in the output parameter list

 are printed in succession, in order corresponding to their order in the

 list. Output records (that is lines on the printer or lines in an

 output file) are up to 256 characters in length. However, for the

 default output stream used by Write and Writeon (that is PRINT, which is

 Basic Input and Output 177

 MTS 16: ALGOL W in MTS

 September 1980

 equivalent to MTS SPRINT) the default output length is 133 characters.

 If the value of an output expression cannot fit on the current line, it

 is printed on the next one. The default output length of the stream in

 use may be changed under program control using the Qualify predeclared

 procedure which is described in the next section. Values of expressions

 listed in a Write statement are output starting from the first character

 of a new line. Values of expressions listed in a Writeon statement are

 printed on the same line as the last value printed by the previous Write

 or Writeon statement. If the value of an expression listed in a Writeon

 statement will not fit on the current output record then a new output

 record is started.

 Example:

 begin

 real X, Y, Z;

 integer I, J;

 Read(X, Y, I, Z, J);

 Write(I, Z);

 Writeon(X, J);

 Write(Y)

 end.

 If the data are as follows:

 5.2 6.4 -8 4.8 +20

 the output appears as follows:

 -8 4.800000 5.200000 20

 6.400000

 Note that constants may appear as part of the

 <output-parameter-list>.

 Examples of legal output statements:

 Write(X, " is the value of X")

 Write(9, 10)

 Complex Expressions ___________________

 Complex expressions are output in a form in which they could be

 re-input to a complex variable. In order that the real and imaginary

 parts may appear in columns when output data is tabulated, a complex

 expression is output in the form:

 (x,y)

 178 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 where x is a real output field displaying the real part of the complex

 expression and y is a real output field displaying the imaginary part.

 The space taken up on the output data record is a field consisting of a

 left parenthesis followed by a floating point real field, a comma, the

 floating point imaginary field and a right parenthesis.

 Example:

 begin

 complex P, Q;

 P := 3.4+5.6I;

 Q := -0.3+67.5I;

 Write(P);

 Write(Q)

 end.

 Using b to represent blank, the output from this program is: /

 (bbbbb3.400000b,bbbbb5.600000b) ///// / ///// /

 (bbbb-0.3000000,bbbb67.50000bb) //// //// //

 To output a complex quantity without parentheses, the real and

 imaginary parts of the number must be output separately using the

 relevant predeclared functions.

 Example:

 begin

 complex P, Q;

 P := 3.4+5.6I;

 Q := -0.3+67.5I;

 Write(Realpart(P), Imagpart(P));

 Write(Realpart(Q), Imagpart(Q))

 end.

 The output from this program is:

 bbbbb3.400000bbbbbbbb5.600000b ///// //////// /

 bbbb-0.3000000bbbbbb67.50000bb //// ////// //

 String Expressions __________________

 String expressions are output in a field length exactly equal to that

 of the string. However, whereas all other expressions in Algol W are

 output completely on one record, in the case of a string this is not

 true. Output of characters from the string starts on the current output

 record then, if the string will not fit completely onto this, the

 characters of the string are broken over as many further records as are

 necessary.

 Basic Input and Output 179

 MTS 16: ALGOL W in MTS

 September 1980

 Writecard _________

 Writecard designates a procedure which writes the whole of the

 supplied string argument on a single output record. Each Writecard

 argument starts a new output record and any subsequent output by any

 output procedure will also start a new record.

 If a string expression output by Writecard is longer than the maximum

 length of an output record for the basic output stream then it is

 truncated on the right.

 Note that all expressions in the Writecard parameter list must be of

 simple type string. They may be entire strings or substring

 designators.

 Example:

 begin

 string(48) Text;

 Text := "Mary had a little lamb";

 Writecard(Text, "Whose fleece was white as snow")

 end.

 The output from this program is :

 Mary had a little lamb

 Whose fleece was white as snow

 With Write and Writeon statements, records are only written out when

 the current output record buffer is full. In the case of Writecard, the

 buffer is assumed to be full after each argument and its contents are

 forced out immediately.

 FORMAT SPECIFICATIONS AND ASSIGNMENT STATEMENTS ___

 Format Variables ________________

 Output formats are controlled by predeclared variables. All of these

 are initialized to default values which can be changed by the use of

 format assignment statements. Both Write and Writeon are procedures

 which output the values of the expressions listed in the output

 parameter list according to the formats specified for the given types.

 No format control applies to the Writecard predeclared procedure.

 An alternative to using these predeclared variables is to use the

 formatted I/O statements described in the section "Format Directed Input

 and Output." Using the formatted I/O statements is generally preferred

 over using the predeclared format control variables.

 180 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 The following predeclared variables control the formats of the

 various types:

 I_W

 I_W is a variable of type integer which sets the width of integer

 fields on output. Its value is initialized to 14 but can be

 changed in a format assignment statement such as:

 I_W := 6

 R_W

 R_W is a variable of type integer which sets the width of real and

 long real fields. Its value is initialized to 14 but can be

 changed in a format assignment statement. Because complex and long

 complex numbers are composed of two reals and two long reals,

 respectively, R_W controls the widths of these types indirectly.

 Their widths are 2*R_W + 3 and thus have the initial value of 31.

 R_D

 R_D is a variable of type integer which sets the number of places

 after the decimal point in real, long real, complex and long

 complex fields of output. Its initial value is 0 but can be

 changed with a format assignment statement such as:

 R_D := 4

 Note that the R_D variable is relevant only if the R_Format value

 is set to "F" or "A" - see R_Format below.

 R_Sig

 R_Sig is a variable of type integer which sets the minimum number

 of significant digits which may appear in real, long real, complex

 and long complex fields of output. Its initial value is 3 but can

 be changed with a format assignment statement such as:

 R_Sig := 5

 Note that the R_Sig variable is relevant only if the R_Format value

 is set to the default of "G" - see R_Format below.

 R_Expchar

 R_Expchar is a variable of type string(1) which defines the

 exponent separator character which will be used in real, long real,

 complex and long complex fields of output. It is initially set to

 be the prime (’) character but can be changed with a format

 assignment statement such as:

 Basic Input and Output 181

 MTS 16: ALGOL W in MTS

 September 1980

 R_Expchar := "E"

 Note that the R_Expchar variable is relevant only if the number is

 being output in explicit exponent form - see below.

 R_Format

 R_Format is a variable of type string(1) which controls the format

 of real, long real, complex and long complex values. The possible

 values for R_Format are:

 R_Format Meaning Fortran Equivalent

 ──────── ─────── ──────────────────
 "G" General (default) None

 "F" Fixed decimal point F

 "E" Explicit exponent E or D

 "D" Same meaning as "E" E or D

 "A" Same meaning as "F" F

 "S" Same meaning as "E" E or D

 The lower case equivalents of these characters may be specified if

 so desired.

 S_W

 S_W is a variable of type integer which sets the number of blanks

 to be added at the end of each field of output for all data types

 except strings. Its initial value is 2, which means that two

 blanks are inserted between adjacent fields on output unless the

 user resets S_W with a format assignment statement. String fields

 are always as long as the string itself and no blanks are appended.

 Fixed Decimal Point Format __________________________

 Fixed decimal point format specifies that the current R_W value is

 the entire width of the value to be printed and that the current R_D

 value is the number of places to the right of the decimal point. The

 format used is:

 x.y

 where "x" is a signed integer representing the integral part and "y" is

 the specified number of digits representing the fractional part. The

 scale factor, indicated by the prime (’) of the Algol W notation, is not

 used.

 182 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 begin

 real A, B;

 R_D := 4;

 R_Format := "F";

 A := 8.40;

 B := -12.56139;

 Write(A, B)

 end.

 This program produces the output:

 bbbbbbbb8.4000bbbbbbbb-12.5614bb //////// //////// //

 where each "b" represents one blank. The first value has two 0’s /

 appended to it to meet the requirement of R_D being set to 4. Eight

 blanks precede it in order for the entire width to total 14, the default

 value of R_W. Eight blanks occur between the two numbers. The first

 two are a result of the default S_W setting. The next six are to

 supplement the width of the value of B in order to have a field width of

 14. Because R_D is set to 4, the number has to be rounded from 5

 decimal places to 4.

 Explicit Exponent Format ________________________

 Explicit exponent format specifies that the Algol W prime (’)

 notation is to be used. The number of significant digits is 7 less than

 the current R_W value. Thus the R_D value is irrelevant if R_Format is

 set for the explicit exponent form.

 The format of real values on output is as follows:

 x’y

 where "y" is a signed, two-digit integer representing the power of 10 by

 which "x" (the mantissa) should be multiplied and "x" is an "unscaled"

 real, meaning:

 1.0 <= x < 10.0

 The exponent separator character, which defaults to a prime, is taken

 from the value of a predeclared string(1) variable, R_Expchar. If any

 other exponent separator character is desired in output, it can be

 obtained by assigning a new value to this variable.

 Basic Input and Output 183

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 begin

 real A, B, C;

 R_Format := "E";

 R_W := 13;

 A := 5.08;

 B := 53.4’2;

 C := -4976.253;

 Write(A, B);

 R_Expchar := "E";

 Write(C)

 end.

 The output from this program is:

 bb5.08000’+00bbbb5.34000’+03bb // //// //

 b-4.97625E+03bb / //

 Note that in this format a positive mantissa is preceded by two blanks

 and a negative one by only one.

 General (Default) Format ________________________

 General format always attempts to print a value in a reasonable

 format as determined by the magnitude of the number and the number of

 significant digits desired.

 Algol W first attempts to output the number in fixed point format in

 a field which is R_W characters long. The position of the decimal point

 is determined by integer dividing R_W by two. This value is used to

 provide the number of digits after the decimal point. The value of R_D

 is ignored in this format.

 If the number will not fit into the supplied field width in fixed

 point format, the number will be output in explicit exponent form using

 the same value of R_W. The number will not fit if either its magnitude

 is too large, so that there is insufficient room for the digits

 preceding the decimal point, or insufficient significant digits would be

 printed.

 The number of significant digits which must be printed in this format

 is determined by the value of the predeclared integer variable R_Sig,

 which defaults to three. This means that if a number can be output in

 fixed point format but less than R_Sig significant digits would be

 displayed, the number is printed in explicit exponent form instead.

 A maximum of 7 significant digits will be printed for short precision

 quantities and 15 significant digits for long precision ones. If the

 last significant digit is reached before the decimal point, the number

 184 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 is padded with zeros up to the decimal point and spaces are printed

 there after up to the end of the field. If the last significant digit

 occurs after the decimal point then the subsequent character positions

 again contain spaces.

 Example:

 begin

 real A;

 R_Sig := 5;

 A := 8.4; Write(A);

 A := 12.56139 Write(A);

 A := 0.00034567; Write(A);

 A := 45.5’8; Write(A)

 end.

 The output from this program is:

 bbbbb8.400000bbb ///// ///

 bbbb12.56139bbbb //// ////

 bb3.456700’-04bb // //

 bb4.550004’+09bb // //

 The program does not make any assignment to R_Format or R_W. The

 default values of "G" and 14 respectively are used. The number of

 significant digits set by R_Sig is changed to specify a minimum of 5.

 Note that the first two numbers are printed in fixed point format with

 all 7 significant digits displayed. If the third number was displayed

 in this format, only four significant digits could be printed since

 Algol W attempts to keep the decimal point aligned for columnar output.

 For this reason, it is output in explicit exponent form. In the case of

 the final number, there is insufficient room before the decimal point to

 display the leading significant digits so once again the number is

 printed in explicit exponent form.

 Simple Variable Types and Output Formats __

 The following table summarizes the predeclared format variables and

 their default values:

 Basic Input and Output 185

 MTS 16: ALGOL W in MTS

 September 1980

 Identifier Type and Default Interpretation __________ ________________ ______________

 I_W integer 14 width of integer fields

 R_W integer 14 width of real and long

 real fields; width of

 complex and long complex

 fields (2*R_W + 3)

 R_D integer 0 places following the

 decimal point in real,

 long real, complex and

 long complex fields in

 fixed point format

 R_Expchar string(1) "’" the exponent separator

 character used when a

 real, long real, complex

 or long complex expression

 is output in explicit

 exponent form

 R_Sig integer 3 the minimum number of

 significant digits to

 be displayed in the

 default general format

 R_Format string(1) "G" format of real, long real,

 complex and long complex

 fields

 S_W integer 2 width of the fields of

 blanks appended to the

 end of each field

 (excluding string fields)

 Any values assigned to I_W, R_W or S_W in excess of 32 are treated as

 32. If values of I_W, R_W, R_D, R_Sig or R_Format are inconsistent with

 the magnitude or precision of the numbers to be printed, alternative

 format values are chosen. These alternate choices ensure that an

 approximation to the number is given, and that no more digits are

 printed than are warranted by the precision of the number. Specifical-

 ly, this means that if I_W is too small its size is disregarded and the

 integer is printed; rounding occurs if R_D is too small and the "F"

 value of R_Format is overlooked if the magnitude of the number to be

 printed is too great for the current R_W value.

 Example:

 186 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 integer I, J;

 Read(I, J);

 I_W := 1;

 Write(I, J)

 end.

 If the data card reads:

 4802 9

 the output is:

 4802bb9bb // //

 as if I_W had been increased temporarily from 1 to 4 to accommodate the

 larger value of the output expression I.

 The following table explains the distribution of blanks and the field

 lengths for output expressions according to type of expression:

 Type Field-Description ____ _________________

 integer Right-justified in a field of I_W characters

 and followed by S_W blanks

 real and Right-justified in a field of R_W characters

 long real and followed by S_W blanks

 complex and Right-justified in two fields each of R_W

 long complex characters separated by a comma, enclosed within

 parentheses and the whole followed by S_W

 blanks

 logical Left-justified in a field of 5 characters

 and followed by S_W blanks

 string Field length is exactly the length of the

 string

 bits Right-justified in a field of 9 characters

 and followed by S_W blanks

 Format Assignment Statements ____________________________

 As mentioned earlier, format assignment statements may appear within

 an input or output statement as well as outside them.

 Examples:

 Basic Input and Output 187

 MTS 16: ALGOL W in MTS

 September 1980

 Write(I_W := 3, I, I_W := 4, J)

 Write(I, I_W := 5, J, K)

 These output statements contain format assignment statements to affect

 the output of the variables within them.

 When a format variable is changed within an input/output statement,

 it is considered a local variable. In other words, the change has

 effect only while executing the current input/output statement. At the

 end of such a statement, the current value of the global variable is

 restored. Format assignment statements outside of input/output state-

 ments are global, and affect all subsequent output, until another format

 assignment statement changes the value of the format variable.

 IOCONTROL _________

 Algol W provides the Iocontrol predeclared procedure to modify the

 action of the input/output system.

 The form of an Iocontrol statement is:

 Iocontrol(<control-parameter-list>)

 where:

 <control-parameter-list> is a list of <expressions> each separated

 from the next by a comma; and

 <expression> is any legal expression.

 In practice, the expressions should be either integer or string ones.

 Those of other simple types are ignored. The following table gives a

 list of all of the expressions which are recognized by Iocontrol. If an

 integer key is given which is not in the list, it is ignored. If a

 string expression is given, then it may contain one or more of the

 keywords specified, separated by commas. Keywords may be unambiguously

 abbreviated down to three characters and specified in any mixture of

 upper and lower case. If a keyword is given which is either not in the

 list below or not an unambiguous abbreviation of a list item, then Algol

 W will treat this as a fatal error.

 It is strongly recommended that the string keywords be given as

 arguments to Iocontrol rather than using the equivalent integer values,

 as this is less prone to error and enhances source program readability.

 Note that just like format assignment statements, Iocontrol state-

 ments may be inserted in Read or Write statements.

 The following input/output control keywords modify the action of the

 basic input/output predeclared procedures previously described in this

 188 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 section. Their action is fully described in the subsection "Control of

 Basic Input and Output" later in this section.

 String

 Integer Keyword _______ _______

 1 NEXTCARD

 2 SPACE

 3 EJECT

 4 NORMAL

 5 FULLPAGE

 6 DOUBLESKIP

 7 TRIPLESKIP

 8 OVERPRINT

 The following input/output control keywords control the timing

 information which is printed at the end of an Algol W program execution.

 They are described in the subsection "Timing Information" in the section

 "Miscellaneous Topics."

 String

 Integer Keyword _______ _______

 101 TOTALCPU

 102 PROBLEMCPU

 103 SUPERCPU

 104 ELAPSED

 105 NOTIMES

 106 ALLTIMES

 The following input/output control keywords control the action which

 the Algol W runtime error procedures will take if a program interrupt

 occurs while program execution is in either a non-Algol W external

 subroutine or an Algol W library routine. They are described in the

 subsection "External and Library Interruptions" in the section "Miscel-

 laneous Topics."

 String

 Integer Keyword _______ _______

 201 DISPLAY

 202 NODISPLAY

 203 PSW

 204 GRS

 205 FRS

 206 SYSPGNT

 207 ALWPGNT

 The following input/output control keywords control the action of the

 Getstring predeclared procedure. Getstring is described in the section

 "Stream Directed Input and Output." The effect of the various Iocontrol

 keywords on Getstring is described in the subsection "Control of

 Getstring Action" in the section "Miscellaneous Topics."

 Basic Input and Output 189

 MTS 16: ALGOL W in MTS

 September 1980

 String

 Integer Keyword _______ _______

 301 GSFIELDED

 302 GSRETURNS

 303 GSCONTINUE

 304 GSORIGIN

 The following input/output control keywords control the action of the

 string recognition algorithm when strings are read in free format using

 the predeclared procedures Read, Readon, Get, Geton and Getstring. The

 predeclared procedures Get, Geton and Getstring are described in the

 section "Stream Directed Input and Output." The action of the other

 keywords is described in the subsection "Modification of the String

 Recognition Algorithm" in the section "Miscellaneous Topics."

 String

 Integer Keyword _______ _______

 401 RESETSCAN

 402 NOQUOTES

 403 QUOTES

 404 NOPRIMES

 405 PRIMES

 406 BRACKETS

 407 NOBRACKETS

 408 DELBRACKETS

 Control of Basic Input and Output _________________________________

 When supplied as arguments to Iocontrol, the following keywords

 control the action of the basic input/output predeclared procedures

 described earlier in this section. The parenthesized numbers are the

 integer equivalants to the keyword arguments. Use of integer arguments

 is discouraged.

 The following keyword affects input operations.

 NEXTCARD (1)

 NEXTCARD causes the current contents of the input buffer within

 Algol W to be forgotten. The next input operation will fetch a new

 physical input record regardless of whether the predeclared proce-

 dure used is Read, Readon or Readcard. Read and Readcard would

 normally fetch a new input record so:

 Iocontrol("NEXTCARD");

 would cause a subsequent Readon to fetch a new input record as if

 Read had been called. As an example consider the following

 program:

 190 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 real array Data(1::24);

 for I := 1 until 24 do

 begin

 if (I rem 6) = 1 then Iocontrol("NEXTCARD");

 Readon(Data(I))

 end;

 .

 .

 end.

 The program above reads in the 24 elements of an array Data. The

 effect of the If statement is that a call of:

 Iocontrol("NEXTCARD");

 is issued before the Readon for values of I which are 1, 7, 13, and

 19. This ensures that a new physical record is fetched initially

 and then after every sixth data item read in.

 The remaining keywords described in this section affect only the output

 predeclared procedures Write, Writeon and Writecard. Five of these

 keywords form a precedence hierarchy. If more than one call to

 Iocontrol is made with no intervening call to an output predeclared

 procedure then, if two or more keywords specified in the list of five

 below are given, the effect is that of the highest in the list:

 OVERPRINT

 EJECT

 TRIPLESKIP

 DOUBLESKIP

 SPACE

 For instance in the case:

 Iocontrol("EJECT"); Iocontrol("DOUBLE");

 The "DOUBLE" keyword has no effect because "EJECT" is higher in the

 hierarchy.

 All of the keywords described below cause the current contents of the

 output buffer to be forced out to the relevant device. They then set

 the carriage control character at the start of Algol W’s internal output

 buffer to a value which corresponds to the action specified. None of

 the keywords actually starts a new output record. This is why two

 consecutive Iocontrol calls do not force out a blank line.

 Basic Input and Output 191

 MTS 16: ALGOL W in MTS

 September 1980

 SPACE (2)

 SPACE causes the current contents of the output buffer to be

 written out to the attached file or device. Any subsequent Write

 or Writeon statement will start a new output record with a space as

 a carriage control character in column one. This carriage control

 setting will be overridden if another call to Iocontrol specifies

 any other member of the hierarchy.

 The effect of the SPACE keyword is therefore simply to force out

 the contents of the output buffer. For example the sequence:

 Write("Enter data item");

 Iocontrol("SPACE");

 Read(Item);

 causes the string "Enter data item" to be written out before the

 system prompt caused by the Read of Item. It is in fact exactly

 equivalent to:

 Writecard("Enter data item");

 Read(Item);

 It is especially important to understand this behavior when writing

 programs which interact with the user at a conversational terminal.

 EJECT (3)

 This keyword is similar in action to SPACE except that the carriage

 control character of a subsequent line will be "1", causing a skip

 to a new page if the output is being directed to a printer. A call

 of Iocontrol with a keyword of OVERPRINT (see below) would override

 this action if it occurred before the next output procedure call.

 FULLPAGE (4)

 This keyword is obsolete and is documented only for completeness.

 The argument number 4 was allocated in previous versions of Algol W

 but it is no longer supported.

 NORMAL (5)

 This keyword is obsolete and is documented only for completeness.

 The argument number 5 was allocated in previous versions of Algol W

 but it is no longer supported.

 DOUBLESKIP (6)

 This keyword behaves as SPACE but the carriage control character of

 the new record will be "0", causing a double skip before printing.

 It may be overridden by a subsequent call to Iocontrol specifying

 TRIPLESKIP, EJECT or OVERPRINT as these are higher in the

 hierarchy.

 192 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 TRIPLESKIP (7)

 This keyword behaves as SPACE but the carriage control character of

 the new record will be "-", causing a triple skip before printing.

 It may be overridden by a subsequent call to Iocontrol specifying

 EJECT or OVERPRINT as these are higher in the hierarchy.

 OVERPRINT (8)

 This keyword behaves as SPACE but the carriage control character of

 the new record will be "+". The effect of this on a printer is to

 cause the subsequent line to be overstruck onto the characters of

 the previous one. A common use of this is to underline text.

 Example:

 string(80) Title;

 .

 .

 Title := "Listing program output";

 Iocontrol("EJECT");

 Writecard(Title);

 for I := 0 until 79 do

 if Title(I|1) ¬= " " then Title(I|1) := "_";

 Iocontrol("OVERPRINT");

 Writecard(Title);

 If this section of program executes with the output directed to a

 printer then the effect is to start a new page with the underlined text:

 Listing program output _______ _______ ______

 Special characters such as the Danish "o" can be produced in this way. /

 NEWLINE _______

 Iocontrol is a passive control procedure: its call does no input/

 output. It simply specifies the behavior of subsequent input/output

 operations. Consecutive calls to Iocontrol specifying a number of lines

 to be skipped on output, cause only one of those calls to be recognized

 if there are no intervening output statements.

 For instance:

 Write("ABC");

 Iocontrol("SPACE");

 Iocontrol("SPACE");

 Write("DEF");

 Basic Input and Output 193

 MTS 16: ALGOL W in MTS

 September 1980

 would cause the following to be printed:

 ABC

 DEF

 Notice that the second call of Iocontrol does not cause an additional

 blank line to be skipped. The Algol W run time system has already been

 told by the first call that the subsequent output operation is to start

 in column one of a new physical output record. Telling it again has no

 additional effect.

 The predeclared procedure Newline allows line skip control commands

 to be issued which will skip output lines and which take immediate

 effect.

 The general form of the procedure call is:

 Newline(<argument>)

 where:

 <argument> is either an <integer-expression> or a

 <string-expression>.

 If the argument to Newline is given as an integer expression then this

 is used to determine the number of blank lines which will be written.

 If the integer expression evaluates to a number between 1 and 60

 inclusive then that number, minus one, blank lines are produced and a

 new physical output record is started. If the expression evaluates to a

 number greater than 60 or less than zero then a run-time error occurs.

 If the value is zero then a single new line is started with a carriage

 control character of "+" causing the new line to overstrike the previous

 one.

 If, on the other hand, the argument is given as a string expression,

 a single new line is started with the carriage control character equal

 to the first character of the supplied string expression.

 All calls to Newline cause any partially built output record to be

 output. If the simple type of the argument to Newline is not integer or

 string then no further action takes place. Therefore:

 Newline(null);

 is exactly equivalent to:

 Iocontrol("SPACE");

 The following example shows one method by which a prompt line may be

 written in Algol W:

 194 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 integer Num;

 .

 .

 Newline(3);

 Newline("&");

 Writeon("Enter number");

 Newline(null);

 Read(Num);

 In this example the first call of Newline causes three blank lines to be

 written. The second call causes a new output record to be started with

 an ampersand (&) as the carriage control character. This is the MTS

 logical carriage control for "write and do not carriage return." (Note

 that this particular carriage control character is valid only at

 conversational terminals.) The final call to Newline forces the prompt

 line to be written before the Read call prompts for data.

 CARRIAGE CONTROL CHARACTER GENERATION _____________________________________

 Carriage control characters are generated by default in Algol W when

 the predeclared procedures Write, Writeon and Writecard are used to

 produce output. If desired, this action may be suppressed by use of:

 (1) the run time parameter NOCC, described under "Run Time Parame-

 ters" in the section "Algol W Programmer’s Guide";

 (2) by assignment to a predeclared logical variable, Write_Cc.

 If Write_Cc is set to ’false’ then no carriage control characters are

 produced and the first character of each output record will be the first

 character specified in the relevant output statement.

 Non-generation of carriage control characters does not prevent MTS

 from acting on a presumed carriage control directive. On devices such

 as printers and terminals, the first character of each output record

 will normally be stripped off and used as a carriage control instruc-

 tion. Care must be taken to specify this first character correctly if

 this is the case.

 Common carriage control characters and their meanings are:

 Character Meaning _________ _______

 b (blank) skip to a new line /

 0 skip two lines

 - skip three lines

 1 skip to a new page

 + overstrike previous record

 Basic Input and Output 195

 MTS 16: ALGOL W in MTS

 September 1980

 The above list gives American Standards Association (ASA) standard

 carriage control. MTS supports other carriage control characters - see

 Appendix H of the section "Files and Devices" in MTS Volume 1, The ___

 Michigan Terminal System. If there is any doubt about the requirement ________________________

 for a control character in a particular application, a blank character

 should be given as the first character of each output record. As

 previously explained, this is done by default for the predeclared

 procedures Write, Writeon and Writecard. Iocontrol and Newline assume

 the above list of carriage control characters when invoked.

 SAMPLE INPUT OUTPUT PROGRAM ___________________________

 comment The following program contains some examples of

 procedures for formatting output in Algol W;

 begin

 comment The formal parameter N stands for the total

 number of significant digits desired: add 7 to

 to get field width R_W;

 procedure Scaled(integer value N);

 begin

 R_Format := "E";

 R_W := N + 7

 end;

 comment D stands for the number of digits to the

 right of the decimal point. N stands for those

 to the left. The field width R_W is the sum

 of N+D+1, where 1 is for the decimal point;

 procedure Aligned(integer value N, D);

 begin

 R_Format := "F";

 R_W := N + D + 1;

 R_D := D

 end;

 comment General needs the same R_W value as Scaled;

 procedure General(integer value N);

 begin

 R_Format := "F";

 R_W := N + 7

 end;

 procedure Line_Skip;

 Iocontrol("SPACE");

 196 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 comment Main program starts here;

 General(5);

 I_W := 2;

 S_W := 1;

 for I := -1, 0, 32 do

 begin

 Write(S_W := 0, I, ":", Line_Skip, I/3);

 Writeon("I ", Aligned(3,2), I/3,

 "*", Scaled(12), I/3, "*")

 end

 end.

 The output from this program is:

 -1:

 -0.333I -0.33 * -3.33333333333’-01 *

 0:

 0.000I 0.00 * 0.00000000000 *

 32:

 10.667I 10.67 * 1.06666666667’+01 *

 Basic Input and Output 197

 MTS 16: ALGOL W in MTS

 September 1980

 198 Basic Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 MULTIPLE INPUT AND OUTPUT STREAMS _________________________________

 Input and output streams are channels by which information can pass

 between a program and particular files or devices. In the last section,

 "Basic Input and Output," it was assumed that Algol W ran in an

 environment which has a single input stream and a single output stream.

 In fact there are many input/output streams available to an Algol W

 program. This and the following section describe how Algol W programs

 may use and control multiple input/output streams.

 INPUT/OUTPUT STREAMS AND STREAM DESIGNATORS ___

 There are two kinds of input/output stream:

 (1) Predefined input/output streams. Algol W knows about these

 before the program starts to run. There are 25 predefined

 input/output streams: 5 named streams and 20 numbered ones.

 (2) User defined input/output streams. These may be added and

 deleted by a program as it runs by calling the predeclared

 procedures Assign and Release.

 Associated with each stream is a stream designator, which may be used _________________

 within an Algol W program to refer to that particular stream. Stream

 designators are sometimes also called stream names or stream numbers.

 Within an Algol W program, stream designators may be given as string

 expressions, integer expressions or special predeclared bits variables,

 depending on the type of stream being referenced.

 Most streams also have an MTS file or logical I/O unit attached to

 them (see MTS Volume 1, "The Michigan Terminal System," for a descrip- ____________________________

 tion of MTS files and logical I/O units). When a program uses a

 particular stream to read or write data, that data is read from or

 written to the MTS file or unit attached to that stream. For example,

 the streams INPUT and OUTPUT (used by default by the basic input and

 output procedures Read, Write, and so on) are attached to the MTS

 logical units SCARDS and SPRINT, respectively. Thus these basic input

 and output procedures by default read from the file or device assigned

 to SCARDS and write to the file or device assigned to SPRINT.

 Multiple Input and Output Streams 199

 MTS 16: ALGOL W in MTS

 September 1980

 Predefined Named Input/Output Streams _____________________________________

 The following table lists the 5 predefined named streams.

 Stream Attached

 Name MTS I/O Unit Purpose ____ ____________ _______

 INPUT SCARDS Main input data stream.

 PRINT SPRINT Main printed output stream.

 PUNCH SPUNCH Punched card output.

 ERROR SERCOM Algol W diagnostic output.

 USER GUSER User prompts by the system.

 By default the predeclared procedures Read, Readon and Readcard read

 data through INPUT and procedures Write, Writeon, Writecard, Iocontrol,

 and Newline write output records through PRINT.

 A stream designator for a predefined named stream may be given in two

 ways: one, as any string expression which evaluates to the appropriate

 name (e.g. "PRINT"); or two, as a special predeclared bits variable

 which has the same name as the associated stream (e.g. Print).

 As noted in the above table, each predefined named stream is attached

 to an MTS logical I/O unit (e.g. INPUT is attached to SCARDS). Note

 that the predefined named streams may not be attached to any other file ___

 or device from within an Algol W program.

 Note also that the MTS logical I/O units SERCOM and GUSER should not

 normally be directed away from the default operating system assignments

 (*MSINK* and *MSOURCE*, respectively). Otherwise important Algol W

 messages and/or user prompts may be lost.

 Predefined Numbered Streams ___________________________

 The twenty predefined numbered streams are a set of integers from 0

 to 19. A stream designator for a predefined numbered stream may also be

 given in two ways: one, as an integer expression which evaluates to the

 appropriate integer value from 0 to 19; or two, as a string expression

 which evaluates to the appropriate character value (e.g. "5"). The

 predefined numbered streams are initially attached to the corresponding

 MTS logical devices 0 to 19, but they may be attached to other files or

 devices by calling the Assign procedure described below.

 200 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 User Defined Streams ____________________

 The Assign procedure, described later in this section, allows a user

 program to add a user defined input/output stream dynamically to the set

 of available streams. The name of a user defined stream may be any

 non-blank character string containing between 1 and 30 characters.

 However, the name may not be the same as any of the predefined stream

 names and may not contain any embedded blanks. A stream designator for

 a user defined stream may be given as any string expression which

 evaluates to the name associated with that stream when Assign is called.

 When such a dynamically assigned input/output stream is no longer

 needed, it may be deleted by means of the Release predeclared procedure

 also described later in this section.

 A maximum of 25 user defined input/output stream names may be extant

 at once.

 Basic Input and Output Streams ______________________________

 The basic input stream is that stream being used by the basic _____

 predeclared input procedures Read, Readon and Readcard. The basic _____

 output stream is that stream being used by the basic predeclared output

 procedures Write, Writeon and Writecard, Iocontrol and Newline. By

 default the basic input and output streams are INPUT and PRINT,

 respectively. However, the procedures Reader and Writer (described

 later in this section) may be called to change the basic input/output

 streams.

 There are two predeclared bits variables which may be used used as

 stream designators and which always refer to the current basic input and _______

 output streams. The stream pointer variable Rdr always refers to the

 current basic input stream, and the stream pointer variable Wtr always

 refers to the current basic output stream. Note that a program should

 not assign a value to either Rdr or Wtr. These variables should be used

 as read-only variables; that is, a program should only use these

 variables to find out what streams are currently being used by the basic

 input/output procedures. An example of the use of these variables is

 given below, near the end of the section "Sense".

 INPUT AND OUTPUT TO A DESIGNATED STREAM _______________________________________

 The previous section, "Basic Input and Output," described the use of

 Read, Write and related basic input and output procedures. These are

 concerned with input from a single input stream (INPUT) and output to a

 single output stream (PRINT). An Algol W program may use multiple

 input/output streams in one of two ways:

 Multiple Input and Output Streams 201

 MTS 16: ALGOL W in MTS

 September 1980

 (1) By changing the basic input and output streams as needed by

 calling the predeclared procedures Reader and Writer, as de-

 scribed below.

 (2) By using a set of predeclared input and output procedures to

 specify directly which input or output stream is to be used.

 These procedures are all described in the section "Stream

 Directed Input and Output." Some of these stream directed

 input/output procedures can also be passed a format string to

 control input/output formatting. This is described in the

 section "Format Directed Input and Output."

 Changing the Basic Input Stream - Reader __

 The predeclared procedure Reader may be used to have a designated

 stream be used as the basic input stream. A call of the predeclared

 procedure Reader has the general format:

 Reader(<stream-designator>)

 When Reader is called, any partially processed input record on the

 current basic input stream is forgotten. The stream which will be used

 for input by the basic input/output procedures is changed to the

 designated one. Any subsequent input using these procedures will be

 from the new stream, starting with the first character of the next

 record in sequence.

 Example:

 Reader(3);

 for I := 1 until 10 do

 begin

 Iocontrol("NEXTCARD");

 for J := 1 until 10 do

 Readon(Data(I, J))

 end;

 Reader(Input);

 This example shows the basic input stream being temporarily redirected

 to the predefined numbered stream 3 while 100 data items are input, 10

 to an input record.

 Changing the Basic Output Stream - Writer ___

 The predeclared procedure Writer may be used to have a designated

 stream be used as the basic output stream. A call of the predeclared

 procedure Writer has the general format:

 202 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 Writer(<stream-designator>)

 When Writer is called, any partially built output record on the current

 basic output stream is written out to that stream. The output stream

 used by the basic output procedures is then changed to the designated

 stream. Any subsequent output via these procedures will be to the new

 stream, starting with the first character of a new record.

 If automatic carriage control is on (the default), this first

 character will be set to a space, giving a new line only. If a

 different carriage control is required, Iocontrol should be called with

 a suitable argument before the next Write, Writeon or Writecard call.

 Example:

 Writer(Punch);

 Write_Cc := false;

 for I := 1 until Numdata do

 Writecard(Cards(I));

 Write_Cc := true;

 Writer(Print);

 This example causes the basic output stream to be temporarily redirected

 to the PUNCH output stream while a set of data records are written

 there. Note that automatic carriage control character generation is

 suppressed while the cards are output. This would normally be desired

 when data is output on cards or to a file.

 DYNAMIC CONTROL OF INPUT/OUTPUT STREAMS _______________________________________

 Algol W provides two predeclared procedures, Assign and Release,

 which may be used within a program to dynamically create and delete user

 defined input/output streams, and to attach or release files and devices

 from already existing streams.

 Assign ______

 The predeclared procedure Assign is used either to create a user

 defined stream and attach an MTS file or device to it, or to attach a

 file or device to an already existing input/output stream. It may not

 be used with the named predefined streams. The procedure call takes the

 form:

 Assign(<stream-designator>, <file-or-device-name>)

 Exactly two parameters must always be given. The first parameter

 specifies the stream to be used and the second the file-or-device-name

 Multiple Input and Output Streams 203

 MTS 16: ALGOL W in MTS

 September 1980

 to be attached to this stream. The second parameter may be given as any

 string expression which evaluates to an appropriate file or device name.

 If the stream designator does not exist, it is created as a user

 defined stream. If it does exist, any previous file or device attached

 to it is released. If it was in use for output, any partially built

 output record would be written out to it first. If it was in use for

 input, any partially processed record is forgotten. The new file or

 device is then assigned to the stream name. The form of the file-or-

 device name is as required for the operating system concerned. In MTS,

 any valid MTS file-or-device name is acceptable as the second argument

 to Assign.

 Examples:

 Assign(3, "W701:DATA");

 Any assignment to predefined stream 3 will be released and the MTS file

 W701:DATA assigned to it instead. Stream 3 may be used subsequently for

 either input or output if the state of the file allows this.

 Assign("TAPE1", "*T1*");

 The user defined stream TAPE1 is created and the MTS pseudo-device name

 T1 is attached. In this case it would be assumed that *T1* was an MTS

 $MOUNTed magnetic tape.

 Release _______

 The predeclared procedure Release is used to release a file or device

 attached to an input/output stream. It may not be used for the named

 predefined streams. The procedure call takes the form:

 Release(<stream-designator>)

 When a predefined numbered stream is specified, it will have no file or

 device attached to it when Release has finished. When a user defined

 stream is given, the stream name itself is deleted from the Algol W

 environment.

 If more then one parameter is given, all are presumed to be stream

 designators and Release will act on each of them in turn.

 Examples:

 Release(9);

 Any file or device attached to the predefined, numbered stream 9 is

 released.

 204 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 Release("TAPE1", "TAPE2");

 The files or devices assigned to these two user defined streams are

 released and the two stream names are deleted.

 INPUT/OUTPUT STREAM PREDECLARED UTILITY PROCEDURES __

 Several predeclared procedures are provided to control input/output

 streams or the files or devices attached to them. These procedures are

 listed in the following table, and described in more detail below:

 Name Purpose ____ _______

 Rewind Reset to the beginning of the file or device.

 Empty Delete all information from the attached file.

 Flush Force out any partially built output record.

 Protect Ensure integrity of the attached file.

 Qualify Set input/output attributes internal to Algol W.

 Control Send device commands to the operating system.

 Sense Obtain information about the attached file or device.

 Rewind ______

 As the name implies, the specified stream will be rewound so that

 subsequent reads and writes start at the beginning of the file or device

 attached. Note that, in MTS, only the currently active member of a

 series of concatenated files or devices will be rewound. An attempt to

 rewind a stream which may not be rewound (such as a card reader) will

 cause a fatal error. The named predefined streams may not be rewound.

 The procedure call takes the form:

 Rewind(<stream-designator>)

 The designated stream is rewound. If more than one parameter is given

 they are all considered to be stream designators and Rewind will act on

 each in turn.

 Example:

 Multiple Input and Output Streams 205

 MTS 16: ALGOL W in MTS

 September 1980

 Assign(9, "*T*");

 Getcard(9, Rec);

 .

 .

 Rewind(9);

 Getcard(9, Rec);

 .

 .

 Both Getcard calls (see the section "Stream Directed Input and Output"

 for the description of Getcard) read in the same record from the

 predefined input/output stream 9.

 Empty _____

 If the specified stream is attached to a file then Algol W will

 attempt to empty it. Attempts to read an empty file produce an

 end-of-file indication and the next output procedure call would place a

 new first record in the file.

 The procedure call takes the form:

 Empty(<stream-designator>)

 The designated stream is emptied. If more than one parameter is given,

 they are all considered to be stream designators and Empty acts on each

 of them in turn. The named predefined streams may not be emptied.

 Example:

 Assign(7, "-QQSV");

 Empty(7);

 Putcard(7, "Results");

 The invocation of Empty ensures that the Putcard operation puts the

 string "Results" into the MTS scratch file -QQSV as the first and only

 record.

 Flush _____

 Flush causes any contents of the output buffer for the designated

 stream to be written out. It has the same effect on the specified

 stream as Iocontrol("SPACE") would have on the basic output stream.

 The procedure call takes the form:

 206 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 Flush(<stream-designator>)

 Any partially built output record for the designated stream will be

 forced out on the file or device attached. If more than one parameter

 is given each is considered to be a stream designator and Flush will act

 on each in turn.

 Example:

 Put(Print, "H0,2(3X,I5)", I, J);

 Flush(Print);

 The call to Put builds an output record containing two integers in the

 internal Algol W storage region associated with the PRINT stream.

 However the output is said to be buffered, that is the information will

 not appear on the attached file or device until another output operation

 on the same stream starts a new output record. Flush causes the record

 built to be forced out without starting a new output record. This would

 be done if it was desired to see the result of the Put operation

 immediately.

 Protect _______

 Protect is like Flush in that any partially built output record will

 be forced out. If the stream is attached to a file, Protect will cause

 all changes to the file buffers to be written back to the disk copy of

 the file, so protecting the information from damage caused by an

 operating system failure occurring at a subsequent time in the program

 run. Without this protection, the highly unlikely occurrence of a

 system crash before the file was released could result in information

 being lost.

 The procedure call takes the form:

 Protect(<stream-designator>)

 The file buffers for the file attached to the specified stream

 designator are written to the disk copy of the file to bring it up to

 date with the program’s view of it. If more than one parameter is

 given, each is considered to be a stream designator and Protect will act

 on each in turn.

 Example:

 Xdelete("JJJ", 1000);

 Protect("JJJ");

 The first line deletes the internal line number 1000 from the file

 attached to stream JJJ. The second line ensures that this change is

 reflected in the disk copy of the file. This reduces the elapsed time

 Multiple Input and Output Streams 207

 MTS 16: ALGOL W in MTS

 September 1980

 in which an operating system failure could leave the file in a state

 where internal line number 1000 had not been removed when the program

 thought it had. It is a request for immediate action where the

 operating system might otherwise delay the updating for reasons of

 overall efficiency.

 Qualify _______

 Qualify is related to Control (described later in this section) in

 that it allows a user to change the attributes of an input/output

 stream. However, while Control communicates with the operating system,

 Qualify sets those attributes which are local to Algol W. For instance,

 it is called to change the lengths of input/output streams.

 The procedure call takes the form:

 Qualify(<stream-designator>, <qualification-string>)

 The qualification string is a command from the program to the Algol W

 input/output system. It consists of one or more commands, each

 separated from the next by blanks or a comma. The entire string must be

 enclosed in quotes ("). Each command is of the form <keyword> or

 <keyword>=<expression>. Each keyword may be abbreviated down to the

 minimum unambiguous form or three characters, whichever is the greater.

 At least two parameters must be given to Qualify. If more than two

 parameters are passed to Qualify then subsequent ones are assumed to be

 additional qualification strings and are processed accordingly.

 The following keywords may be used in the qualification string.

 MAXINPUT=<integer>

 Specifies the number of columns of the input record which will be

 scanned for input data items on this stream.

 MAXOUTPUT=<integer>

 Specifies the maximum output record length which will be built on

 the stream by Write, Put, etc. If any attempt is made to build a

 longer output record then a record of the specified maximum length

 will be forced out and a new one started.

 MCC

 This tells Algol W that output records are being prepared with IBM

 machine carriage control. It is the programmer’s responsibility to

 provide the relevant carriage control characters as the first

 character of each output record.

 208 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 -MCC

 See ASA.

 ASA

 Tells Algol W that output records are being built with the American

 Standards Association carriage control. This is the converse of

 MCC and is the default.

 IC

 IC stands for implicit concatenation which means allow implicit

 transfer from one file or device to another by a directive within

 the file-or-device records (such as the MTS $CONTINUE WITH direc-

 tive). This the default.

 -IC

 Prevents implicit concatenation - see IC above.

 PAGELIMIT={ON|OFF} or PL={ON|OFF}

 This parameter only applies if EPAGES=<integer> has been given as a

 compilation or runtime parameter. PAGELIMIT alone or PAGELIMIT=ON

 enables page limit checking for the designated stream. PAGELIMIT=

 OFF disables this check. If a page limit has been given then

 PAGELIMIT defaults to ON for the PRINT stream and OFF for all other

 streams.

 CTRETURNS

 This keyword specifies that system errors encountered during

 execution of the Control predeclared procedure (see below) should

 not cause a fatal run error. Such conditions place the system

 Control return code in the predeclared integer Syscode and execu-

 tion of the calling program continues.

 CTFIELDED

 Undoes the effect of the previous keyword, CTRETURNS. System

 errors encountered during execution of the Control predeclared

 procedure cause a fatal run error. This is the initial state.

 Examples:

 Qualify(Input, "MAXI=80");

 for I := 1 until 100 do

 Readon(Data(I));

 Here the Qualify call specifies that only columns 1 to 80 of the records

 read in on stream INPUT are to be scanned. The effect is as if columns

 Multiple Input and Output Streams 209

 MTS 16: ALGOL W in MTS

 September 1980

 81 to the end of the input records are always blank. The 100 data items

 read in will be from the first 80 columns of the data records only.

 Qualify(Print, "PL=OFF");

 Qualify(9, "PL=ON");

 If a page limit has been set through a compilation or runtime parameter

 then these two Qualify procedure calls transfer the check away from the

 default PRINT stream to predefined stream 9.

 Control _______

 Control allows a program to send device control commands to the

 operating system to cause the state of a file or device attached to an

 input or output stream to be changed. The format of the commands is

 described in other documents (e.g. MTS Volume 4, "Terminals and

 Tapes").

 The form of the procedure call is :

 Control(<stream-designator>, <control-string>)

 <control-string> is passed on to the operating system device control

 routines which act on the file or device attached to the designated

 stream. At least two parameters must be given. If more than two are

 given then the subsequent ones are assumed to be control strings and

 each is passed to the operating system in turn. Each control string is

 translated to upper case before transmission to the operating system

 device support.

 Examples:

 Assign(9, "*TAPE*");

 Control(9, "POSN=*15*");

 In this example *TAPE* is assumed to be an MTS $MOUNTed magnetic tape.

 The Control procedure causes the string POSN=*15* to be sent to the

 magnetic tape device support routines in MTS. This causes the tape to

 be positioned at the start of the 15th file (see MTS Volume 4:

 "Terminals and Tapes" for further details).

 Putcard(Error, "0Enter password");

 Control(User, "BLANK");

 Getcard(User, Password);

 This sequence is used to read in a password to a program in MTS without

 echoing the password as it is typed in. To achieve this, the control

 procedure sends the terminal device command %BLANK to the stream from

 which the read is attempted before requesting the read. Note that the

 device command character, %, is not included in the argument to Control.

 210 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 Sense _____

 Sense is used to return information about the state of an input/

 output stream and the file or device attached to it. Essentially it is

 an input operation similar to Get (described in the section "Stream

 Directed Input and Output") but the input is information about the file

 or device rather than records supplied by it.

 The procedure call takes the form:

 Sense(<stream-designator>, <sense-request-string>, <sense-list>)

 The <sense-request-string> is a list of keywords requesting particular

 items of information about the file or device attached to the designated

 stream. The list may contain one or more keywords, each separated from

 the next by a comma. The entire list must be enclosed in quotes (").

 Each keyword may be abbreviated down to the minimum unambiguous form or

 three characters, whichever is the greater. The <sense-list> consists

 of one or more variables, each separated from the next by a comma. For

 each keyword in the <sense-request-string> there must be a receiving

 variable in the <sense-list>. There must be at least one keyword in the

 sense request string and Sense itself must have at least three

 parameters.

 The keywords of the sense request string are as follows:

 STREAM

 This returns the Algol W stream name as specified by the stream

 designator. The only valid data type for the receiving variable is

 string(30).

 LSTREAM

 This returns the length of the stream name returned when the STREAM

 keyword is given. The only valid data type for the receiving

 variable is integer.

 FDNAME

 This returns the name of the file or device attached to the

 specified stream designator. The only valid data type for the

 receiving variable is string(44).

 LFDNAME

 This returns the length of the file or device name returned when

 the FDNAME keyword is given. The only valid data type for the

 receiving variable is integer.

 Multiple Input and Output Streams 211

 MTS 16: ALGOL W in MTS

 September 1980

 TYPECODE

 This returns a four character device type describing the file or

 device attached to the designated stream. If nothing is attached

 the type is NONE. For an MTS line file the type is FILE; other MTS

 types will be found in the GDINFO subroutine description in MTS

 Volume 3, System Subroutine Descriptions. The only valid data type ______________________________

 for the receiving variable is string(4).

 For the next six keywords a logical value is returned into a logical,

 integer or bits variable. True is signified by ’true’, 1 or #1. False

 is signified by ’false’, 0 or #0. If the specified stream is not

 assigned all six keywords return ’false’, 0 or #0.

 INPUT

 This returns ’true’ if the attached file or device may be used for

 an input operation.

 OUTPUT

 This returns ’true’ if the attached file or device may be used for

 an output operation.

 REWIND

 This returns ’true’ if the attached file or device may be rewound.

 INDEX

 This returns ’true’ if the attached file may be used in an indexed

 input/output operation. Indexed input/output may be performed by

 the predeclared procedures Xgetcard, Xputcard and Xdelete.

 DEFAULT

 This keyword only applies to predefined streams. It returns ’true’

 if, in the $RUN command which invoked the program, the system

 logical device name equivalent to the designated stream was left to

 default, that is it was not explicitly assigned.

 CONCATENATION

 This returns ’true’ if the file or device attached to the

 designated stream is a member of an explicit concatenation of

 file-or-device names and the currently active member of the ___

 concatenation is not the last in the sequence.

 The following six keywords return length information. Only receiving

 variables of type integer are valid. If the specified stream is not

 assigned all six keywords return zero.

 212 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 POSINPUT

 Returns the value of the next input pointer in the input buffer.

 This is the integer displacement from the start of the buffer from

 which the next input operation will start fetching characters.

 POSOUTPUT

 Returns the value of the next output pointer in the output buffer.

 This is the integer displacement from the start of the buffer at

 which the next output operation will start placing characters.

 MAXINPUT

 Returns the length of the input buffer which will be scanned for

 input data. This is the value which may be set by the MAXINPUT

 keyword with the Qualify predeclared procedure.

 MAXOUTPUT

 Returns the length of the output buffer which will be used when

 building output records. Attempts to output longer records will

 result in the text overflowing to another output record (or

 records). This is the value which may be set by the MAXOUTPUT

 keyword with the Qualify predeclared procedure.

 SYSINPUT

 Returns the maximum length of any input record which may be

 expected from the attached file-or-device. An empty file will

 return zero; a file containing information will return the length

 of the longest record to exist since it was last emptied; devices

 return their physical maximum input length.

 SYSOUTPUT

 Returns the maximum length of any output record which may be

 written to the attached file-or-device. Any record longer than

 this will be truncated at the right. This keyword can be used to

 determine terminal output lengths for purposes of formatting

 output.

 The remaining two keywords return system pointers.

 SYSBLOCK

 This returns an entity which the operating system uses as a

 reference to the attached file or device name when performing

 input/output operations. In the case of MTS this is the FDUB

 (file-or-device usage block) pointer. The valid data types for the

 receiving variable are integer or bits.

 Multiple Input and Output Streams 213

 MTS 16: ALGOL W in MTS

 September 1980

 IOCBLOCK

 This returns the address of the Algol W system internal control

 block used for input/output in connection with the designated

 stream. This is only of interest to persons maintaining the Algol

 W system but is documented here for completeness. The valid data

 types for the receiving variable are integer or bits.

 Examples:

 Sense(Wtr, "STREAM", Strsave);

 Writer(Punch);

 for I := 1 until Cardsout do

 Writecard(Cards(I));

 Writer(Strsave);

 In this example Sense is used to find the stream name of the basic

 output stream. The PUNCH stream is then made the basic output stream

 and Cardsout records are output. A second call to Writer restores the

 returned original stream name as the basic output stream.

 Sense(9, "TYPECODE, FDNAME, LFDNAME", Tcode, Fdn, Lenfdn);

 if Tcode="NONE" then

 Write("Stream 9 is not assigned")

 else

 Write("File = ", Fdn, Lenfdn, "Characters");

 This example prints the state of stream 9.

 Sense, FDUB-Pointers, and MTS File Locking __

 In MTS, explicit file locking is a commonly used method of implement-

 ing processes which share and modify the same file by two or more tasks

 in turn. The MTS subroutines LOCK and UNLCK provide the necessary

 control over file access to achieve the required Dijkstra semaphore

 operations - if used carefully.

 Both of these subroutines require the FDUB-pointer for the file to be

 locked. This can be obtained by a Sense statement which requests the

 SYSBLOCK information, as described in the previous section. However it

 is important to realize that Sense opens the file and therefore leaves

 it locked for reading. The sequence:

 Assign("Q", "W701:SHARE");

 Sense("Q", "SYSBLOCK", Fdub);

 Call("UNLCK", Fdub);

 is recommended when it is desired to open a file and obtain the FDUB

 pointer without leaving the file locked afterwards. See the description

 of LOCK and UNLCK in MTS Volume 3, System Subroutine Descriptions for ________________________________

 214 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 further details of these subroutines. The Call predeclared procedure is

 described in the section "External Linkages."

 The technique used when co-operating processes compete for the same

 file is as follows:

 (1) A process requiring a file must first request it. This takes

 the form of a LOCK subroutine call. If the operation must only

 read from the file, lock the file for reading. Any kind of

 modification must request locking for modification. The call of

 LOCK normally would request an indefinite wait for the file.

 (2) Check the return code from LOCK. If it is non-zero do not ___

 proceed further. Return codes are also described in the section

 "External Linkages."

 (3) Any input/output operation on the file is then performed. LOCK

 will not return control with a return code of zero unless this

 is possible. It is essential that no action is attempted which

 may have to wait on any other process while the file is locked.

 This includes any kind of input/output, using other files or a

 conversational terminal.

 (4) Call UNLCK to release the file for other processes.

 If the Release predeclared procedure is used to free an Algol W stream,

 the FDUB pointer is released as well. This means that Release will

 unlock the file, so in this case there is no need to call the MTS UNLCK

 entry.

 Multiple Input and Output Streams 215

 MTS 16: ALGOL W in MTS

 September 1980

 216 Multiple Input and Output Streams

 MTS 16: ALGOL W in MTS

 September 1980

 STREAM DIRECTED INPUT AND OUTPUT ________________________________

 The section "Basic Input and Output" discussed procedures which

 perform input/output via the basic input and output streams. The

 definition of these streams and of the input/output stream designators

 in general was given in the section "Multiple Input and Output Streams."

 This section describes a set of predeclared input/output procedures

 with which the stream to be used in an input/output operation may be

 specified directly. These provide several additional facilities beyond

 those given by the simple input/output routines:

 (1) A more convenient mechanism is provided for detecting

 end-of-file.

 (2) Facilities are provided for indexed input/output operations. A

 program may specify a record index or line number to be used in

 the input/output operation, where the stream concerned has a

 file attached which supports direct access operations (for

 example MTS line files). Records may also be deleted from a

 file.

 (3) For those routines which edit individual items in building or

 decoding input/output records, the operation may be performed

 either as a free format one (like Read or Write) or under the

 control of a specific format string. These format strings are

 similar to, but by no means identical with, facilities provided

 by the Fortran language.

 (4) The output routines described in this section never generate

 carriage control characters automatically; these must be speci-

 fied explicitly if required.

 INPUT AND OUTPUT OF COMPLETE RECORDS ____________________________________

 Two predeclared procedures are provided, analogous to Readcard and

 Writecard, which allow the input or output of complete records from a

 specified input/output stream.

 Stream Directed Input and Output 217

 MTS 16: ALGOL W in MTS

 September 1980

 Getcard _______

 Getcard fetches one or more records from the specified input stream.

 Any partially processed input record for the stream (such as those

 fetched by Read, Readon, Get or Geton) is discarded. The next record is

 input into a supplied string variable in its entirety without any

 editing. After the operation is complete any subsequent input operation

 of any kind from that stream (including Readon or Geton) will cause a

 new input record to be fetched.

 The procedure call takes the form:

 Getcard(<stream-designator>, <input-string-variable>)

 At least two parameters must be given. After the operation the

 <input-string-variable> will contain the contents of the record fetched.

 If the input string variable has been declared with a length greater

 than that of the record fetched, the characters will be padded on the

 right with blanks. If, on the other hand, it has been declared with a

 length less than that of the input record, then the input record is

 truncated at its right hand end. If more than two parameters are given,

 the third and subsequent ones are assumed to be further input string

 variables and another input record is fetched for each one.

 End-of file handling for Getcard never uses the predeclared reference

 variable Endfile and its related exception processing mechanisms.

 Instead, any input operation performed by Getcard causes the predeclared

 logical variable Filemark to be set. This will be ’true’ if the

 end-of-file has been detected, in which case the input string variable

 is returned completely filled with blanks.

 Example:

 string(256) Recd;

 while

 begin

 Getcard(User, Recd);

 ¬Filemark

 end do

 begin

 .

 .

 end;

 In this example input records are fetched, without editing, from the

 USER input stream. Here, Getcard as issued is part of a <block-

 expression> with an end-of-file indication as the value of the expres-

 sion. Input records are therefore fetched until end-of-file is sig-

 nalled for the input stream. For each record fetched successfully the

 block of statements forming the ’do’ clause will be executed. This

 example is typical of the type of coding which might be used in a

 program designed to process commands entered by a user.

 218 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Putcard _______

 Putcard sends one or more complete records to the specified output

 stream. Before the operation any partially built output record for the

 stream (such as those constructed by Write, Writeon, Put, Puton or

 Newline) is forced out. Then the supplied record is output from a

 string expression. It is written immediately to the specified output

 stream as if the Flush predeclared procedure had been called. This

 means that any subsequent output operation on this stream (even by

 Writeon or Puton) will start a new output record.

 The procedure call takes the form:

 Putcard(<stream-designator>, <output-string-expression>)

 At least two parameters must be given. The contents of <output-string-

 expression> are written to the designated stream. If more than two

 parameters are given then the third and subsequent ones are also assumed

 to be output string expressions and a separate output record is written

 for each.

 Note that Putcard will never generate carriage control characters

 automatically. If these are desired they must be explicitly specified

 as the first character of the output string expression.

 Example:

 for I := 1 until Numdata do

 Putcard(Punch, Cards(I));

 This example shows Putcard being used to output a set of strings to the

 PUNCH output stream. It is similar to the example given for the use of

 the Writer procedure (see "Changing the Current Output Stream - Writer"

 in the section "Multiple Input and Output Streams") but is more concise

 to program.

 INDEXED INPUT AND OUTPUT ________________________

 Algol W provides the means to do indexed input/output operations on

 streams attached to files which support direct access by record index or

 line number. The routines are similar to those described in the

 previous section (Getcard and Putcard) but in each case an additional

 parameter specifies the record index or line number to be used in the

 operation. Note that Algol W can only perform indexed input/output on

 complete records.

 If input editing of the kind provided by Read, Readon, Get or Geton

 is required during an indexed operation then the complete record should

 be fetched and decoded using the string conversion predeclared procedure

 Getstring.

 Stream Directed Input and Output 219

 MTS 16: ALGOL W in MTS

 September 1980

 If output formatting of the kind provided by Write, Writeon, Put or

 Puton is desired during an indexed operation then the record should be

 formatted into a string using the predeclared procedure Putstring and

 then the complete string output in an indexed operation.

 Getstring and Putstring are described later in this section.

 The index parameter is always an integer. In the case of MTS line

 files it specifies the internal line number, which is an integer one

 thousand times the external line number. The external line number is

 that printed by such commands as $LIST or $EDIT, in which up to three

 places of decimals may appear.

 Xgetcard ________

 Xgetcard is used to read an input record from a specified record

 index or line number.

 The procedure call takes the general form:

 Xgetcard(<stream-designator>,<record-index>,<input-string-variable>)

 At least three parameters must be given. An input record is fetched

 into the <input-string-variable> from the specified stream as if it was

 a Getcard request, but the record is fetched from the position in the

 file given by the <record-index>. The effect of using Xgetcard is to

 reposition the next-input record pointer for the file so that any

 subsequent sequential input operations continue from the point in the

 file just after the record fetched by Xgetcard.

 If more than three parameters are given, then the fourth and

 subsequent ones are assumed to specify further input string variables.

 However only the input string variable specified by the third parameter

 is used as the subject of an indexed input operation. Input records are

 read in sequence into the input string variables specified by the

 subsequent parameters as if they were the subject of a Getcard call.

 Xgetcard cannot suffer from an end-of-file condition as such.

 However it is possible that no record may be present in the file at the

 position indicated by the record index. Should this happen, it is

 treated as a pseudo end-of-file condition and treated in the same way as

 Getcard would treat a true end-of-file. That is, the predeclared

 variable Filemark has the value ’true’ when Xgetcard returns and the

 input string is filled with blanks.

 220 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 Index := 1;

 while begin

 Xgetcard(9, Index*1000, Recd);

 ¬Filemark

 end do

 begin

 Write(Index, Recd);

 Index := Index + 1

 end;

 In this example Xgetcard is being used to read in lines 1.000, 2.000,

 3.000 and so on from an MTS line file until a line with the required

 number cannot be found. Any records present at any of the 999 file

 lines possible between each integer line number are ignored. For each

 line found the ’do’ clause writes out the line number and the contents

 of the record. A possible application of this seemingly trivial example

 would be in a program which maintained a catalog of information. This

 might well be kept in a file structured so that the heading for each

 entry was held at an integer internal line number, while the information

 for each entry was stored on the subsequent decimal line positions. The

 effect of this section of the program would then be to print a contents

 list for the catalog without printing the full text for each entry.

 Xputcard ________

 Xputcard is used to write a record to a specified record index or

 line number in the output file.

 The procedure call takes the form:

 Xputcard(<stream-designator>,<record-index>,<output-string-expression>)

 At least three parameters must be given. A record is written from the

 <output-string-expression> to the designated stream as if it were a

 Putcard request, but the record is written to a position in the file

 given by the <record-index>. The effect of using Xputcard is to

 reposition the next-output record pointer for the file so that any

 further sequential output operations continue from the point in the file

 just after the record written by Xputcard.

 If more than three parameters are given then the fourth and

 subsequent ones are assumed to specify further output string expres-

 sions. However only the output string specified by the third parameter

 is used as the subject of an indexed operation. Records are written in

 sequence from the output string expressions specified by the subsequent

 parameters as if they were the subject of a Putcard call.

 Stream Directed Input and Output 221

 MTS 16: ALGOL W in MTS

 September 1980

 Note that Xputcard, in common with the other output routines

 described in this section, never supplies a carriage control character.

 If this is desired it must be supplied by the program as the first

 character of the output string. However this should be rare with

 Xputcard since its normal purpose would be to build data structures in

 files rather than to prepare text for direct printing.

 Example:

 Xputcard(9, Index*1000, Info_Label);

 for I := 1 until Info_Lines do

 Xputcard(9, Index*1000 + 1, Info(I));

 Continuing the catalog example from the previous section, this code

 could be used to insert a single entry. The first use of Xputcard

 writes the heading line to an integer external line number specified by

 Index. Then the Xputcard which is the subject of the For statement

 follows this with a series of lines at the internal line number interval

 one (external 0.001). These form the text of the entry.

 Xdelete _______

 Xdelete is used to delete lines from a file when they are no longer

 needed. The requirement is to write a line of length zero to the file.

 Xputcard cannot do this because a string must be of length at least one,

 so this predeclared procedure is supplied to perform the required

 action.

 The procedure call takes the form:

 Xdelete(<stream-designator>, <record-index>)

 At least two parameters must be supplied. The record specified by

 <record-index> is deleted from the file. This call is valid whether or

 not a record of this line number exists in the file: it is not an error

 to delete a non-existent record. If more than two parameters are given,

 the third and subsequent ones are also each assumed to be a record index

 and the relevant lines are deleted from the file in turn. Note that all

 of these parameters perform an indexed operation. Since Xdelete

 performs an output operation like Xputcard, the next-output record

 pointer is set to point at the record following the last record deleted.

 Example:

 Read(Index);

 Xdelete(9, Index*1000);

 Again continuing the example of a catalog, this example might read in a

 catalog index number for deletion. The call to Xdelete deletes the

 record which is the header for the catalog item starting at the integer

 222 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 external line number. Note again the multiplication factor of one

 thousand to provide the required internal line number as the parameter.

 Returned Line Numbers _____________________

 It is often useful to be able to read sequentially through a file

 while obtaining the line number at which each record is stored as it is

 read. Algol W provides a means for doing this.

 For any input/output operation performed by Algol W, a predeclared

 integer variable, Sysindex, is set to the internal line number used in

 the operation. This is most useful when used in connection with calls

 to Readcard, Writecard, Getcard and Putcard. When used in connection

 with buffered input/output, it is essential to remember that Sysindex is

 set as each record is fetched or flushed and not as it is decoded or

 built. Remember also that the value of Sysindex must be saved or used

 before any other input/output operation is performed, as this would, of

 course, reset it.

 Example:

 begin

 string(256) Recd;

 integer Saveindex;

 while

 begin

 Getcard(0, Recd);

 Saveindex := Sysindex;

 ¬Filemark

 end do

 Xputcard(1, Saveindex, Recd);

 end.

 The Getcard within the block expression reads in records from stream 0

 until the end-of-file is detected. The Algol W system will set the

 predeclared variable Sysindex each time a record is read. This is used

 in the ’do’ clause to supply the record index for the Xputcard writing

 the record to stream one. The effect is to copy the file on stream 0 to

 the file on stream 1 preserving the original line numbers. If stream 0

 was attached to a file called DATA and stream 1 was attached to a file

 called BACKUP, the effect would be as if the MTS command:

 $COPY DATA BACKUP@INDEXED

 had been entered by the user.

 Stream Directed Input and Output 223

 MTS 16: ALGOL W in MTS

 September 1980

 INPUT AND OUTPUT OF INDIVIDUAL ITEMS ____________________________________

 Algol W provides four predeclared procedures, Get, Geton, Put and

 Puton, which allow the input/output of individual items to a specified

 stream. Get and Geton are analogous to the simple input procedures Read

 and Readon. Put and Puton are analogous to the simple output procedures

 Write and Writeon. These routines may either perform free format

 input/output (as do the simple input/output procedures) or their action

 may be controlled by a supplied format string. Format string processing

 is described in the section "Format Directed Input and Output."

 Get and Geton _____________

 The general form of these procedure calls is:

 Get(<stream-designator>, <format> [,<get-list>])

 Geton(<stream-designator>, <format> [,<get-list>])

 where:

 square brackets, [], specify an optional sequence;

 <format> is either the reference constant ’null’ or a string

 expression known as a format string; and

 <get-list> is a list of one or more variables, each separated from

 the next by a comma and known as a <get-item>.

 Get will always fetch a new input record from the specified stream.

 Geton will continue from where the last input operation finished.

 If the format is given as the reference constant ’null’ then the

 input operation is a free format one and items in the <get-list> are

 input as if they were parameters to Read and Readon. If the contents of

 the input record being processed are exhausted then the next record in

 sequence will be read in and decoding continues from the first byte of

 the new record.

 If the format parameters are given as a string expression, this is

 interpreted as a format string and is used to control the input of data

 to items in the <get-list> as described in the section "Format Directed

 Input and Output."

 If input is proceeding under the control of a format string and the

 information in the string is exhausted but there are still items in the

 <get-list> requiring data, then the remainder of the operation is

 completed in free format as if ’null’ had been specified, that is as for

 Read or Readon but from the specified stream.

 224 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 At least two parameters must be given. Note that the <get-list> is

 optional because a supplied format string may only cause input records

 to be skipped or the pointer to an input record to be moved. If this

 were true no actual input conversion would be performed.

 End-of-file is handled in the same way as for Read and Readon, by

 inspection of the predeclared reference Endfile.

 Note however that, if an end-of-file occurs as the result of the

 initial read of a Get or as the result of format string action, then the

 end-of-file condition is not processed immediately. Processing of the

 condition is deferred until an actual data item is requested (and cannot

 be fetched), even if this means waiting for a new input procedure call

 for the stream. If a request for indexed input (via Xgetcard) is issued

 while an end-of-file is pending for the stream, the pending condition is

 reset.

 Examples:

 integer A, B, C;

 Get(3, null, A, B, C);

 This example reads three integers into the variables A, B and C from

 predefined stream 3. The operation is a free format one. Records would

 be input and scanned as necessary in order to fetch the next three data

 items in the same manner as the predeclared procedure Read.

 real X, Y;

 Get(Input, "2(5X,E18.0)", X, Y);

 This example would read in a record from the input stream and decode

 from it two real numbers into the variables X and Y. This decoding is

 done under the control of the format string supplied as the second

 parameter. The format codes used are described in the section "Format

 Directed Input and Output."

 Put and Puton _____________

 The general form of these procedure calls is:

 Put(<stream-designator>, <format> [,<put-list>])

 Puton(<stream-designator>, <format> [,<put-list>])

 where:

 square brackets, [], specify an optional sequence;

 <format> is either the reference constant ’null’ or a string

 expression known as a format string; and

 Stream Directed Input and Output 225

 MTS 16: ALGOL W in MTS

 September 1980

 <put-list> is a list of one or more expressions each separated from

 the next by a comma and known as a <put-item>.

 Put will always start a new output record for the specified stream.

 Puton will continue from where the last operation on this stream

 finished.

 If the format is given as the constant reference ’null’ then the

 output operation is a free format one and items in the <put-list> are

 output as if they were parameters to Write and Writeon. If there is no

 more room in the current output record for a <put-item>, the record is

 output and a new one is started.

 If the format parameter is given as a string expression then this is

 interpreted as a format string and output of data from items in the

 <put-list> proceeds under its control as described in the section

 "Format Directed Input and Output."

 If output is proceeding under the control of a format string and the

 information is exhausted but there are still items in the <put-list> to

 be output, then the remainder of the operation is completed in free

 format as if ’null’ had been specified, that is as for Write and Writeon

 but with the specified stream.

 At least two parameters must be given. Note that the <put-list> is

 optional because a supplied format string may only cause output records

 to be skipped or add spaces or literal character strings to the output

 record for a format string.

 These procedures never supply a carriage control character automati-

 cally. If one is desired then the program must insert it as the first

 character of the record.

 Examples:

 Put(Print, null, "0The value of pi is ", Pi);

 This example writes out to the PRINT stream the given string followed by

 the long real predeclared variable Pi in the same way as Write would

 have done. For instance the output conversion of the value of Pi is

 done under the control of the predeclared format variables R_Format,

 R_W, R_D, R_Expchar, S_W or R_Sig as appropriate. Note that the

 supplied string expression starts with the character 0. This is an

 explicitly supplied carriage control character to skip two lines before

 writing the subsequent characters.

 for I := 1 until 10 do

 begin

 Put(7, "5X");

 for J := 1 until 10 do

 Puton(7, "F8.3,X", Data(I,J))

 end;

 226 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 This example shows the use of Put and Puton to dump 100 real values for

 an array Data on the predefined stream 7. Full details of the formats

 used will be found in the section "Format Directed Input and Output."

 Notice that the initial Put has no items in its <put-list>. It simply

 starts a new output record with 5 spaces.

 INTERNAL INPUT AND OUTPUT CONVERSION ____________________________________

 Algol W provides aids to the programmer who wishes to perform

 formatted input/output conversion to or from string variables declared

 within a program. One possible use of this facility would be to build

 or decode strings used as input/output records by the indexing routines

 Xgetcard and Xputcard. Another possible application would be to build

 complex system commands for use by the Control or Cmd predeclared

 procedures.

 This section discusses the routines Getstring and Putstring. However

 in this context it should also be noted that there are a set of

 primitive predeclared string conversion functions:

 Code

 Decode

 Intbase10

 Intbase16

 Base10

 Longbase10

 Base16

 Longbase16

 These routines are described in the section "Strings."

 Getstring _________

 Getstring is analogous to Get but the source of the input data is an

 Algol W string expression rather than an input stream.

 The general form of the procedure call is:

 Getstring(<input-string>, <format>, <get-list>)

 where:

 <format> and <get-list> are as described earlier in this section

 under "Get and Geton"; and

 <input-string> is a string expression.

 Stream Directed Input and Output 227

 MTS 16: ALGOL W in MTS

 September 1980

 There would be little point in specifying a constant input string since

 the purpose of the routine is to decode the contents of a string into

 the individual items in the <get-list>. At least three parameters must

 be given. For this procedure there would be no point in not having a

 <get-list> since no input conversion would be done.

 Getstring normally starts decoding from the first character of the

 input string, with no pointer maintained for the input string once the

 Getstring call is completed. This implies that all of the items

 required for a particular input string must be fetched in a single call

 to Getstring. The action of the procedure in this respect can however

 be modified; see the section "Control of Getstring Action" in the

 section "Miscellaneous Topics."

 If the format is given as the constant reference ’null’ then the

 input operation is a free format one. Scanning of the input string

 proceeds as if this was a call to Read. However since the source of the

 data is a single string rather than a stream, no new record can be

 fetched if the string is exhausted. Should this condition occur, it is

 normally treated as a fatal error condition.

 If the format parameter is given as a string expression then this is

 interpreted as a format string and input of data to items in the

 <get-list> proceeds under its control as described in the section

 "Format Directed Input and Output."

 Any slashes (/) in the format string are ignored.

 If input is proceeding under the control of a format string and the

 format information is exhausted but there are still items in the

 <get-list> requiring input data, then the remainder of the operation is

 completed in free format as if ’null’ had been specified. If the format

 string specifies a position beyond the end of the input string this is

 also normally treated as a fatal error.

 Example:

 Xgetcard(9, 1000, Data);

 Getstring(Data, "5X,A15,2X,I4", Name, Num);

 In this example Xgetcard is being used to read in internal line number

 1000 from predefined stream 9. Since this is an indexed operation

 formatted input conversion cannot be done during the actual input

 operation; only complete records can be fetched. Instead Getstring is

 called to input a string and an integer into the variables Name and Num

 using as its source the string fetched by Xgetcard. See the section

 "Format Directed Input and Output" for an explanation of the format

 string.

 228 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Putstring _________

 Putstring is analogous to Put but the destination of the output data

 is an Algol W string variable rather than an output stream.

 The general form of the procedure call is:

 Putstring(<output-string>, <format>, <put-list>)

 where:

 <format> and <put-list> are as described earlier in this section

 under "Put and Puton"; and

 <output-string> is a string variable.

 At least three parameters must be given. For this routine there would

 be little point in having a null <put-list> since no output conversion

 would be done.

 Before the operation the entire string variable is cleared to blanks.

 This has the effect of padding any formatted output on the right with

 blanks.

 Putstring always starts outputting the encoded data as the first

 character of the string variable. No pointer is maintained for the

 output string once the Putstring call is completed. This means that all

 of the items which are to be output to a particular string must be

 included in a single call to Putstring.

 If the format is given as the reference constant ’null’ then the

 output operation is a free format one. Encoding of the output string

 proceeds as if this was a call to Write. However since the destination

 of the data is a single string rather than a stream, no new string can

 be started if the current one is full. Should this condition occur the

 current item will be truncated on the right. Subsequent items in the

 <put-list> will be ignored.

 If the format parameter is given as a string expression then this is

 interpreted as a format string and output of data from items in the

 <put-list> proceeds under its control as described in the section

 "Format Directed Input and Output."

 Any slashes (/) in the format string will be ignored.

 If the output is proceeding under the control of a format string and

 the information in the format string is exhausted, but there are still

 items in the <put-list> to be output, then the remainder of the

 operation is completed in free format as if ’null’ had been specified.

 Stream Directed Input and Output 229

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 Putstring(Devcom, "’POSN=*’,J,H*", Filenumber);

 Control("TAPE", Devcom);

 In this example the Putstring operation builds an MTS magnetic tape

 device control command in the string Devcom. This is then used as the

 subject of a Control command to position the tape at the beginning of

 the file whose number is in the variable Filenumber. If Filenumber

 contains 23 then the Control statement command would be equivalent to:

 Control("TAPE", "POSN=*23*");

 An explanation of the format string used may be found in the section

 "Format Directed Input and Output."

 230 Stream Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 FORMAT DIRECTED INPUT AND OUTPUT ________________________________

 INTRODUCTION TO FORMAT STRINGS ______________________________

 The section "Stream Directed Input and Output" described a set of

 predeclared input/output procedures whose second parameter designates a

 format which controls the action of the procedure. They are:

 Get

 Geton

 Getstring

 Put

 Puton

 Putstring

 So far all descriptions of these procedures have used the reference

 constant ’null’ as the format parameter. This implies that the

 operations are to be done in free format, that is the same editing

 algorithms used by Read and Write are to be employed. If this second

 parameter is specified as a string expression then Algol W will use the

 resulting string as a format directive which is to control the

 operation. Format strings are constructed in a manner similar to those

 in Fortran. Note however that Algol W input will never "assume" a

 decimal point or interpret a blank as a zero.

 The following small program gives a simple example of the use of a

 format string for output. Full details of all format string action are

 given later in this section.

 begin

 integer I, J;

 real A;

 I := 34; J =: -56; A := 56.7895;

 Put(Print, "X,2(I3,2X),F5.2", I, J, A);

 end.

 The output from this program is a single line written to the PRINT

 stream, MTS SPRINT, as follows:

 bb34bb-56bb56.79 // // //

 The format string contains three main items:

 X

 2(I3,2X)

 F5.2

 Format Directed Input and Output 231

 MTS 16: ALGOL W in MTS

 September 1980

 The commas act as separators. X is the format code for a space and is

 responsible for the first space in the output line, which prevents an

 accidental line or page skip. This is particularly important when using

 procedures such as Put and Puton because they do not generate a carriage

 control character automatically.

 The third format item, F5.2, specifies that a single floating point

 value is to be output in a field whose total width is 5 character

 positions with 2 places of decimals after the decimal point, hence

 "56.79".

 The second format item is a little more complex. In 2(I3,2X), the

 initial 2 is called a replication factor and indicates that the format

 group within the parentheses is to be obeyed twice before proceeding to

 the next item. Within the parentheses there are two items:

 I3

 2X

 I3 specifies that an integer value is to be output in a field 3

 character positions wide. 2X specifies that 2 spaces are to be output.

 Since items are taken from the <put-list> in order, the values of I and

 J are used to output two fields "b34bb" and "-56bb". / // //

 FORMAT STRINGS ______________

 Format strings are composed of format items, each of which may take

 one of two forms:

 (1) a group of characters one of which is a single alphabetic

 character format code,

 (2) a group of characters within primes which form a literal

 character string.

 Format items are separated from one another by a delimiter which is

 either

 (1) a comma, which acts only as a separator;

 (2) a slash (/), which separates two format items and also termi-

 nates processing of the current input or output record, that is

 it causes a new line on output and a new physical record to be

 fetched on input.

 232 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Format Codes ____________

 The following is a list of the valid format codes. In their

 description r indicates that a replication factor may be used with the _

 code, w is an integer number describing the field width, d is an integer _ _

 number describing the number of decimal places and c may be any single _

 character. The format code may be entered in upper or lower case.

 rAw String input/output. _ _

 rBw Binary input/output. _ _

 rDw | rEw Floating point input/output. On output, an explicit _ _ _ _

 exponent is printed.

 rFw.d Floating point input/output. On output no exponent is _ _ _

 printed.

 rHc A single character c following the format code is output. _ _ _

 On input it behaves as format code X.

 rIw Integer input/output. On output the number is right _ _

 justified in the field.

 rJw Integer input/output. On output the number is left _ _

 justified in the field.

 rLw Logical input/output. _ _

 Tw Tab format, w specifies the new column position in the _ _

 input or output record.

 wX | Xw w character positions are skipped in the input or output _ _ _

 record.

 rZw.d Hexadecimal input/output. _ _ _

 Literal strings may also be preceded by a replication factor.

 Constructing Format Strings ___________________________

 Format strings are constructed from the individual format items

 described above.

 When a group of format items is to be repeated, the group should be

 enclosed in parentheses, immediately preceded by the appropriate repli-

 cation factor. Parentheses may be nested to a depth of 8.

 Format Directed Input and Output 233

 MTS 16: ALGOL W in MTS

 September 1980

 No spaces may appear within a format item but as many as desired may

 be placed between an item and the leading or trailing comma or slash

 delimiter, and between the parentheses and the items they enclose. Such

 spaces can improve readability.

 A special data driven replication factor, R, may be used to prefix H,

 T and X format codes and literal strings for output operations only. In

 this case, the field width or tab position is supplied as an integer

 expression which is the next item in the <put-list>. Use of this

 special factor is described later in this section.

 A literal string as a format item consists of any sequence of

 characters delimited by primes (’). If a prime is desired as a

 character within a literal string then two primes must be supplied.

 Interpretation of Format Strings ________________________________

 Format strings are interpreted from left to right. Rescanning of any

 item takes place only under the control of a replication factor. For

 each format item which acts on data supplied in the <get-list> or

 <put-list>, the format code must be compatible with the simple type of

 the relevant variable or expression. Otherwise a fatal error condition

 is recognized, as also happens when the format code is not a recognized

 type or if any of the rules for constructing a format string are

 violated.

 When a procedure call is processed, its format string is checked for

 correctness and interpreted until a <get-item> or <put-item> is

 required. The <get-list> or <put-list> is then processed. For each

 item, the pending format item controls the input or output editing

 performed. If successful, processing of the format string continues

 until another item from the list is required.

 If the <get-list> or <put-list> is exhausted before the format string

 has been completely processed, then processing of the predeclared

 procedure terminates and program control passes to the next statement in

 line. If, on the other hand, the format string is exhausted but there

 are still items to process in the <get-list> or the <put-list>,

 execution continues in free format, that is processing continues as if

 the format had been ’null’.

 FORMAT DIRECTED INPUT _____________________

 The following sections describe the action of each format in input

 operations.

 234 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 "/" Format __________

 A slash symbol encountered in the format string causes the processing

 of the current input record to be terminated and a new physical input

 record to be fetched.

 For example:

 Get(9, "I5///A20", I, Str);

 The three slash symbols cause three new physical input records to be

 fetched between the input conversions for I and Str.

 Literal String Format _____________________

 This format is provided for use mainly with output procedures. If

 encountered during format directed input, the number of characters

 specified in the string is calculated and the internal pointer to the

 physical input record is moved forward this number of positions. This

 effect may be achieved more simply using the "X" format code.

 "A" Format __________

 "A" format is used to input characters into the next item in the

 <get-list>. The only valid simple type for the <get-item> is string.

 The number of characters fetched from the input record is determined

 by the field width specified after the format code. If this is zero or

 omitted, the implied length of the <get-item> is used instead. Where

 the field width is specified its value should be between 1 and 256. If

 more characters are fetched than will fit into the receiving string then

 the characters are truncated on the right. Conversely, if fewer

 characters are fetched, these are padded on the right with blanks. If

 when characters are being fetched from the input record, the current

 record is exhausted, then subsequent records will be fetched until

 sufficient characters have been obtained.

 For example:

 string(24) S, T;

 .

 .

 Get(3, "A8,A", S, T);

 In the above example eight characters are fetched from a new input

 record on stream 3 and placed in the string S. The next 24 characters

 Format Directed Input and Output 235

 MTS 16: ALGOL W in MTS

 September 1980

 are placed in the string T since no field width is specified with the

 second "A" format. If the input record contains:

 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

 then the values of the variables will be:

 S = "01234567bbbbbbbbbbbbbbbb" ////////////////

 T = "89ABCDEFGHIJKLMNOPQRSTUV"

 Note the trailing spaces appended to the data value of the first string

 S.

 "B" Format __________

 "B" format will input data bytes, without editing, into the next data

 item in the <get-list>. Simple types other than reference are valid.

 For the input of strings the behavior of "B" format is almost

 identical to that of "A" format; the only difference being that, if any

 padding is necessary on the right, the pad characters will be hexadeci-

 mal 00 rather than spaces.

 For other data types the number of characters to be fetched is

 determined by the internal length implied by the <get-item>. These

 lengths are:

 integer 4

 real 4

 long real 8

 complex 8

 long complex 16

 logical 1

 bits 4

 For these simple types any width specified with the format is ignored:

 the lengths given in the above table are used instead. If the current

 physical input record contains insufficient bytes to satisfy the next

 input operation, it is discarded and a new record is fetched. The

 entire input field is then taken from this record, starting in column 1.

 Only string fields may be broken across several input records.

 "B" format is designed to allow internal data to be output without

 editing so that it may be re-input subsequently without any loss of

 accuracy due to rounding or other causes. Note that the internal forms

 of numerical and logical values so output may not be readily interpreted

 unless inspected in a hexadecimal dump. Number representation is

 discussed in Appendix J.

 236 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 All values input into real, long real, complex or long complex

 variables are normalized during the input conversion operations.

 "D", "E", and "F" Formats _________________________

 These three formats are used to input floating point values into the

 next item in the <get-list>. While they perform different functions

 when used as output formats, all three cause the same effect during an

 input operation. Simple types real, long real, complex and long complex

 are valid.

 For real and long real types, the field width specified, or otherwise

 one byte, will be fetched from the physical input record. If the

 current record does not have a field of this width remaining, it is

 discarded and a new record is fetched. The field is then read from this

 record starting in column 1. Algol W will attempt to decode a single

 floating point value from within this field in the same form as that

 expected in free format input. An error condition is recognized if more

 than one data item is found within this field.

 Example:

 real A, B;

 Get(3, "2E8", A, B);

 If the input field is

 b5.6E8bb6.7bb8.99 / // //

 then A will receive the value 5.6’8 since this is alone in the specified

 8 byte field "b5.6E8bb". When Algol W attempts to decode a value for B, / //

 the 8 byte field fetched will contain "6.7bb8.9". Since the field //

 contains two data items a run error condition will be recognized. Had

 the input record been:

 b5.6E8bb6.7bbbbb8.99 / // /////

 then B would have received the value 6.7 and, at the end of the Get

 procedure’s execution, the input pointer would be left at the start of

 the field which begins "8.99".

 For complex and long complex types the field width is computed from

 the value (2*w)+3 if a width is specified, or otherwise five characters. _

 A single complex quantity is decoded from this region, all of which must

 be read from a single input record. Either of the formats allowed in

 free format complex input is valid.

 For example:

 Format Directed Input and Output 237

 MTS 16: ALGOL W in MTS

 September 1980

 complex C, D;

 Get(3, "2E5", C, D);

 If the input record was:

 3.4+6.7ibbbbb-7.8-8.9i /////

 then the value of the variables would be:

 C = 3.4+6.7I

 D = -7.8-8.9I

 Similarly, if the input record was:

 (3.456,7.892)(-6.7,2.3)

 then the values of the variables would be :

 C = 3.456+7.892I

 D = -6.7+2.3I

 "H" Format __________

 This format is provided for use mainly with output procedures. If

 encountered during format directed input, the input record pointer is

 advanced one character position and the character specified after the

 format code is ignored.

 "I" and "J" Formats ___________________

 These two formats are used to input integer values into the next item

 in the <get-list>. While they each perform different functions when

 used as output formats, both cause the same effect during an input

 operation. Simple types integer, logical and bits are valid.

 For all simple types the field width fetched from the input record is

 that specified with the format code, or else one byte. The same

 provisions apply as for "D", "E", and "F" formats, namely the field

 fetched must come entirely from one input record. A new record will be

 fetched if necessary.

 Algol W will attempt to decode a single integer value from within

 this field in the same form as that expected in free format input. An

 error condition is recognized if more than one data item is found within

 this field.

 238 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 If the <get-item> is of simple type bits, it will be set to the bit

 pattern corresponding to the internal representation of the integer

 value input - see Appendix J.

 If the <get-item> is of simple type logical, an integer value of zero

 will cause it to be set to ’false’. Any other value will cause it to be

 set to ’true’.

 "L" Format __________

 This format is used to input logical values into the next item in the

 <get-list>. Simple types integer, logical and bits are valid.

 For all simple types the field width fetched from the input record is

 that specified with the format code, or else one byte. The same

 provisions apply as for "D", "E", and "F" formats, namely the field

 fetched must come entirely from one input record. A new record will be

 fetched if necessary.

 Algol W will attempt to decode a single logical value from within

 this field in the same form as that expected in free format input, that

 is "TRUE" or "FALSE", or any abbreviation down to "T" or "F", in either

 upper- or lowercase. An error condition is recognized if more than one

 data item is found within this field.

 If the simple type is integer or bits then "FALSE" will send 0 or #0

 and "TRUE" will send 1 or #1 respectively.

 Example:

 logical L1, L2, L3;

 integer I;

 bits B;

 Get(2, "5L1", L1, L2, L3, I, B);

 If the input data record is :

 TTFTF

 then L1 and L2 will be set to ’true’, L3 to ’false’, I to 1 and B to #0.

 Format Directed Input and Output 239

 MTS 16: ALGOL W in MTS

 September 1980

 "T" Format __________

 "T" format is used to position the internal pointer at a particular

 column in the physical input record ready for the next input operation.

 The field width given with the format specifies the column position to

 which the pointer should be set. If this width is omitted, column 1 is

 assumed. Three actions are possible.

 (1) If the pointer is at a lower numbered position in the input

 record than that specified in the "T" format, it is moved to the

 requested position.

 (2) If the pointer’s current position is that specified by the "T"

 format, no action is taken.

 (3) If the pointer’s current position is beyond that specified by

 the "T" format, the remainder of the record is discarded and a

 new one is fetched. The pointer is then moved to the specified

 position.

 Example:

 integer I, J, K;

 Get(2, "T4,2I3,T4,I4", I, J, K);

 Suppose two consecutive physical input records read:

 XYb123456bb789 / //

 ZZb98765 /

 The "T4" format will cause the following "I3" format to start at the

 fourth character position of the first input record, which is "1". I

 will be set to the value 123 and J to 456. The next "T4" format

 requests inspection of column 4 again. Since the input pointer for this

 record is beyond column 4, the second record is fetched and the pointer

 is set to column 4 within this record. K is then assigned the value

 "9876".

 "X" Format __________

 "X" format is used to skip character positions within an input

 record. It has one peculiarity: the width may be specified either

 before or after the "X", but not both. The value of this constant, or

 one if it is omitted, indicates the number of character positions which

 are to be skipped. If, while it is skipping characters, "X" format

 encounters the end of a physical input record, a new one will be fetched

 as many times as is necessary to complete the operation.

 240 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 integer I, J, K;

 Get(Input, "3(2X,I3)", I, J, K);

 In this example a format group is repeated three times. The width of

 the group is 5 character positions, of which the first two are ignored

 under the control of the "2X" format and the last three are to be

 decoded as an integer. If the physical input record is:

 12345bb678bb90123 // //

 then I will be assigned the value 345, J becomes 678 and K 901. Note

 that the initial characters "12" are ignored under the control of the

 "X" format.

 "Z" Format __________

 This format is used to read hexadecimal characters into the next item

 in the <get-list>. The item may be of any simple type except reference.

 In general this format is intended for re-inputting data which has been

 output using "Z" format and, all other things being unchanged, the same

 "Z" format item which wrote the data out will read it in again.

 When preparing data for input with this format, all hexadecimal

 characters which form a particular value must be included. It is not

 possible to omit any sequences of hexadecimal digits, or any spaces from

 data for string values.

 The general form of the format item is "Zw.d". For all valid data _ _

 types except string, the values of w.d have no significance. The effect _ _

 of w.d is described in the section about format directed output using _ _

 "Z" format.

 The number of characters read in is twice the implied length of the

 <put-item>. A table of the implied lengths of different data types is

 given in the section describing "B" format.

 Example:

 integer I;

 Get(Input, "Z", I);

 to place the value 59 in the variable I the data record must be:

 0000003B

 Note that none of the leading zeros may be omitted.

 Format Directed Input and Output 241

 MTS 16: ALGOL W in MTS

 September 1980

 FORMAT DIRECTED OUTPUT ______________________

 The following sections describe the action of each format in output

 operations.

 "/" Format __________

 A slash symbol encountered in the format string causes the processing

 of the current output record to be terminated and this record to be

 written out. This format therefore starts a new line. Several slashes

 in a group will cause several output lines to be generated. Where a

 slash would cause an empty output line to be produced, Algol W produces

 an output record containing a single space. So a format string of "///"

 behaves as if it was "/X/X/".

 Example:

 Put(Print, "’Heading’//3X,’Index’");

 This statement causes a new output record to begin on the PRINT stream,

 MTS SPRINT, and produces the following three lines of output:

 Heading

 b /

 bbbIndex ///

 The output pointer is left just after the "x" in the record containing

 the string "Index". The second line, containing only one blank, is

 caused by the two consecutive slashes.

 Literal String Format _____________________

 This format is used to send a character string contained within the

 format string to the current output record. No <put-list> data item is

 processed. The literal string may be any sequence of characters

 enclosed in prime (’) delimiters. If a prime is required as one of the

 characters within the literal string, two primes must be given.

 Example:

 Put(Print, "X,’Blacksmith’’s anvil’");

 would produce the physical output record:

 bBlacksmith’sbanvil / /

 242 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Note the contraction of the two primes to one in the output.

 Other examples of the use of literal strings can be seen in the

 previous section describing the slash format.

 "A" Format __________

 "A" format is used to output characters from the next item in the

 <put-list>. The only valid simple type for the <put-item> is string.

 The number of characters sent to the output record is determined by

 the field width specified after the format code. If this is zero or

 omitted the implied length of the <put-item> is used instead. Where the

 field width is specified, its value should be between 1 and 256. If

 more characters are specified than are available in the <put-item>, then

 those available are output and padded on the right with blanks.

 Conversely, if the <put-item> contains more characters than the field

 width specifies, only the required number of characters is output from

 the string, starting with the leftmost character. Effectively the

 string is truncated on the right as it is output. If, when characters

 are being written to the output record, the current record becomes full,

 then it will be forced out and a new record started as many times as is

 necessary to output all the characters.

 Example:

 string(8) S, T;

 S := "ABCDEFGH";

 T := "0123WXYZ";

 Put(Print, "A8,2X,A4", S, T);

 In the above example eight characters are written to a new output record

 on the PRINT stream from string S. Next, two spaces are output under

 the control of the "2X" format code. Finally the "A4" format code

 causes only the first four characters of string T to be output. The

 output record will look like this:

 ABCDEFGHbb0123 //

 The output record pointer will be left just after the final "3".

 "B" Format __________

 "B" format is used to output unedited bytes from the next data item

 in the <put-list>. Any simple type other than reference is valid.

 Format Directed Input and Output 243

 MTS 16: ALGOL W in MTS

 September 1980

 For the output of strings the behavior of "B" format is almost

 identical to that of "A" format; the only difference being that, if any

 padding is necessary on the right, the pad characters will be hexadeci-

 mal 00 rather than spaces.

 For other simple types the number of characters to be output is

 determined by the internal length implied by the <put-item>. These

 lengths are:

 integer 4

 real 4

 long real 8

 complex 8

 long complex 16

 logical 1

 bits 4

 For these simple types any width specified with the format is ignored:

 the lengths given in the above table are used instead. If the current

 physical output record has insufficient bytes remaining to contain the

 next output field, it is forced out and a new record is started. The

 entire output field is then written to this starting in column 1. Only

 string fields may be broken across several output records.

 "B" format is designed to allow internal data to be output without

 editing, so that it may be re-input subsequently without any loss of

 accuracy due to rounding or other causes. Note that the internal forms

 of numerical and logical values so output may not be readily interpreted

 unless inspected in a hexadecimal dump. Number representation is

 discussed in Appendix J.

 "D" and "E" Formats ___________________

 These two formats are used to output floating point values from the

 next item in the <put-list>. They have an identical action and exist

 only to give compatibility with Fortran conventions. They cause a

 floating point value to be output as a mantissa and exponent. The

 format code takes the form Ew.d or Dw.d where w specifies the width of _ _ _ _ _

 the field to be output and d the number of decimal places to be included _

 in the mantissa. Simple types real, long real, complex and long complex

 are valid.

 For real and long real types, the field width specified, or otherwise

 one byte, will be written to the physical output record. If the current

 record does not have a field of this width remaining, it is forced out

 and a new one is started. The whole field is then written to this

 record starting in column 1.

 Example:

 244 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 real A;

 A := 908.7348;

 Puton(Print, "E14.3", A);

 The output record will contain:

 bbbbb9.087’+02 /////

 The code "E14.3" has caused a field of 14 characters to be written out.

 This contains the value of A with an exponent of 10 to the power of two

 and three decimal places as specified by the format code.

 Note that the specification of only three decimal places has caused

 the number to be rounded.

 For complex and long complex types the field width is computed from

 the value (2*w)+3 if a width is specified, or otherwise five characters. _

 A single complex quantity is decoded and output in this field, which

 will all be on a single output record. A new line will be forced if

 necessary.

 Example:

 complex C, D;

 C := 3.4+6.7i;

 D := -7.8-8.9i;

 Puton(Print, "2E9.1", C, D);

 will produce in the output record:

 (bb3.4’+00,bb6.7’+00)(b-7.8’+00,b-8.9’+00) // // / /

 "F" Format __________

 This format is used to output floating point values from the next

 item in the <put-list> as a decimal number. The format code takes the

 form Fw.d where w specifies the width of the field to be output and d _ _ _ _

 the number of decimal places to be included. Simple types real, long

 real, complex and long complex are valid.

 For real and long real types, the field width specified, or otherwise

 one byte, will be written to the physical output record. If the current

 record does not have a field of this width remaining, it is forced out

 and a new one is started. The whole field is then written to this

 record starting in column 1.

 Example:

 Format Directed Input and Output 245

 MTS 16: ALGOL W in MTS

 September 1980

 real A;

 A := 908.7348;

 Puton(Print, "F14.3", A);

 The output record will contain:

 bbbbbbb908.735 ///////

 The code "F14.3" has caused a field of 14 characters to be written out.

 This contains the value of A with three decimal places as specified by

 the format code. The field has been padded with blanks on the left to

 give the requested width.

 Note that, once again, the specification of three decimal places has

 caused the value of A to be rounded as it is output, but not to the same

 extent as with "E" format in the previous section, as, in this case,

 more significant digits have been printed.

 For complex and long complex types the field width is computed from

 the value (2*w)+3 if a width is specified, or otherwise five characters. _

 A single complex quantity is decoded and output in this field, which

 will all be on a single output record. A new line will be forced if

 necessary.

 Example:

 complex C, D;

 C := 3.4+6.7i;

 D := -7.8-8.9i;

 Puton(Print, "2F9.3", C, D);

 will produce in the output record:

 (bbbb3.400,bbbb6.700)(bbb-7.800,bbb-8.900) //// //// /// ///

 "H" Format __________

 This format causes the single character which follows the format code

 to be written to the physical output record. It is particularly useful

 for generating carriage control characters for those output devices

 which need them.

 Example:

 Put(Print, "H0,’Heading’");

 produces the new output record:

 0Heading

 246 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 where the character zero in column 1 will cause the line printer to skip

 two new lines when printing.

 "I" Format __________

 This format is used to output integer values from the next item in

 the <put-list>. Any integer value output using this format will be

 right justified in the field width specified. (Contrast this with the

 action of "J" format, which is described in the following section.)

 Simple types integer, logical and bits are valid.

 For all simple types the field width written to the output record is

 that specified with the format code, or else one byte. The same

 provisions apply as for "D", "E", and "F" formats, namely the field must

 be written entirely to one output record. A new record will be started

 if necessary.

 If the <put-item> is of simple type bits, the value output will be

 the integer corresponding to the bits value - see Appendix J.

 If the <put-item> is of simple type logical, an integer value of 0 or

 1 will be output according to whether the item has the value ’false’ or

 ’true’ respectively.

 For example, the code:

 integer I;

 I := 4059;

 Puton(Print, "I6", I);

 will produce:

 bb4059 //

 in the output record.

 Note that if the specified field width is too small to contain the

 <put-item>, a larger field width is assumed temporarily so that the

 complete integer may be output.

 "J" Format __________

 This format is used to output integer values from the next item in

 the <put-list>. Any integer value output using this format will be left

 justified in the field width specified. (Contrast this with the action

 of "I" format, which is described in the previous section.) Simple

 types integer, logical and bits are valid.

 Format Directed Input and Output 247

 MTS 16: ALGOL W in MTS

 September 1980

 The fields specified by this format code are output in the same

 manner as that specified for "I" format in the previous section.

 For example, the code:

 integer I;

 I := 4059;

 Puton(Print, "J6", I);

 will produce:

 4059bb //

 in the output record.

 "L" Format __________

 This format is used to output logical values from the next item in

 the <put-list>. Simple types integer, logical and bits are valid.

 For all simple types the field width written to the output record is

 that specified with the format code, or else one byte. The same

 provisions apply as for "D", "E", and "F" formats, namely the field must

 be written entirely to one output record. A new record will be started

 if necessary.

 The word "FALSE" or "TRUE" will be printed in the output record

 according to the value of the <put-item> but regardless of its data

 type. If the field width specified is less then the length of the word,

 it will be truncated as necessary down to "F" or "T", respectively.

 For example, the code:

 logical L1, L2;

 L1 := false;

 L2 := true;

 Puton(Print, "L6,L1", L1, L2);

 will produce:

 FALSEbT /

 in the output record.

 248 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 "T" Format __________

 "T" format is used to position the internal pointer at a particular

 column in the physical output record ready for the next output

 operation. The field width given with the format specifies the column

 position to which the pointer should be set. Three actions are

 possible.

 (1) If the pointer is at a lower numbered position in the output

 record than that specified in the "T" format, it is moved to the

 requested position. The intervening character positions are

 filled with blanks.

 (2) If the pointer’s current position is that specified by the "T"

 format, no action is taken.

 (3) If the pointer’s current position is beyond that specified by

 the "T" format, the record is forced out and a new one is

 started. The pointer is then moved to the specified position in

 this new record, again padding with blanks.

 Example:

 Puton(Print, "T5,’NAME’,T7,’TWO’");

 will produce:

 bbbbNAME ////

 bbbbbbTWO //////

 In general the output record pointer cannot move backwards (but see

 description of "T0" below) so when "T7" is encountered in the format

 code, the current physical output record is forced out and a new one is

 started.

 "T1" is equivalent to slash, "/", unless the pointer is already at

 the start of a new physical output record, in which case no action is

 taken.

 "T0" is a special use of the "T" format which causes the output

 pointer to be set immediately after the last non-blank character in the

 current physical output record. "T", with no column specified, is

 equivalent to "T0".

 Example:

 string (17) Data_Set_Name;

 string (8) Root, Type;

 Root := "SIMRTN";

 Type := "SA";

 Putstring(Data_Set_Name, "A,T,H.,A", Root, Type);

 Format Directed Input and Output 249

 MTS 16: ALGOL W in MTS

 September 1980

 The effect of the first "A" format is to put into Data_Set_Name:

 SIMRTNbb //

 The final value of Data_Set_Name is:

 SIMRTN.SAbbbbbbbb ////////

 Note that the "T" format has backspaced over the trailing blanks

 inserted by the previous "A" format, thereby allowing the required

 dataset name to be built up in the string without any embedded blanks.

 A more complex development of this example could be used to build a

 Control statement procedure argument to control an MTS magnetic tape.

 "X" Format __________

 "X" format is used to insert space characters within an output

 record. It has one peculiarity: the width may be specified either

 before or after the "X", but not both. The value of this constant, or

 one if it is omitted, indicates the number of spaces which are to be

 inserted. If, while it is inserting characters, "X" format encounters

 the end of a physical output record, a new one will be started as many

 times as is necessary to complete the operation.

 Example:

 integer I, J, K;

 I := 1234;

 J := 678;

 K := 901;

 Puton(Print, "3(2X,I4)", I, J, K);

 In this example a format group is repeated three times. The width of

 the group is six character positions of which the first two are spaces

 under the control of the "2X" format and an integer is to be output into

 the last four. The physical output record will contain:

 bb1234bbb678bbb901 // /// ///

 Each integer field is prefixed by two spaces.

 "Z" Format __________

 This format is used to output values from the next item in the

 <put-list> in a hexadecimal format in which each byte is represented as

 two hexadecimal digits. All simple types except reference are valid.

 250 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 The format code takes the general form "Zw.d", where the values of w and _ _ _

 d have significance only if the <put-item> is of type string. In this _

 case they control the number of characters output and their spacing as

 described later in this section.

 If the <put-item> is not of simple type string, the values of w.d are _ _

 ignored. The number of hexadecimal digits output from the <put-item> is

 calculated as twice the implied length of the item. A table of the

 implied lengths of different data types was given in the section

 describing "B" format.

 If there is insufficient space remaining in the current output record

 to contain the entire item, the record is forced out and a new one is

 started, the item being written to this starting in column one.

 Example:

 integer I;

 I := 59;

 Put(Print, "Z", I):

 will produce:

 0000003B

 If the <put-item> is of simple type string, the value of w will be used _

 as the number of hexadecimal digits to be output. If the value given is

 an odd number, one is added before it is used. If the value of w is _

 shorter than twice the implied length of the <put-list> item then its

 contents will be truncated on output. Conversely, where it is greater,

 the value of the <put-item> is padded on the right with the characters

 "00".

 If w is omitted or zero, the number of characters output from the _

 <put-item> is twice its implied length.

 The maximum value which w may have is 512. _

 The value of d controls the number of spaces inserted between each _

 block of eight hexadecimal characters in the representation of a

 particular item in the output. d may have a value between the default _

 of 0 and 8.

 Each field of 8 hexadecimal characters plus d spaces must fit _

 entirely onto the remainder of the current output record. Otherwise

 this is forced out and a new record started.

 Example:

 string(8) S;

 S := "ABCDEFGH";

 Put(Print, "Z16.2", S);

 Format Directed Input and Output 251

 MTS 16: ALGOL W in MTS

 September 1980

 will produce:

 C1C2C3C4bbC5C6C7C8 //

 "R" - THE DATA DRIVEN REPLICATION FACTOR __

 In the previous descriptions of format directed output codes, the

 replication factor r has always been an integer constant. For output _

 only, certain format codes may specify that the replication factor is

 taken from the next item in the <put-list>.

 The format codes allowable are:

 X Spaces

 H Character insertion

 T Output tab

 ’...’ Character string insertion

 The letter "R" in place of the normal integer constant specifies that

 the replication factor is to be taken from the next item in the

 <put-list>. This <put-item> must be an integer expression.

 For example, a skip of five spaces would normally be coded as:

 Puton(Wtr, "5X");

 If the number of spaces skipped is a program variable, the example

 becomes something like:

 integer Nspaces;

 .

 Nspaces := ...

 Puton(Wtr, "RX", Nspaces);

 In this case the number of spaces output is supplied by the value of the

 integer variable Nspaces. The "X" format otherwise behaves as usual.

 The Puton statement here is equivalent to:

 for I := 1 until Nspaces do Puton(Wtr, "X");

 but use of the "R" factor is more efficient, since fewer statements are

 executed.

 Consider the following program:

 252 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 integer Aline, Magnitude;

 for Line := -5 until 5 do

 begin

 Aline := abs Line;

 Magnitude := (5 - Aline)*4 + 1;

 Put(Wtr, "X,I5,2X", Magnitude);

 Puton(Wtr, "RH*,8X,H#", Magnitude);

 end Print_Loop;

 end.

 The last Puton statement uses the "R" form of "H" format to output a

 line of asterisks whose length is determined by an algorithm within the

 program code. When run, this program produces the following output:

 1 * #

 5 ***** #

 9 ********* #

 13 ************* #

 17 ***************** #

 21 ********************* #

 17 ***************** #

 13 ************* #

 9 ********* #

 5 ***** #

 1 * #

 Note that the number of asterisks output is given by the tabulated

 values of Magnitude at the left hand side. The effect of the trailing

 "8X,H#" shows that the "RH" format left the output pointer just after

 the last asterisk output.

 SAMPLE PROGRAM USING FORMAT DIRECTED OUTPUT ___

 The following program tabulates the values of several function

 expressions at an interval of 0.2; the initial and and final values are

 read in from the basic input stream.

 Format Directed Input and Output 253

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 real Start, Finish, Current;

 integer Istart, Ifinish;

 Read(Start, Finish);

 Istart := Round(Start*5) * 2;

 Ifinish := Round(Finish*5) * 2;

 Put(Wtr, "H-,A", "Function Table");

 Put(Wtr, "H0,’Initial value = ’,F5.1", Istart/10);

 Put(Wtr, "X,’Final value = ’,F5.1", Ifinish/10);

 Put(Wtr, "H-,5X,A8,3(2X,A10),2X,A12//",

 "Value", "Sqrt", "Log-e", "Log-10", "Exp**3");

 for Index := Istart step 2 until Ifinish do

 begin

 Current := Index / 10;

 Put(Wtr, "X,F8.1,3(2X,F10.3),2X,E12.2",

 Current, Sqrt(Current), Ln(Current),

 Log(Current), Exp(Current) ** 3)

 end Tabulate_Loop;

 end.

 The initial group of four Put statements write the heading lines, and

 the final Put within the ’for’ loop block produces the actual table.

 The purpose of the Round expressions in the assignments of the variables

 Istart and Ifinish is to produce starting values at the nearest 0.2

 interval.

 Note that the format string of the Put statement which produces the

 heading for each column of the table is in fact derived from the format

 string of the statement which does the actual tabulation. A simpler

 format string could have been used to produce this heading, but this

 method reduces the labor necessary to get the spacing correct.

 If the data values input are:

 1.52 3.34

 then the following output is produced:

 254 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 Function Table

 Initial value = 1.6

 Final value = 3.4

 Value Sqrt Log-e Log-10 Exp**3

 1.6 1.265 0.470 0.204 1.22’+02

 1.8 1.342 0.588 0.255 2.21’+02

 2.0 1.414 0.693 0.301 4.03’+02

 2.2 1.483 0.788 0.342 7.35’+02

 2.4 1.549 0.875 0.380 1.34’+03

 2.6 1.612 0.956 0.415 2.44’+03

 2.8 1.673 1.030 0.447 4.45’+03

 3.0 1.732 1.099 0.477 8.10’+03

 3.2 1.789 1.163 0.505 1.48’+04

 3.4 1.844 1.224 0.531 2.69’+04

 Format Directed Input and Output 255

 MTS 16: ALGOL W in MTS

 September 1980

 256 Format Directed Input and Output

 MTS 16: ALGOL W in MTS

 September 1980

 EXTERNAL LINKAGES _________________

 This section describes the following Algol W facilities:

 (1) Calling Algol W procedures which have been compiled separately

 from a main Algol W program.

 (2) Calling subroutines which use the IBM O/S Type I linkage -

 sometimes referred to as the S-type linkage. This is used by

 all FORTRAN subroutines and very often by Assembler programs.

 (3) Calling Algol W procedures from programs written in languages

 other than Algol W (e.g., FORTRAN, Assembler) using the O/S Type

 I linkage.

 CALLING ALGOL W PROCEDURES __________________________

 Coding External Algol W Procedures __________________________________

 An Algol W procedure can stand alone as a program provided that it

 satisfies the following restrictions:

 (1) It cannot reference any global identifiers, except those in the

 "supplied" block containing all predeclared identifiers and thus

 accessible to any Algol W program. Except for these predeclared

 ones, identifiers that are not declared within the procedure may

 not be accessed.

 (2) Declarations of record classes (and thus of reference quanti-

 ties) are subject to special rules. They should be avoided in

 externally defined procedures.

 (3) If the procedure is to be called from a non-Algol W routine

 (e.g., FORTRAN, Assembler) using the O/S Type I linkage then all

 array parameters must be singly dimensioned and the procedure

 cannot be a string function procedure.

 Stand alone Algol W procedures can be compiled in a normal way with the

 DECK option specified - see the section "Algol W Programmer’s Guide."

 An example of a procedure which may be called externally is:

 External Linkages 257

 MTS 16: ALGOL W in MTS

 September 1980

 integer procedure Power(integer value I, Exp);

 begin

 integer Res; Res := 1;

 for K := 1 until Exp do Res := Res * I;

 Res

 end.

 Note the terminating period (.) which follows a procedure which is

 being compiled separately.

 In the environment known to the operating system loader such

 precompiled procedures are known by the name of their entry point. This

 name is known as the external symbol definition name or ESDname.

 ESDnames are always eight characters in length. The ESDname for the

 procedure given in the above example would be "POWERbbb", where b is a /// /

 single blank character. These names are formed from the capitalized

 procedure name either by truncating it to eight characters or by padding

 to this length with blanks.

 Note however that if several precompiled procedures are to be used

 together then the first five characters of each name should be unique.

 When the compiler is processing nontrivial blocks within procedures, it

 will generate additional loader modules whose ESDnames consist of the

 first five characters of the capitalized procedure name followed by

 suffix characters to distinguish the individual module. Also it is good

 practice to avoid procedure names beginning with the characters "AW"

 since the Algol W system modules all begin with this prefix. Following

 these two rules will avoid many difficulties caused by loader module

 name clashes, which, in certain circumstances, may cause control to be

 transferred to a routine other than the one intended.

 Calling Precompiled Procedures from Algol W ___

 In order to call a precompiled Algol W procedure from an Algol W main

 program or procedure, it is necessary to declare the heading of the

 procedure, followed by an external reference to it.

 An external reference for an Algol W precompiled procedure consists

 of the reserved word ’algol’ followed by a string constant containing

 the name of the precompiled procedure to be called. Such a phrase

 stands as a procedure body in a procedure declaration and establishes

 the connection between the Algol W program or procedure and the

 precompiled procedure which is being called. The string following the

 reserved word ’algol’ is capitalized by the compiler when forming the

 relevant external reference.

 Externally defined Algol W procedures may then be called in exactly

 the same way as a procedure nested within the main program.

 258 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 begin

 integer procedure Power(integer value I, Exp);

 algol "POWER";

 integer A, B, C;

 Read(A, B);

 C := Power(A, B);

 Write("Result is", C)

 end.

 This example shows a program calling the precompiled procedure given in

 the previous subsection. Here a function procedure is being declared as

 an external function procedure, and then called. The description of the

 external ’algol’ linkage applies equally well to proper procedures.

 Calling Precompiled Procedures from Outside Algol W ___

 Precompiled Algol W procedures may be called from programs written in

 languages other than Algol W by using the O/S Type I calling conven-

 tions. FORTRAN, Assembler, and many other languages use the O/S Type I

 calling conventions. No special processing of the Algol W routine is

 required. The ESDname of the precompiled Algol W procedure consists of

 the first eight characters of the Algol W procedure name (padded with

 blanks if necessary).

 Only the outermost precompiled procedure may be called from outside

 Algol W using the O/S Type I linkage conventions. Internal Algol W

 procedures may be called using the Link predefined procedure (see the

 section "Link").

 If the Algol W procedure to be called requires parameters then

 exactly that number of parameters must be passed to the Algol W

 procedure or a run-time error will occur; no variable length parameter

 lists are allowed. Any simple type or singly dimensioned array may be

 passed as a parameter to the Algol W procedure. The following

 restrictions are imposed on parameters of precompiled Algol W procedures

 that are to be called from a non-Algol W routine:

 (1) No formal procedure parameters (i.e. parameters which are

 procedures) may be given.

 (2) Logical variables are the equivalent of FORTRAN’s LOGICAL*1. If

 the FORTRAN routine uses LOGICAL or LOGICAL*4 the corresponding

 Algol W parameter should be declared integer or bits.

 (3) Arrays may only have one dimension and the lowest subscript will

 always be one.

 External Linkages 259

 MTS 16: ALGOL W in MTS

 September 1980

 It is not possible for Algol W to do any kind of type checking of the

 parameters that are passed to the Algol W procedure. Therefore, the

 programmer must take care to ensure that the types of the parameters

 match exactly. In particular, when passing strings to the Algol W

 procedure be sure that the string lengths match. No padding or

 truncation of the strings is done.

 Any of the four Algol W parameter passing conventions (value, result,

 value-result, and name) may be used in an Algol W procedures called from

 a non-Algol W program. Call by reference is the standard parameter

 passing convention used with the O/S Type I. Call by reference is not

 available explicitly in Algol W. However, call by name in Algol W is

 identical to call by reference when used with the O/S Type I linkage

 convention. Because of several unpleasant side-effects of call by name,

 it is highly recommended that call by value, result, or value result be

 used instead of call by name.

 For example, the Algol W procedure:

 procedure Sumsq(long real value A,B;

 long real result C);

 begin

 C := A ** 2 + B ** 2;

 end.

 Can be called in the following way from a FORTRAN program:

 REAL*8 A1, A2, SUMOF

 READ(5,1000) A1,A2

 C *** CALL THE ALGOL W PROCEDURE

 CALL SUMSQ(A1, A2, SUMOF)

 WRITE(6,1001) SUMOF

 STOP

 1000 FORMAT(F7.2, 2X, F7.2)

 1001 FORMAT(’ RESULT IS’, F7.2)

 END

 Explicitly Initializing the Algol W Environment ___

 When an Algol W procedure is called from outside Algol W it first

 must access the Algol W run-time environment. If this environment does

 not exist, then the Algol W procedure must allocate and initialize the

 environment and set any default values (e.g., the size of the environ-

 ment, whether a dump is to be produced if an error occurs, etc.).

 Initializing and accessing the environment is normally done automatical-

 ly by the Algol W procedure when it is called and most users need never

 even know that the environment exists. However, some users may wish to

 alter the default settings of the run-time environment. The ALWBEG

 routine is provided to allow the user to explicitly initialize the

 environment and to supply a string of run-time parameters to be used

 260 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 during this initialization. Note that this routine can only initialize

 the environment if it has not already been initialized. Therefore, it

 never makes sense to call this routine from Algol W or after a call to

 an Algol W routine has been made. The following is a description of

 ALWBEG:

 ALWBEG ______

 Purpose: To initialize the Algol W run-time environment and to

 supply run-time parameters to Algol W.

 Location: Resident system

 Calling Sequences:

 Assembly: CALL ALWBEG,(parstring)

 FORTRAN: CALL ALWBEG(parstring,&rc4,&rc8)

 Parameters:

 parstring is the location of a halfword length _________

 followed by a string of Algol W run-time

 parameters.

 rc4,rc8 are statement labels to transfer to if a ___ ___

 nonzero return code is encountered.

 Return Codes:

 0 Successful return.

 4 The Algol W run-time environment already exists;

 the parstring was not processed.

 8 Errors were detected in the parstring.

 Description: The ALWBEG subroutine initializes the Algol W run-time

 environment for use by Algol W routines that will presuma-

 bly be called later. It is usually not necessary for a

 user to call ALWBEG since the Algol W run-time environment

 is automatically initialized the first time an Algol W

 procedure is called. However, ALWBEG also allows the user

 to specify a string containing containing Algol W run-time

 parameters.

 Examples: Assembly: CALL ALWBEG,(PARSTR)

 .

 .

 PARSTR DC H’9’

 DC CL9’SIZE=100P’

 External Linkages 261

 MTS 16: ALGOL W in MTS

 September 1980

 FORTRAN: INTEGER2 PARSTR(4)

 DATA PARSTR/6,’NODUMP’/

 .

 .

 CALL ALWBEG(PARSTR)

 Deallocating the Algol W Environment ____________________________________

 Most users never need to deallocate the Algol W environment.

 However, some users may find that explicitly deallocating the Algol W

 environment will reduce the cost of running their programs by releasing

 the virtual memory used by the program and thereby reducing the VM

 charges. The environment may be deallocated by calling the ALWEND

 procedure. If an Algol W procedure is called after the environment has

 been deallocated using ALWEND then the environment will be reinitia-

 lized. Repeatedly initializing and deallocating the Algol W environment

 may be expensive. It is therefore recommended that ALWEND be called

 only after all processing by Algol W routines is completed.

 It is possible for ALWEND to be called from a routine which was in

 turn called by an Algol W routine. If this happens then it is not

 possible to deallocate the environment since the Algol W routine will

 need the environment when the non-Algol W routine returns to it.

 The following is a description of ALWEND:

 ALWEND ______

 Purpose: To shut down the Algol W run-time environment.

 Location: Resident system

 Calling Sequences:

 Assembly: CALL ALWEND

 FORTRAN: CALL ALWEND(&rc4,&rc8)

 Parameters:

 rc4,rc8 are statement labels to transfer to if a ___ ___

 nonzero return code is encountered.

 Return Codes:

 0 Successful return.

 262 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 4 Algol W routines are active.

 8 No ALgol W run-time environment exists.

 Description: The ALWEND subroutine shuts down the Algol W run-time

 environment. This involves flushing all Algol W output

 buffers and releasing all storage associated with Algol W.

 Note that ALWEND cannot shut down the environment if the

 calling subroutine was itself called from an Algol W

 procedure. If this were done then catastrophic errors

 would occur when the calling subroutine returned to the

 active Algol W procedure.

 Calling ALWEND may yield a significant reduction in the

 virtual memory charges accrued by a program. However,

 calling ALWEND and then calling an Algol W procedure will

 cause the Algol W run-time environment to be reinitia-

 lized. This overhead associated with reinitializing the

 environment may be considerable if this is done

 repeatedly.

 Examples: Assembly: CALL ALWEND

 FORTRAN: CALL ALWEND

 Link - Procedure Call Back from an External Subroutine __

 Certain FORTRAN subroutines may require as a parameter either another

 subroutine or a function. FORTRAN expects that this subroutine or

 function will be callable by the normal O/S Type I linkage convention.

 FORTRAN subroutines and externally compiled Algol W procedures use this

 convention, but internal Algol W procedures (contained in a block or

 procedure) do not. Subroutine calling conventions are fully discussed

 in Appendix K.

 The following partial FORTRAN subroutine shows the kind of call which

 may be required.

 SUBROUTINE FSUB(X,Y,N,Q)

 C

 C FOURTH PARAMETER, Q, IS CALLED AS A

 C FUNCTION SUBPROGRAM DURING EXECUTION

 C

 REAL*4 X(Y),Y(N)

 .

 .

 A = Q(X(I))

 .

 .

 RETURN

 END

 External Linkages 263

 MTS 16: ALGOL W in MTS

 September 1980

 In this example the fourth parameter of the subroutine FSUB, Q, is

 intended to be a supplied function. The call of this function in the

 line:

 A = Q(X(I))

 shows that this function is supplying as its only parameter a real value

 and returning a real result.

 If the subroutine FSUB is to be called from Algol W then the fourth

 parameter must somehow supply a FORTRAN callable function of this type.

 There are two possible ways in which this may be done:

 (1) If the function to be supplied is coded in FORTRAN, or is

 otherwise separately provided and uses the O/S Type I linkage,

 then a reference to this external routine can be provided using

 the predeclared function External which is described in the

 section "Miscellaneous Topics."

 (2) If, on the other hand, it is desired to supply a main program

 Algol W procedure as the function Q, then a reference must be

 supplied to this procedure so that a call may be set up to it

 using the FORTRAN linkage convention. This is achieved using

 the Link predeclared procedure described in the remainder of

 this section.

 Link may only be specified when used directly as an argument to the Call

 predeclared procedure.

 The general form of the function call is:

 Link(<procedure-designator>)

 where <procedure-designator> is a string constant containing only the

 name of the main program Algol W procedure to be supplied to a FORTRAN

 subroutine or function. It will therefore always appear in the source

 program text as a procedure identifier enclosed in quotes ("). The

 procedure so designated must be in scope when the Call statement is

 issued according to the normal rules of identifier scope within Algol W.

 When an Algol W procedure is intended to be called from FORTRAN

 certain restrictions are imposed on its parameters:

 (1) No formal procedure parameters (i.e. parameters which are

 procedures) may be given.

 (2) Logical variables are the equivalent of FORTRAN’s LOGICAL*1. If

 the FORTRAN routine uses LOGICAL or LOGICAL*4 the corresponding

 Algol W parameter should be declared integer or bits.

 (3) Arrays may only have one dimension and the lowest subscript will

 always be one.

 264 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 Using the previous example of the FORTRAN subroutine FSUB, the

 following Algol W program shows how an Algol W main code procedure could

 be supplied to it using Call and Link together.

 begin

 real procedure Xfunction(real value Arg);

 begin

 real Res;

 Res = 0.5 + Sqrt(Arg);

 Res

 end Xfunction;

 real array X, Y(1::1000);

 .

 .

 Call("FSUB", X(1), Y(1), 1000, Link("Xfunction"));

 .

 .

 end.

 Note that, as described previously, the arrays X and Y are specified by

 giving their first elements as parameters. It is essential that the

 Link call is nested as a parameter to Call. This is because Algol W

 generates code at this point to translate the FORTRAN calling conven-

 tions correctly to those of Algol W in order to call Xfunction. When

 the called procedure finishes execution, the FORTRAN environment is

 restored in order to return control to the FORTRAN subroutine FSUB.

 CALLING FORTRAN, ASSEMBLER, AND RELATED SUBROUTINES ___

 The facilities described in this section are provided to call

 routines which use the IBM O/S Type I subroutine linkage from Algol W

 programs. In the commonest form, known as the S-type (for storage _

 location) call, parameters are supplied to the called routine as a

 serial list of machine addresses in main storage called a parameter

 list. A simpler but less commonly used form, known as the R-type (for

 register) call, supplies parameters as values contained in actual _

 machine registers.

 Full details of the calling conventions, together with details of how

 to code assembler routines to use with Algol W, will be found in

 Appendix K. The following subsections describe various methods of

 calling this kind of subroutine.

 External Linkages 265

 MTS 16: ALGOL W in MTS

 September 1980

 Call ____

 Call is a predeclared procedure (like Write) which is used to set up

 a call to an external subroutine using the S-type linkage. It has a

 number of advantages over the older calling mechanism using the

 ’fortran’ external reference:

 (1) Subroutines to be called do not need to be declared before use.

 (2) No type checking is done on the supplied parameters. Any simple

 type variable or expression may be given as a parameter.

 The general form of the procedure call is either of:

 Call(<esdname>)

 Call(<esdname>, <parameter-list>)

 where:

 <esdname> is either a string constant of maximum length eight

 characters, an integer expression or a bits expression; and

 <parameter-list> is a list of one or more expressions called

 parameters, each of which is separated from the next by a comma.

 The <esdname> specifies the subroutine to be called. If it is a string

 constant, it should be given as a 1 to 8 character entry point name of

 the subroutine with no blanks specified. The characters in this string

 constant will be capitalized when forming the relevant external refer-

 ence. If it is an integer or bits expression then the value of the

 expression is taken to be the address of the entry point of the

 subroutine. In both cases control would be passed to the entry point

 specified, in the manner described in Appendix K.

 If the subroutine to be called requires parameters, then parameters 1

 to n of the subroutine are given as arguments 2 to n+1 of the Call

 predeclared procedure. Any simple type variable or expression may be

 given as a parameter. If, however, a value is to be returned through a

 parameter, the name of the receiving variable should be given. This is

 very important as, if an expression or constant is given, the returned

 value will be lost. When in doubt supply a variable, presetting an

 initial value for the subroutine if required.

 When supplying string variables or substring designators as receiving

 variables be sure that the length of the string is sufficient to contain

 the number of bytes which will be transmitted back by the subroutine to

 the Algol W program.

 For all parameters sent by Call, an address is computed for the

 subroutine parameter list. Note that this means that for a string

 variable, S, the name of the variable, S, and the substring S(0|1) are

 identical when given as a parameter to Call. The substring length (of

 266 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 one) in no way prevents a called subroutine from storing data into

 subsequent bytes in the string, such as that designated by S(1|1).

 System input subroutines are particularly dangerous in this respect - be

 sure that the length of a supplied input buffer is sufficient to contain

 the characters which will be transmitted by the routine.

 For example, the FORTRAN subroutine:

 SUBROUTINE SUMSQ(A,B,C)

 C

 C SUM THE SQUARES OF THE FIRST TWO PARAMETERS

 C AND RETURN THE RESULT IN THE THIRD

 C

 REAL*8 A,B,C

 C = A**2 + B**2

 RETURN

 END

 can be called in the following way:

 begin

 long real A1, A2, Sum_Of_Squares;

 Read(A1, A2);

 comment call the FORTRAN subroutine;

 Call("SUMSQ", A1, A2, Sum_Of_Squares);

 Write("Result is", Sum_Of_Squares);

 end.

 Literal Parameters using Call _____________________________

 When literal parameters, that is constants, are supplied to an

 external subroutine using Call, extreme care must be taken to ensure

 that Algol W can correctly decide the simple type of the literal. The

 following table shows a series of literals which are self-typing.

 Literal Simple Type _______ ___________

 1 integer

 1. real

 1L long real

 1+1I complex

 1L+1IL long complex

 true logical

 "1" string

 #1 bits

 null reference

 The points to note when inspecting the table are:

 External Linkages 267

 MTS 16: ALGOL W in MTS

 September 1980

 (1) a decimal point will coerce an integer literal into a real;

 (2) a trailing "L" will coerce a numeric literal into a long real

 quantity;

 (3) a trailing "I" will coerce a numeric literal into a complex

 quantity;

 (4) logicals may take only two values, ’true’ or ’false’;

 (5) string quantities must be enclosed in quotes;

 (6) bits literals must be prefixed by a hash mark (#);

 (7) there is only one reference literal, the pointer ’null’, but

 this should never be needed when calling an external subroutine.

 Because the machine representation of integer and floating point

 quantities is completely different, it is essential when supplying

 literal parameters of these types to distinguish carefully between an

 integer quantity, say 99, and the corresponding floating point values

 99.0 and 99.0L.

 The representation of numeric quantities on the machine is fully

 discussed in Appendix J.

 The following example shows a series of subroutine calls where the

 parameters are literals.

 begin

 Call("IGINIT");

 Call("IGBGNS", "FRED");

 Call("IGMA", 0.0, 0.667);

 Call("IGDA", 0.5, 0.3);

 Call("IGDA", -0.5, -0.3);

 Call("IGDA", 0.0, 0.667);

 Call("IGMA", 0.0, 0.0);

 Call("IGMA", 0.0, -0.667);

 Call("IGDA", 0.5, -0.3);

 Call("IGDA", -0.5, 0.3);

 Call("IGDA", 0.0, -0.667);

 Call("IGMA", 0.0, 0.0);

 Call("IGENDS", "FRED");

 Call("IGDRON", "TERM");

 end.

 In this example the programmer has been careful always to specify the

 correct type of literal parameter required by the subroutine. The

 subroutines called in this example are part of the MTS integrated

 graphics package and the program draws two overlapping triangles.

 268 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 Arrays as Parameters using Call _______________________________

 Some special problems occur when an array is to be passed as a

 parameter to an external subroutine using the Call mechanism described

 in the previous section. Because Call is a predeclared procedure (like

 Write) its parameters may only be one of the nine simple variable types:

 integer, real, long real, complex, long complex, logical, string, bits

 or reference. This list excludes arrays of simple variables and

 records. In practice there would be few occasions when record or

 reference parameters would be required for an external subroutine so the

 problem is reduced to the supply of arrays as parameters.

 The solution to this problem is fairly easy but requires some thought

 by the programmer about the exact kind of parameters required by the

 called subroutine.

 In FORTRAN and languages with similar subroutine calling conventions

 an array of variables consists of a number of individual variable cells

 which are stored adjacent to each other in main storage. They are

 stored in sequence so that the address of a particular element, and

 thereby its value, may be obtained readily from the element’s subscript.

 The technique of passing an array via Call is to pass the address of

 the first element of the array as a parameter. This is done by

 supplying as the parameter the subscripted variable required. This must

 be supplied alone as a parameter; it must not be part of a larger

 expression as this would cause Algol W to evaluate the expression and

 pass the address of the result.

 Example:

 begin

 long real array Data(1::100);

 long real Sum;

 .

 .

 Call("ARYSUM", Data(1), 100, Sum);

 .

 end.

 This example shows how an array Data is supplied to a subroutine ARYSUM

 by specifying its first element.

 There are other points to note when passing arrays to FORTRAN. In

 FORTRAN arrays are specified as dimensioned variables. The lower

 subscript or subscripts of a FORTRAN dimensioned variable is always one.

 The consequences of this are as described below.

 Single dimensioned arrays:

 Since there is no equivalent in FORTRAN of the Algol W type of

 array declaration, in which both upper and lower subscripts are

 External Linkages 269

 MTS 16: ALGOL W in MTS

 September 1980

 specified, an Algol W programmer must be careful to supply the

 correct part of a vector to a FORTRAN subroutine. In the previous

 example, where the array lower bound is one and the whole of the

 array is being supplied to the subroutine, there is no problem.

 However, if the lower bound of the Algol W array is not one, care

 must be taken to provide the external subroutine with the required

 vector mapping. Example:

 begin

 integer array Seq(-20::20);

 .

 .

 Call("SUBA", Seq(1));

 Call("SUBB", Seq(-20));

 .

 end.

 The first call, of subroutine SUBA, supplies an array in which the

 Algol W subscript mappings are identical, that is Seq(5) specifies

 the same element in both Algol W and the called FORTRAN subroutine

 SUBA. However elements -20 to zero of the array Seq are not

 available to SUBA.

 In the second call, of subroutine SUBB, the parameter specifies the

 start of the Algol W array Seq. Since FORTRAN numbers its arrays

 from one upwards this will change the mapping of the array elements

 when SUBB accesses it as a parameter. Element -20 in Algol W will

 become element one in the FORTRAN subroutine SUBB and similarly the

 rest of the array elements will seem to have 21 added to their

 subscripts, so that the elements in FORTRAN run from 1 to 41

 instead of from -20 to 20. Note that in this second example the

 whole of the array is available to SUBB.

 Multiple dimensioned arrays:

 Extreme care must be taken when passing arrays with more than one

 dimension. Both Algol W and FORTRAN store array elements in column

 major order, that is with the leftmost subscript varying most

 rapidly, so no problems of element mapping will occur for identical

 arrays.

 There is no consistency check within FORTRAN which will detect the

 fact that a passed array has a different number of elements per

 column than the subroutine expects. Serious difficulties will be

 encountered if attempts are made to pass multiple dimensioned

 arrays of different dimensions to those expected by the called

 subroutine.

 Multi-dimensioned arrays passed to FORTRAN subroutines should

 therefore be organized so that they are exactly the size required

 by the subroutine whether or not the subroutine is told the

 dimensions by parameters. It would be wise to have the Algol W

 array with a lower subscript of one for each dimension. Example:

 270 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 integer N, M;

 read (N, M);

 begin

 long real array Ftndata(1::N, 1::M);

 .

 .

 Call("Q99XYZ", Ftndata(1,1), N, M);

 .

 .

 end;

 end.

 This example assumes that the called FORTRAN subroutine Q99XYZ has

 a calling sequence equivalent to a declaration of:

 SUBROUTINE Q99XYZ(FTNDATA, N, M)

 REAL*8 FTNDATA(N,M)

 where FTNDATA is a REAL*8 array equivalent to the long real

 declaration of Ftndata in the Algol W program and N and M are

 INTEGER*4 variables equivalent to the integer variables within

 Algol W. In this case, it is assumed that N and M specify the

 first and second dimensions of the array as used by the FORTRAN

 subroutine. When a subroutine is specified from a library written

 in FORTRAN it is usually quite clear from the documentation when

 integer parameters specify the dimensions of an array parameter.

 A partial array cannot be supplied to a FORTRAN subroutine by using

 the Algol W notation of an asterisk (*) as an array dimension when

 calling external subroutines via the Call predeclared procedure. This

 feature uses a special mechanism (called an array descriptor or dope

 vector) which has no parallel within FORTRAN.

 Subroutine Return Codes using Call __________________________________

 Many FORTRAN and Assembler subroutines supply an indication of their

 success or failure by an entity known as a return code. This is in fact

 a value left by the subroutine in machine general register 15. After

 control has been returned by the subroutine referenced in a Call

 statement the value of register 15 is stored in the predeclared Algol W

 integer variable R_Code.

 It is an almost universal convention that a subroutine which has

 returned successfully will leave a return code of zero. Any other value

 indicates that an error of some kind has occurred and the subroutine

 could not complete its allotted task. Many subroutines return an error

 indication which is a multiple of four. In such subroutines the error

 condition may be processed easily on return to Algol W by the use of a

 Case statement.

 External Linkages 271

 MTS 16: ALGOL W in MTS

 September 1980

 When a subroutine is known to return an indication of success or

 failure in this way, the value of R_Code should always be checked by the

 program on return. Never assume success.

 Example:

 begin

 string(80) Filename;

 Read(Filename);

 Call("DESTROY", Filename);

 if R_Code = 0 then

 Write("Destroyed O.K. - ", Filename)

 else

 Write(case R_Code div 4 of (

 "Can’t be destroyed",

 " ",

 "Does not exist",

 "Deadlock would result",

 "Access not allowed",

 "Parameter error",

 "Wait interrupted"))

 end.

 This program, intended to run in MTS, reads in a file name and then

 calls the system subroutine DESTROY to delete it from the system.

 DESTROY is a subroutine which returns one of a series of error codes

 which are multiples of four. Zero means success. The program deals

 with the error condition by using an expression containing R_Code as the

 subject of a Case clause.

 Obtaining Function Values using Call ____________________________________

 Certain FORTRAN subroutines, called function subprograms, are the

 FORTRAN equivalent of Algol W function procedures. As such they return

 a value. Call, being a predeclared procedure, stands alone as a

 statement and cannot be used as the right hand part of a assignment

 statement as would be the case with a function procedure call. For this

 reason the Call mechanism always sets the values of certain Algol W

 predeclared variables to the returned values left by FORTRAN after the

 subroutine call. These variables are always set after Call. However

 they will only be meaningful if a function has been called which has set

 the required return value. The predeclared variables are:

 R0

 If a function returns an integer value it will be found in the

 predeclared integer variable R0 on return from the call. In the

 case of a logical value zero means false and one means true. In

 fact, R0 contains the value left in machine general register zero

 at the end of the subroutine call.

 272 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 R_Float

 Real and long real values are returned in a predeclared long real

 variable R_float. Note that, although this variable is of long

 real accuracy, for a real function the value will be no more

 accurate than an Algol W real. In fact, R_Float contains the value

 left in machine floating point register zero after the subroutine

 call.

 R_Cmplx

 Complex and long complex values are returned in the predeclared

 long complex variable R_Cmplx. The real part of R_Cmplx is the

 same storage area as the previously described long real variable

 R_Float. R_Cmplx contains the values left in the machine’s

 floating point registers zero and two after the subroutine call,

 where a complex or long complex function result would be left.

 R1

 Certain subroutines return values in general register one. The

 value of the contents of this register are saved in the predeclared

 integer variable R1 after each call.

 R01

 In certain cases the returned values left in machine general

 registers zero or one or both are more usefully processed in Algol

 W as strings. For this reason the predeclared string(8) variable

 R01 is supplied. It specifies the same regions of Algol W system

 storage as the predeclared integers R0 and R1 but allows the values

 returned to be processed as strings. R01(0|4) is equivalent to R0

 and R01(4|4) is equivalent to R1.

 Further discussion of these variables will be found in the section

 on the alternate predeclared procedure Rcall.

 A Working Example using Call ____________________________

 The following illustrates how to call a Fortran subroutine with a

 rather complicated set of parameters. Assuming the Fortran subroutine

 is:

 External Linkages 273

 MTS 16: ALGOL W in MTS

 September 1980

 SUBROUTINE MEAN(NUM,VALUES,AVRAGE)

 C

 C

 C This subroutine finds the average of NUM real numbers

 C

 C

 C NUM - the number of numbers to be averaged

 C VALUES - an array of NUM real numbers to be averaged

 C AVRAGE - the long real average of the numbers

 C

 REAL VALUES(1)

 REAL*8 AVRAGE

 C

 AVRAGE = 0.

 DO 10 I = 1, NUM

 AVRAGE = AVRAGE + VALUES(I)

 10 CONTINUE

 C

 AVRAGE = AVRAGE / NUM

 RETURN

 END

 The following Algol W program calls this Fortran subroutine:

 begin

 comment this program reads in some numbers and prints

 out their average;

 integer Number_Numbers;

 comment read in the number of numbers to be averaged;

 Read(Number_Numbers);

 begin

 comment dynamically allocate the array of numbers;

 real array Numbers(1::Number_Numbers);

 long real Average;

 comment Read in the numbers;

 for I := 1 until Number_Numbers do

 Readon(Numbers(I));

 comment average them;

 Call("MEAN",Number_Numbers,Numbers(1),Average);

 Write("The average is ",Average);

 end

 end.

 274 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 Assuming the following input:

 10

 2.3 4.5 9.623 4.8

 5.7 -2.5 0.0 100.123 27.5 9.2

 The output would be:

 The average is 16.1245983

 Rcall _____

 Certain system subroutines, while generally obeying the O/S Type I

 calling convention, do not use a standard S-type parameter list for

 communication between the calling and called routines. Instead they use

 values placed directly in machine general registers. In order to call

 such a subroutine from a high level language like Algol W, a method must

 be provided for loading values into machine registers before the call

 and retrieving the results, if any, on return. A predeclared procedure

 Rcall is provided to do this.

 The general form of the procedure call is:

 Rcall(<esdname>)

 where <esdname> is as described in the section "Call" in this section.

 Rcall will only set up machine general registers zero and one. When

 the subroutine is called the values of the predeclared integer variables

 R0 and R1 are loaded into the corresponding general registers zero and

 one. On return, the values in machine general registers zero, one, and

 15 and floating point registers zero and two are returned as described

 in the previous two sections, that is the values are saved in the

 predeclared variables R0, R1, R_Code, R_Float, and R_Cmplx.

 Where the parameters in registers zero or one or both are better

 treated as strings in Algol W they can be manipulated using the

 predeclared string(8) variable R01 as previously described.

 Rcall is provided as a last resort when Call cannot handle the

 subroutine. It is expected that only very rarely will programs need to

 use Rcall. Those users who do need it may also find the Locate

 predeclared procedure of use. It is described in the section "Miscel-

 laneous Topics." This can be used to load registers with the Amdahl/470

 address of an Algol W variable or expression result. It can also be

 used with arrays to build special or nonstandard S-type parameter lists

 which the Call predeclared procedure cannot handle directly.

 External Linkages 275

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 integer Aofreg;

 .

 .

 R0 := 3, R1 := 8192;

 Rcall("GETSPACE");

 Aofreg := R1;

 .

 .

 R0 := 0; R1 := Aofreg;

 Rcall("FREESPAC");

 This example shows a section of an Algol W program, running under MTS,

 which is performing its own storage management by calling the system

 subroutines GETSPACE, to acquire storage, and later FREESPAC to release

 it again. Both of these subroutines have calling sequences which use

 and return values in machine general registers. They are described in

 MTS Volume 3, System Subroutine Descriptions. ______________________________

 Normally Algol W will perform all necessary management of storage

 regions needed by a program. The above example is given only to

 demonstrate Rcall. The only situation where a program might need to

 perform its own storage management would be if extremely large arrays

 were required. Note that, if this were the case, the predeclared

 procedures Store and Fetch would be needed to interface between storage

 so acquired and normal Algol W variables. They are described in the

 section "Miscellaneous Topics."

 The FORTRAN External Reference ______________________________

 This mechanism was the original one supplied by the previous version

 of Algol W to call S-type subroutines. Its use is no longer recommended

 - see instead the previous subsection on the Call predeclared procedure.

 The ’fortran’ external reference is documented here for completeness so

 that a coding of older Algol W source programs may be understood.

 In order to call a FORTRAN subroutine using this mechanism it is

 necessary to declare a procedure heading describing the parameters of

 the subroutine, followed by an external reference. An external refer-

 ence for a FORTRAN subroutine consists of the reserved word ’fortran’

 followed by a string constant containing the name of the subroutine to

 be called. Such a phrase stands as a procedure body in a procedure

 declaration and establishes the connection between the Algol W program

 or procedure and the subroutine.

 The procedure so declared is then called in the same way as for an

 externally defined Algol W procedure. However there are some restric-

 tions in the way parameters may be passed between Algol W and FORTRAN.

 The type correspondence between Algol W and FORTRAN has been given

 previously in this section.

 276 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 The legal formal parameters and their meanings in an Algol W

 procedure linked to a FORTRAN subroutine are as follows:

 Call by name

 The passing of the corresponding argument is treated as a call by

 reference. If the argument is a variable, the address of that

 variable is computed and passed. If the argument is an expression,

 the value of the expression is determined (only once), assigned to

 an internal local variable and the address of that variable is

 passed.

 Call by value, call by result, call by value result

 The passing of the corresponding argument is treated as call by

 value, call by result or call by value result, respectively.

 Array call by name

 Array element addresses are passed with no subscript checking. In

 other words, even if the element lies outside the bounds of the

 Algol W array, its address is passed. Arrays with a lower bound

 (or bounds) of 1 can match FORTRAN parameters exactly. Partial

 arrays should not be used as arguments.

 Note that a procedure is not a legal formal parameter in an Algol W

 procedure declaration corresponding to a FORTRAN subroutine.

 PARAMETER TYPE CORRESPONDENCE FOR EXTERNAL SUBROUTINES __

 Algol W has nine simple types of variable; the correspondence between

 these types and the representation of data on System/370 type machines

 is as follows:

 Algol W

 Simple Type Machine Representation ___________ ______________________

 integer F Fixed-point; 4 byte 2’s complement number

 real E Short precision floating-point; 4 bytes

 long real D Long precision floating-point; 8 bytes

 complex 2E Two adjacent type E’s; 2 times 4 bytes

 long complex 2D Two adjacent type D’s; 2 times 8 bytes

 logical X Byte; X’00’ = false, X’01’ = true;

 string(n) CLn n adjacent bytes; one byte/character

 bits F Fixed-point; 4 bytes = 32 bits

 reference A Address of a data structure; 4 bytes

 Notes:

 External Linkages 277

 MTS 16: ALGOL W in MTS

 September 1980

 (1) Integer, real, complex, bits, and reference variables are said

 to be fullword aligned; that is each data item starts at a

 machine address which is exactly divisible by four.

 (2) Long real and long complex variables are said to be doubleword

 aligned; that is each data item starts at a machine address

 which is exactly divisible by eight.

 (3) Logical and string variables are nonaligned; they may start on

 any machine address boundary.

 (4) Complex and long complex variables occupy two adjacent storage

 locations of the relevant type. The first location contains the

 real or long real part and the second the imaginary or long

 imaginary. There are no complex operations defined on System/

 370 type hardware; Algol W simulates such operations by routines

 operating on the real and imaginary components as ordinary

 floating-point numbers.

 (5) String character encodings are given in Appendix B.

 (6) Reference variables hold the address of the data structure to

 which they are pointers. However some knowledge of Algol W

 implementation beyond that given in this manual is necessary to

 predict the location of a designated field within the record.

 Frequently external subroutines called from an Algol W program will

 have been written in FORTRAN. FORTRAN supports a range of data types;

 the correspondence between IBM FORTRAN IV and Algol W simple types is as

 follows:

 FORTRAN IV Algol W

 Data Type Simple Type _________ ___________

 INTEGER integer or bits

 INTEGER*2 -- see note (1)

 INTEGER*4 integer or bits

 REAL real

 REAL*4 real

 REAL*8 long real

 COMPLEX complex

 COMPLEX*8 complex

 COMPLEX*16 long complex

 DOUBLE PRECISION -- see note (2)

 LOGICAL integer or bits

 LOGICAL*1 logical

 LOGICAL*4 integer or bits

 -- see note (3) string(n)

 278 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 Notes:

 (1) INTEGER*2 in FORTRAN specifies the use of a 16-bit halfword

 integer (System/370 type H data). Algol W does not support such

 ’short’ integers. Single (that is scalar) parameters of this

 type can be fetched and retrieved using a combination of Algol W

 integers and the predeclared functions Halfword and Fullword.

 These are described in the section "Miscellaneous Topics."

 Where arrays of halfwords have to be transmitted or received,

 considerably more effort would be required to build the required

 vectors. The Move predeclared procedure may be of use; it is

 also described in the section "Miscellaneous Topics."

 (2) A FORTRAN DOUBLE PRECISION statement will make a REAL into a

 REAL*8 which is Algol W long real and a COMPLEX into a

 COMPLEX*16 which is Algol W long complex.

 (3) Algol W strings have no directly equivalent data type in

 FORTRAN. A dimensioned LOGICAL*1 variable may be used; but in

 other circumstances a FORTRAN programmer might decide that an

 integer vector was more appropriate with four characters packed

 into each element. Each instance must be considered separately.

 External Linkages 279

 MTS 16: ALGOL W in MTS

 September 1980

 280 External Linkages

 MTS 16: ALGOL W in MTS

 September 1980

 MISCELLANEOUS TOPICS ____________________

 This section gives details of miscellaneous facilities provided by

 Algol W which cannot easily be categorized under any of the other

 sections in this manual.

 PREDECLARED STATE VARIABLES ___________________________

 The following predeclared variables give machine constants or status

 values. They may be considered to be declared in a block global to the

 entire Algol W program and may therefore be redeclared within a program.

 If this is done they will of course lose their initial meanings and

 values.

 Note that as these values are held in variables they may be changed

 by reassignment. However this is bad practice since it may well confuse

 someone who subsequently has to read the program text.

 A full list of all predeclared variables is given in Appendix G.

 Those not listed here have been described elsewhere in the manual.

 logical Canreply

 This variable is initialized to ’true’ if the executing program is

 being run at a conversational terminal, or ’false’ if the program

 is being run in batch. It may therefore be used in tests to decide

 whether a user prompt is in order. For example:

 Putcard(Error, "0Invalid command to GLURP Processor");

 if Canreply then

 begin

 Putcard(Error, "&Enter new command..");

 Getcard(User, Prompt_Input)

 end else

 begin

 Putcard(Error, "0Error recovery fails...");

 Putcard(Error, "0Batch program termination...");

 Stop(null)

 end Prompt_If_Blocks;

 This partial program tests the value of Canreply and performs a

 different action depending on whether the user is at a conversa-

 tional terminal or has previously submitted the program to the MTS

 batch stream. The Stop predeclared procedure is described later in

 this section.

 Miscellaneous Topics 281

 MTS 16: ALGOL W in MTS

 September 1980

 real Epsilon

 The initial value of 9.536743’-07 (hexadecimal 3BFFFFFF) in this

 variable is the largest positive real number e provided by the

 implementation such that: 1 + e = 1. See Appendix J for details

 of the limitation of representation of Algol W real values on

 System/370 type machines.

 long real Longepsilon

 The initial value of 2.22044604925031’-15L (hexadecimal

 33FFFFFFFFFFFFFF) in this variable is the largest positive long

 real number e provided by the implementation such that: 1L + e =

 1L. See Appendix J for details of the limitation of representation

 of Algol W long real values on System/370 type machines.

 integer Maxinteger

 The initial value of 2147483647 (hexadecimal 7FFFFFFF) in this

 variable is the maximum positive integer which is allowed by the

 implementation. See Appendix J for a discussion of the representa-

 tion of Algol W integer values on System/370 type machines.

 long real Maxreal

 The initial value of 7.23700557733225’+75L (hexadecimal

 7FFFFFFFFFFFFFFF) in this variable is the largest positive long

 real number allowed by the implementation. See Appendix J for a

 discussion of the representation of floating point values on

 System/370 type machines.

 long real Pi

 The initial value = 3.14159265358979L (hexadecimal 413243F6A888-

 5A31) in this variable is the best approximation to the familiar

 mathematical constant which is the ratio of the circumference to

 diameter of a circle available on System/370 type machines.

 string(256) Sysparm

 This variable is provided to allow a single record of input data to

 be supplied to an Algol W program when it is run. See the

 description under "Run-Time Parameters" in the section "Algol W

 Programmer’s Guide." See also the description of the DATAPARM

 parameter in the same section.

 (1) If no run-time parameter is specified Sysparm will contain 256

 blanks.

 (2) If RUNPARM=DATAPARM is not given but a run-time parameter

 string contains a string enclosed by quote (") or prime (’)

 delimiters then the contents of the last such string specified

 are placed in Sysparm.

 282 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 (3) If RUNPARM=DATAPARM is given at compile time then the entire

 unedited contents of the run-time parameter string are placed

 in Sysparm.

 The following program takes advantage of this:

 begin

 integer Datavalue;

 if Sysparm = " " then

 begin

 Putcard(Error, "0Enter data value");

 Get(User, Datavalue)

 end else

 Getstring(Sysparm, null, Datavalue);

 .

 .

 end.

 The program checks to see if a value has been supplied in the run

 time parameter string: if so it decodes it using predeclared

 procedure Getstring. If no run parameter has been given the

 program requests one.

 CLOCK FUNCTIONS _______________

 The Algol W environment includes a clock which measures the elapsed

 time since the beginning of program execution, the time of day, and the

 date. The precision of the clock is determined by the argument given by

 the user, and ranges from 1/60 second to 1/38400 second. Two prede-

 clared functions are provided for reading the clock, Time and Date.

 Time ____

 Time returns an integer result. The general form of the function

 call is:

 Time(<integer-expression>)

 The result returned depends on the value of the integer expression as

 follows:

 Time(-2)

 Returns the elapsed time since the program started execution in

 units of 1/60 seconds. Note that both this argument and Time(-1)

 provide a real time clock.

 Miscellaneous Topics 283

 MTS 16: ALGOL W in MTS

 September 1980

 Time(-1)

 Returns the time since midnight in units of 1/60 seconds. This

 provides a basic time of day clock. For many applications the time

 of day string function provided by Date (see next section) may be

 of more interest.

 The remaining arguments to Time all provide measures of the execution

 time since the program started running. This is not real time; it is

 the time the computer’s central processor unit has spent servicing the

 task calling the Time function. They therefore provide various measures

 of the work done by the executing program. The term CPU time is used to

 encompass these values.

 Problem state CPU time is the time the central processor spends

 executing the Algol W program and library code. Supervisor state CPU

 time is time spent in system service routines such as those providing

 physical input/output operations. Total CPU time is the sum of these

 two times. When comparing the CPU time requirements for numerical,

 combinatoric or related algorithms the problem state times should be

 compared. Supervisor, and therefore total, CPU time is very dependent

 on total system loading.

 Time(0)

 Returns the total CPU time for this program in units of 1/100

 minutes.

 Time(1)

 Returns the total CPU time for this program in units of 1/60

 seconds.

 Time(2)

 Returns the total CPU time for this program in units of 1/38400

 seconds.

 Time(3)

 Returns the problem state CPU time for this program in units of

 1/38400 seconds.

 Time(4)

 Returns the supervisor state CPU time for this program in units of

 1/38400 seconds.

 The result for any other argument is undefined.

 284 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 Date ____

 Date provides a 24-character string encoding of the time of day and

 date. The general form of the function call is:

 Date(<integer-expression>)

 Two formats are provided:

 Date(0)

 This argument returns a string value which is 24 characters long.

 This value is of fixed format so that relevant items from the time

 of day display can be easily extracted by use of substring

 designators, the Decode predeclared function (see the section

 "Strings") or the Getstring predeclared procedure (see the section

 "Stream Directed Input and Output"). The basic format of the

 returned string is:

 b<time>b<date>b<weekday>b<yearday> / / / /

 where:

 b is a single blank; /

 <time> is an eight character representation of the time on the

 24 hour clock as: "hh:mm:ss";

 <date> is an eight character representation of the date as

 "mm:dd:yy" (note the American form where the month is given

 first);

 <weekday> is a single character number giving the day of the

 week (running from 1 for Sunday to 7 for Saturday) and

 <yearday> is a three character number giving the day of the year

 (January first is counted as day one and leading zeros are not

 suppressed).

 For example:

 " 15:08:40 03-25-80 3 085"

 shows a time in the afternoon of Tuesday (day 3), the 25th of March

 1980. This is the 85th day of the year.

 Date(1)

 This argument provides a time and date suitable for direct printing

 in output. The format is:

 Miscellaneous Topics 285

 MTS 16: ALGOL W in MTS

 September 1980

 b<time>b<half>bb<weekday>b<day>b<month>b<year> / / // / / /

 where:

 <time> is a five character time of day on the twelve hour clock

 as "hh:mm";

 <half> is "am" or "pm" according to the time of day;

 <weekday> is is a three character day of the week from the set:

 "Sun" | "Mon" | "Tue" | "Wed" | "Thu" | "Fri" | "Sat" ;

 <day> is a two character number giving the day of the month

 (leading zero if any is suppressed);

 <month> is a three character day of the year from the set:

 "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun" | "Jul" | "Aug" |

 "Sep" | "Oct" | "Nov" | "Dec" ;

 <year> is a two character number giving the year.

 For example:

 " 3:08 pm Tue 25 Mar 80"

 The result for any other argument to date is undefined.

 EXCEPTIONAL CONDITIONS ______________________

 The facilities described below are provided in Algol W to allow

 detection and control of certain exceptional conditions arising in the

 evaluation of arithmetic expressions and predeclared functions.

 The following predeclared record class is provided:

 record Exception(

 logical Xcpnoted;

 integer Xcplimit,

 Xcpaction;

 logical Xcpmark;

 string(64) Xcpmsg);

 Associated with each exceptional condition which can be processed is a

 predeclared reference variable to which record occurrences of class

 Exception can be assigned. Fields of such record occurrences control

 the processing of exceptions. The implicit declaration is:

 reference(Exception) Endfile, Ovfl, Unfl, Divzero,

 Intdivzero, Intovfl, Function;

 286 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 The association between exceptional conditions and reference variables

 is as follows:

 Reference

 Variable Exceptional Condition ________ _____________________

 Endfile end-of-file detected on input by the predeclared

 procedures Read, Readon, Readcard,

 Get or Geton

 Ovfl real, long real, complex or long complex

 exponent overflow

 Unfl real, long real, complex or long complex

 exponent overflow

 Divzero real, long real, complex or long complex

 division by zero

 Intovfl integer overflow

 Intdivzero integer division by zero

 Function all domain, significance, and singularity

 errors in the evaluation of mathematical

 predeclared functions

 When one of the conditions listed above occurs one of two actions is

 followed, depending on whether or not the corresponding reference

 variable is set to the reference constant ’null’.

 If the value is ’null’ the exceptional condition is ignored and

 execution of the Algol W program continues. In such conditions the

 predeclared functions return a default value - see "Predeclared Function

 Errors and Default Values" later in this section. All other conditions

 return the result provided by the underlying computer hardware - see

 "Table of Results for Exceptional Conditions" later in this section.

 Note that, excluding the reference variable Unfl, the only way for a

 predeclared reference variable to be ’null’ is if it is specifically set

 by the user. Initially Algol W sets all of the above references to

 point to a special system record occurrence. This is not available to

 the user by name. The statement:

 Unfl := Ovfl;

 would set Unfl so that it pointed to this special reference, provided

 Ovfl had not been reassigned prior to this.

 Miscellaneous Topics 287

 MTS 16: ALGOL W in MTS

 September 1980

 Exception - Field Values ________________________

 If the value of a given reference variable is not ’null’ and the

 corresponding condition occurs, the fields of the given record occur-

 rence of class Exception are checked. Depending on their values various

 actions are taken. The following descriptions explain the meanings of

 each field of the record class Exception:

 Xcpnoted

 This is a logical variable used to note the occurrence of the

 exceptional condition. If the corresponding reference variable is

 not null, this variable is always set to ’true’ when the corre-

 sponding exceptional condition occurs. It is sensible for the user

 to initialize this variable to ’false’ so that the program can test

 for an exception of the given kind.

 Xcplimit

 This is an integer variable used to set a limit on the number of

 times the user wishes to allow the given exception to occur before

 execution is ended. When Xcplimit is reached a fatal error message

 is returned. Run error messages are listed by number in Appendix

 C.

 Xcpaction

 This is an integer variable whose value determines the resulting

 value of the expression (that is the result of the arithmetic

 evaluation, predeclared function call or input operation) in which

 the exception occurred. If execution is allowed to continue (see

 Xcplimit above), the new value of the expression is set according

 to the following values of Xcpaction:

 Value Action _____ ______

 1 The resulting value of the variable follows

 the "Adjustment Table" described later

 in this section.

 2 The result is long real zero.

 ¬= 1 or 2 The result is the Algol W default shown in the

 first column of the "Table of Results for

 Exceptional Conditions" later in this section.

 Note that Xcpaction is only relevant for reference variables which

 correspond to "Special Conditions" (see below). If the current

 reference variable is Intovfl or Intdivzero, the resulting value of

 the expression in which the exception occurred is the Algol W

 default.

 288 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 Xcpmark

 This is a logical variable to be set by the user. If the value is

 ’true’ an error message is printed in the event of an exception of

 the given kind. The error message may include the text of the

 variable Xcpmsg - see below. Note that an error message is always

 printed when execution is ended by an exception. This means that

 the value of Xcpmark is only relevant if Xcplimit has not yet been

 reached.

 Xcpmsg

 This is a string variable of length 64. If an error or exception

 message is printed, the contents of Xcpmsg will appear in the text

 of the message if Xcpmark has been assigned and if Xcpmsg is

 nonblank.

 Special Conditions and Adjustment Table _______________________________________

 There are two sets of exceptional conditions:

 (1) Special conditions. This includes all exceptional conditions

 except those processed using Intovfl and Intdivzero.

 (2) Integer overflow (Intovfl) and integer division by zero

 (Intdivzero).

 If the field values of the record occurrence of class Exception

 specify that execution is to continue, action then depends on which set

 the current reference belongs to.

 If the reference variable is either Intovfl or Intdivzero, the result

 is the Algol W default given in the first column of the "Table of

 Results for Exceptional Conditions" later in this section.

 If the reference variable is one of the special conditions, the

 result is determined by the value of Xcpaction. The following table

 gives the values of the resultant expression when Xcpaction is set to 1.

 Miscellaneous Topics 289

 MTS 16: ALGOL W in MTS

 September 1980

 Adjustment Table ________________

 Special Condition Adjustment of Result _________________ ____________________

 Ovfl, Divzero if Algol W default < 0

 then -Maxreal else Maxreal

 Unfl long real zero

 Function the value of the long real

 predeclared variable Fn_Value

 Endfile according to type:

 numerical 0 ; string " " ;

 logical false ; bits #0

 The special condition, Function, occurs when arguments are out of

 domain for the predeclared function which caused the exception. A full

 list of predeclared functions with their domains of definition is given

 in Appendix F.

 Table of Results for Exceptional Conditions ___

 | Algol W Hardware

 | default: default:

 Condition | Xcpaction Xcpaction Xcpaction reference

 | ¬= 1 or 2 = 1 = 2 = null

 ──────────┼──
 |

 Endfile | 0 0 0 0

 |

 Ovfl | exponent 128 ±Maxreal 0 exponent 128

 | too small too small

 |

 Unfl | exponent 128 0 0 0

 | too large

 |

 Divzero | dividend ±Maxreal 0 dividend

 |

 Intovfl | true result true result true result true result

 | ±2**32 ±2**32 ±2**32 ±2**32

 |

 Intdivzero| dividend dividend dividend dividend

 |

 Function | see the Fn_Value 0 see the

 | next section next section

 |

 290 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 Notes:

 (1) When an end-of-file condition occurs when attempting to read a

 string, a string of blanks is returned; for a logical, false is

 returned; for bits #0.

 (2) Default values for the Function reference are discussed in the

 Section "Predeclared Function Errors and Default Values" which

 follows this one.

 Note that the results of the nonspecial conditions Intovfl and

 Intdivzero are not affected at all by either the Xcpaction value or

 whether or not the reference variable is set to null. The only reason

 for assigning values to fields of Exception for these variables is to

 have a special Xcpmsg value printed and to be able to continue execution

 past the first occurrence of the condition. The same is true of

 Endfile.

 Examples:

 Ovfl := Exception(false, 10, 1,

 true, "Overflow circumvented");

 The field values and their effects are:

 Xcpnoted false becomes true if overflow occurs

 Xcplimit 10 allows up to 10 overflows

 Xcpaction 1 replaces result with ±Maxreal

 Xcpmark true prints Xcpmsg each time

 Xcpmsg "Overflow circumvented"

 Another example:

 Intdivzero := Exception(false, 50, 2, false,);

 The field values and their effects are:

 Xcpnoted false becomes true if overflow occurs

 Xcplimit 50 allows up to 50 integer division by zeros

 Xcpaction 2 irrelevant; always replaced by dividend

 Xcpmark false no message printed until final termination

 Xcpmsg not assigned

 Predeclared Function Errors and Default Values __

 The floating point predeclared functions are not always valid for all

 values of their arguments. When invalid arguments are passed, a

 predeclared function exceptional condition is recognized and Algol W

 processes this under the control of the predeclared reference variable

 Function.

 Miscellaneous Topics 291

 MTS 16: ALGOL W in MTS

 September 1980

 Predeclared functions whose exceptions are processed under the

 control of the reference variable Function are described in the section

 "Arithmetic Expressions and Assignment Statements" in the subsections:

 "Roots and Powers Functions"

 "Trigonometric Functions"

 "Inverse Trigonometric Functions"

 "Hyperbolic Functions"

 "Special Functions"

 "Complex Functions"

 A list of predeclared functions giving domains of definition and

 singularities, if any, is given in Appendix F. Exceptional conditions

 arising from the use of these functions are described in this section.

 If Xcpaction(Function) is 2, long real zero is returned. If

 Xcpaction(Function) is 1, the value of the predeclared long real

 variable Fn_Value is returned. For a complex function the imaginary

 part will be zero.

 If the reference variable Function is ’null’ or Xcpaction(Function)

 is zero, a default value is returned. This default value depends on the

 function called and the argument passed. The default values for the

 floating point predeclared functions are given with the description of

 the function definitions below.

 Square Root

 The real valued functions Sqrt and Longsqrt are not defined for

 negative arguments since the square root of a negative number is

 pure imaginary. If x < 0 then:

 x**0.5 = i•|x|**0.5

 The default function value computed in this case is the square root

 of the absolute value of the argument.

 The complex square root functions Cxsqrt and Longcxsqrt are defined

 for all values of their arguments.

 Common and Natural Logarithms

 The real valued logarithmic functions Log, Ln, Longlog and Longln

 are not defined for negative arguments since the logarithm of a

 negative number is complex. If x < 0 then:

 ln(x) = ln(|x|) - i•Pi

 The default function value is the logarithm of the absolute value

 of the argument.

 All of the logarithmic predeclared functions are undefined for an

 argument of zero. This is a singularity in the definition of the

 292 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 logarithm function. The default returned value is minus machine

 infinity, which is approximately -7.2’+75.

 Exponential

 The real valued functions Exp and Longexp can be properly defined

 only within the interval from -180.2182 to +174.67308 because of

 the range restrictions imposed by the representation of floating

 point numbers on System/370 type machines - see Appendix J. The

 two extremes for argument values quoted above are the natural

 logarithms of minus and plus machine infinity.

 If the argument exceeds the upper limit, the default function value

 is machine infinity.

 If the argument value is less than the lower limit, the default

 value is zero. However, this situation is only regarded as an

 error if the floating point underflow exception is being trapped;

 that is the predeclared reference value Unfl has been assigned a

 value other than the default of ’null’.

 It should be noted that the domain of definition for the exponen-

 tial functions is slightly less than the range of the corresponding

 natural logarithm functions. Hence the expressions Exp(Ln(X)) and

 Longexp(Longln(X)) are not computable for values of X extremely

 close to the ends of the machine range.

 The complex valued functions Cxexp and Longcxexp have an analogous

 restriction on the real part of the complex argument and an

 additional restriction on the imaginary part. The function defini-

 tions are:

 cxexp(x+i•y) = exp(x)•[cos(y)+i•sin(y)]

 The domain restrictions on the imaginary part are therefore those

 of the Sin, Longsin, Cos and Longcos functions.

 Trigonometric Functions

 The domain restrictions for the real valued trigonometric functions

 Cos, Sin, Tan, Cot, Longcos, Longsin, Longtan and Longcot are

 imposed to maintain accuracy. These functions are computed by

 reducing the argument to the interval from -Pi/4 to +Pi/4 by taking

 advantage of the periodicity of the function values. For very

 large arguments this reduction yields so few significant digits in

 the reduced argument that meaningful computation of the function

 value is impossible.

 The single precision functions require an argument whose absolute

 value is less than 823549.563 (or approximately 2**18•Pi).

 The long precision functions require an argument whose absolute

 value is less than 3.537118706008’+15 (or approximately 2**50•Pi).

 Miscellaneous Topics 293

 MTS 16: ALGOL W in MTS

 September 1980

 The default function value for arguments outside this range is zero

 for all real valued trigonometric functions.

 In addition, the tangent and cotangent functions will object if the

 argument is too close to one of their singularities to maintain

 accuracy or if the function value lies outside the machine range.

 In these situations, the default function value is machine infinity

 with the sign of the argument.

 The complex sine and cosine functions Cxcos, Cxsin, Longcxcos and

 Longcxsin may be defined as:

 cxsin(x+i•y) = sin(x)•cosh(y)+i•cos(x)•sinh(y)

 cxcos(x+i•y) = cos(x)•cosh(y)+i•sin(x)•sinh(y)

 These formulae illustrate why a trigonometric type of domain

 restriction is applied to x and an exponential type to y. The

 default function value is derived from the default values supplied

 by the appropriate sine, cosine and exponential functions, where

 cosh(y) and sinh(y) become machine infinity divided by two when |y|

 is too large.

 Inverse Trigonometric Functions

 The domain of the inverse sine and cosine functions Arccos, Arcsin,

 Longarccos and Longarcsin is the range of the sine and cosine

 functions, that is from -1 to 1. Outside this interval the default

 function value is zero.

 The inverse tangent functions Arctan and Longarctan are defined for

 all values of their arguments.

 Note that these functions return the principal values of functions

 which are, in fact, many valued.

 Hyperbolic Functions

 The value of the hyperbolic sine and cosine of x exceed the range

 of the machine when |x| approaches the logarithm of machine

 infinity. The functions Cosh, Sinh, Longcosh and Longsinh are

 defined for arguments whose absolute values are less than 175.3662.

 The default function value is machine infinity with the appropriate

 sign.

 The hyperbolic tangent functions Tanh and Longtanh are defined for

 all values of their arguments.

 Special Functions

 The gamma function is supplied by the Gamma and Longgamma prede-

 clared functions and the logarithmic gamma function by Lngamma and

 294 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 Longlngamma. Like the exponential functions, these exceed the

 machine range for arguments outside their domains of definition.

 Maxreal is the default value for both sets of functions.

 The error functions Erf and Long erfc and the complementary error

 functions Erfc and Longerfc are defined for all values of their

 arguments.

 ADDITIONAL IOCONTROL OPTIONS ____________________________

 The predeclared procedure Iocontrol was introduced in the section

 "Basic Input and Output." Additional keywords are available to provide

 extended control over certain system actions. As indicated in the

 previous description of Iocontrol, integer arguments are available

 corresponding to each of the keywords. However use of keywords is

 recommended as it is less prone to error. These integers are in

 parentheses following the keywords listed below.

 Timing Information __________________

 When an Algol W program finishes execution, timing information about

 the run is normally printed. By default Algol W will print the total

 CPU time for the run unless the NOTIMES keyword is given - see below.

 The keywords described below allow other aspects of the run timing to be

 displayed on termination or, alternatively, the timing information may

 be suppressed altogether.

 All of the keywords described in this particular subsection are also

 available as run-time parameters. See the section "Algol W Programmer’s

 Guide."

 TOTALCPU (101)

 This keyword causes the total CPU time to be printed. This is the

 default. This total time is the sum of the times which the user’s

 task spent in both problem and supervisor state during execution of

 the Algol W program at run-time. This then is the time which the

 computer spent in running the user’s program. It is always much

 less than the elapsed real time for the run because the computer is

 servicing many users simultaneously. The difference between prob-

 lem and supervisor state is discussed below.

 PROBLEMCPU (102)

 This keyword causes the time spent in problem state during the

 program’s execution to be printed. All normal computation is done

 Miscellaneous Topics 295

 MTS 16: ALGOL W in MTS

 September 1980

 in problem state. When comparing program timings in an attempt to

 assess efficiency of various algorithms, the problem state time

 should be inspected. This time is least likely to be affected by

 variations in the total machine loading.

 SUPERCPU (103)

 This keyword causes the time spent in supervisor state during

 program execution to be printed. If examined by itself the

 supervisor time alone can give a misleading impression of program

 timing, so this keyword also forces printing of the problem state

 CPU time. The machine runs in supervisor state when certain

 privileged operations must be performed. Typically this occurs

 when program action causes direct input/output to the devices

 attached to the computer. Such time is charged to the user as

 supervisor state time but it should be born in mind that the time

 to access a particular input/output device is very dependent on the

 competition for the various devices from all the machine’s various

 tasks. This time therefore rises steeply at times of peak machine

 load and should not be used as more than a general guide to program

 efficiency. Programs which do a great deal of input/output are

 said to be input/output bound and can be expected to spend a

 relatively large percentage of their total CPU time in supervisor

 state.

 ELAPSED (104)

 This keyword prints the elapsed real time for the program’s

 execution, that is it prints the difference between the time of day

 at program termination and that at the start of program execution.

 It is printed in minutes and seconds.

 NOTIMES (105)

 This keyword suppresses the printing of all timing information. If

 the total CPU time is not required but one of the other options is,

 then two keywords can be given to achieve this effect:

 Iocontrol("NOTIMES,ELAPSED");

 This would cause only the elapsed time for the run to be printed.

 ALLTIMES (106)

 This keyword combines the effect of TOTALCPU, PROBLEMCPU, SUPERCPU

 and ELAPSED. It therefore causes Algol W to print a complete

 timing information breakdown on termination.

 296 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 External and Library Interruptions __________________________________

 When a program interruption occurs during an Algol W program

 execution, control is passed to the Algol W error processor. If the

 program interruption occurs during execution of the user’s portion of an

 Algol W program or as a result of erroneous data supplied by a user

 program to an Algol W library routine, then the exception is handled

 according to the values of the predeclared references to the predeclared

 Exception record. This can be suppressed by specifying the NOTRAPS

 run-time option.

 If, on the other hand, the program interrupt occurs as a result of

 either a genuine error in the coding of an Algol W library routine or

 while an external non-Algol W routine is being executed, then the

 behavior of the error processor is different. A fatal error message is

 written out indicating whether the interruption occurred in a library

 routine or an external routine.

 If the error message indicates a library routine is at fault, please

 notify a member of the Computing Center Staff. If an external routine

 is the cause of the trouble, then either its coding or the parameters

 supplied to it are in error and the problem should be diagnosed on this

 basis.

 In either case the format of the subsequent error message and the

 manner of program termination may be controlled by the following

 Iocontrol keywords:

 DISPLAY (201)

 This keyword causes a dump of the value of the program status word,

 the sixteen general registers and the four floating point registers

 to be printed on the ERROR stream. (In MTS this is SERCOM.) This

 is the default action.

 NODISPLAY (202)

 This keyword completely suppresses the program status word and

 register dump.

 PSW (203)

 This keyword causes the value of the program status word to be

 printed.

 GRS (204)

 This keyword causes the values of the 16 general registers to be

 printed.

 Miscellaneous Topics 297

 MTS 16: ALGOL W in MTS

 September 1980

 FRS(205)

 This keyword causes the values of the four floating point registers

 to be printed.

 If the program status word alone is required then the following

 statement should be issued:

 Iocontrol("NODISPLAY,PSW");

 The remaining two keywords control the action which Algol W will take

 when processing of the error condition is complete.

 SYSPGNT (206)

 This keyword specifies that control is to be passed to the

 operating system with the registers and program status word having

 the values at the point of the interrupt. In MTS issuing this

 keyword can be used as a method of forcing program interrupts in

 external non-Algol W routines to pass control to the Symbolic

 Debugging System. The cause of the error can then be investigated

 further by using SDS commands. Note that this keyword has no

 effect on the processing of program interrupts which occur within

 Algol W coding. Such exceptions are always handled by Algol W in

 the usual fashion.

 ALWPGNT (207)

 This keyword is the converse of SYSPGNT and is the default action.

 Program interruptions in external and library routines cause a

 normal program termination. If the program execution had been

 initiated in compile, load and go mode then control is returned to

 the Algol W system, allowing reexecution of the program, system

 termination or compilation of a corrected or a new program as

 desired.

 Control of Getstring Action ___________________________

 The Getstring predeclared procedure allows a user program to perform

 input data conversion in such a way that it can retain control if a

 fatal conversion error occurs. It also enables simple free format

 command scanners to be written easily in Algol W.

 In order to achieve these aims the action of Getstring may be

 influenced by the following Iocontrol keywords:

 GSFIELDED (301)

 This keyword tells the Algol W system that data conversion errors

 should cause a fatal error condition to be recognized and that

 298 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 execution of the program should be terminated with the relevant

 error message. This action is the default. Note that a free

 format Getstring operation, which fails to find characters other

 than break characters between the start of the scan and the end of

 the string, will be recognized as a fatal error. Getstring cannot

 fetch a new input string in the same way that the ordinary input

 predeclared procedures can fetch a new physical input record.

 GSRETURNS (302)

 This keyword tells Algol W that in the event of a failure of the

 Getstring routine, control is to be returned to the user program.

 On return the predeclared integer variable Syscode will contain a

 value indicating the success or failure of the conversion

 operation.

 Syscode

 Value Meaning _____ _______

 0 Conversion was successful.

 4 While scanning for an item the end of the string

 was encountered, that is no data item was present.

 >4 A data item was found but it could not be converted

 to the internal form implied by the simple type of

 the receiving variable.

 The remaining two keywords allow a subsequent Getstring operation to

 continue scanning from the point in the string at which a previous

 Getstring operation terminated. Note that the information held between

 Getstring calls is only the tab position down the string at the end of

 the first call. The onus is on the user to code a program in such a way

 that further Getstring calls specify the same string to be scanned.

 GSCONTINUE (303)

 GSCONTINUE specifies that the tab position at the end of a

 Getstring call is to be remembered by the Algol W system and used

 as the starting position in a subsequent Getstring call. This

 allows coding of a command scanner in such a way that it may pick

 up parameters from the string individually and deal with them

 between Getstring calls.

 GSORIGIN (304)

 GSORIGIN specifies that any remembered tab position which might be

 used for the next Getstring call is to be forgotten. Any

 subsequent Getstring calls will start their scans from the begin-

 ning of the supplied strings.

 An example of the use of these keywords is given in the Section "A

 Simple Command Scanner" later in this section.

 Miscellaneous Topics 299

 MTS 16: ALGOL W in MTS

 September 1980

 Modification of the String Recognition Algorithm __

 The algorithm by which strings are recognized as data items in an

 input stream has been described in the subsection "Strings" in the

 section "Basic Input and Output." While this algorithm is sufficient

 for normal data input there are many occasions when modifications to it

 would be useful. For instance the delimiting action of quotes and

 primes in the input data might not be desirable when coding a command

 scanner.

 While the coding of more general scanning algorithms, such as those

 used in lexical analysis, must be left to the user, the following

 Iocontrol keywords provide the ability to implement scanners for the

 more common types of arguments in command driven programs.

 RESETSCAN (401)

 RESETSCAN specifies that the string recognition algorithm is to

 revert to the default action, that is it undoes the action of any

 of the keywords described in this section which change the default

 action.

 NOQUOTES (402)

 This keyword specifies that the quote (") is not to be recognized

 as a string delimiter in subsequent string input operations.

 In the section of program:

 string(32) S, T;

 .

 .

 Iocontrol("NOQUOTES");

 Read(S, T);

 a data card containing:

 ABC "DEF GHI"

 would cause S to contain ABC and T to contain "DEF .

 QUOTES (403)

 This keyword undoes the effect of NOQUOTES. In subsequent string

 input the quote is recognized as a string delimiter.

 300 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 NOPRIMES (404)

 This keyword specifies that the prime (’) is not to be recognized

 as a string delimiter in subsequent string input operations.

 In the section of program:

 string(32) S, T;

 .

 .

 Iocontrol("NOPRIMES");

 Read(S, T);

 a data card containing:

 ’ IS A PRIME

 would cause S to contain ’ and T to contain IS.

 PRIMES (405)

 This keyword undoes the effect of NOPRIMES. In subsequent string

 input the prime is recognized as a string delimiter.

 BRACKETS (406)

 The BRACKETS keyword specifies that a group of characters enclosed

 in parentheses is to be recognized as a string, including the

 parenthesis characters. Nesting of parentheses is recognized. The

 outer parentheses are said to be zero level and a string which

 starts with a left parenthesis is terminated by the next zero level

 right parenthesis followed by a break character or the end of the

 string.

 With the section of program:

 string(32) S, T;

 .

 .

 Iocontrol("BRACKETS");

 Read(S, T);

 the data card containing:

 (A, B, C),(FMT=VB(3200,80), SL),XYZ

 would cause S to contain (A, B, C) and T (FMT=FB(3200,80), SL)

 NOBRACKETS (407)

 NOBRACKETS specifies that groups within parentheses are not to be

 specially treated. It undoes the effect of both the previous

 keyword, BRACKETS, and the next keyword, DELBRACKETS.

 Miscellaneous Topics 301

 MTS 16: ALGOL W in MTS

 September 1980

 DELBRACKETS (408)

 DELBRACKETS causes the same string recognition of parentheses as

 BRACKETS but when the string conversion takes place the outer, zero

 level, parentheses are stripped from the string. If the string so

 recognized is not completely enclosed in zero level parentheses

 then no stripping of parentheses takes place.

 If DELBRACKETS had been given instead of BRACKETS in the previous

 example, then the string S would contain A, B, C and string T

 FMT=FB(3200,80), SL. However if the data item had been:

 (A, B, C),FMT=FB(3200,80),XYZ

 then string S would be the same but string T would contain

 FMT=FB(3200,80) that is the parentheses would not be removed

 because they do not enclose the whole of the string so recognized.

 These keywords are particularly useful when used to construct command

 scanners by the use of the Getstring predeclared procedure. An example

 of the use of such a scanning algorithm is given in the next Section "A

 Simple Command Scanner."

 A Simple Command Scanner ________________________

 The following small program demonstrates some of the Iocontrol

 features described in previous sections. Note that the program is

 compilable but not complete; the procedures Add_Entry, Delete_Entry and

 Print_Entry are present in embryo form only.

 begin

 record List(string(256) Item; reference(List) Next);

 reference(List) procedure Scan_Input_Text(

 string(256) value Input_Data);

 begin

 comment Break down a command into its constituents;

 reference(List) First, Last;

 string(256) Chars;

 integer Save_Code;

 comment

 Initialize linked list to null and use Iocontrol

 keywords to change the string recognition algorithm

 and prevent Getstring from invoking the error processor;

 First := null;

 Iocontrol("GSRETURNS,NOQUOTES,NOPRIMES");

 302 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 comment

 Use Getstring in a ’while’ loop to scan the string

 building a linked list of each command element;

 while

 begin

 Getstring(Input_Data, null, Chars);

 Save_Code := Syscode;

 Iocontrol("GSCONTINUE");

 Save_Code = 0

 end do

 if First = null then

 First := Last := List(Chars, null)

 else

 Last := Next(Last) := List(Chars, null);

 comment Reset the defaults and return the linked list;

 Iocontrol("RESETSCAN,GSORIGIN");

 First

 end Scan_Input_Text;

 procedure Process_Command(reference(List) value Cmd);

 if Cmd ¬= null then

 begin

 logical Found;

 integer Cmd_Number;

 string(32) Cmd_Name;

 comment

 Extract command name from Cmd record and

 skip reference past command name ready for

 individual command processors. The command

 name is translated to upper case in case it

 has been entered in mixed case from the terminal ;

 Cmd_Name := Item(Cmd)(0//32); Cmd := Next(Cmd);

 Translate(Cmd_Name, Uppercase);

 comment

 Initialize ’while’ loop variables. The loop

 increments the command number and uses a case

 statement to check for possible command strings.

 Note that this serial search is efficient for a

 small number of command names only. Binary

 search or computed key (hash table) methods are

 more suitable for generalized keyword identification ;

 Cmd_Number := 0; Found := false;

 while ¬ Found do

 begin

 Cmd_Number := Cmd_Number + 1;

 case Cmd_Number of

 begin

 Miscellaneous Topics 303

 MTS 16: ALGOL W in MTS

 September 1980

 if Cmd_Name = "ADD" then

 begin % Execute ADD command %

 Found := true; Add_Entry(Cmd)

 end Add_Check_Block;

 if Cmd_Name = "DELETE" then

 begin % Execute DELETE command %

 Found := true; Delete_Entry(Cmd)

 end Delete_Check_Block;

 if Cmd_Name = "PRINT" then

 begin % Execute PRINT command %

 Found := true; Print_entry(cmd)

 end Print_Check_Block;

 begin % Command unidentifiable %

 Found := true;

 Put(Error, "/X,H"",A,T,H"",X,A",

 Cmd_Name, "is invalid - ignored")

 end Invalid_Command_Block

 end Case_Block

 end

 end Process_Command;

 procedure Add_Entry(reference(List) value Cmd_Parms);

 begin

 Putcard(Error, " *** Add Entry ***")

 end add_entry;

 procedure Delete_Entry(reference(List) value Cmd_Parms);

 begin

 Putcard(Error, " *** Delete Entry ***")

 end delete_entry;

 procedure Print_Entry(reference(List) value Cmd_Parms);

 begin

 Putcard(Error, " *** Print Entry ***")

 end print_entry;

 comment Main program;

 reference(List) Command;

 string(256) Line;

 comment acquire catalog file;

 Assign("CATALOG", "CATFILE");

 comment

 Now loop to read in and process commands.

 Note the use of a block expression to stop

 the program on detecting end-of-file ;

 304 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 while

 begin

 Put(Error, "/H&,A/", "Do next?");

 Getcard(Input, Line);

 ¬ Filemark

 end do

 begin

 Command := Scan_Input_Text(Line);

 Process_Command(Command)

 end;

 comment Release catalog file and stop;

 Release("CATALOG");

 end Of_Program.

 In the examples given for the predeclared procedures Xgetcard, Xputcard

 and Xdelete in the section "Stream Directed Input and Output", use was

 made of the idea of a catalog file maintained by an Algol W program.

 The example program above shows how a simple command interface could be

 built for such a program; the actual file manipulation routines are not

 shown.

 The advantage of providing a command interface for such a program is

 that the system so created becomes much more friendly to the user.

 Rather than a data input error causing the program to stop with a fatal

 Algol W run error, a clear message can be printed allowing the user to

 retype the command for a second attempt. The additional Iocontrol

 options previously discussed in this section allow simple command

 scanners to be built with relative ease. They are, however, no

 substitute for the true parsing algorithms required for more sophisti-

 cated text processing programs.

 If the command:

 print 15-20 31

 is entered the procedure Scan_Input_Text will cause the following data

 structure to be returned:

 Command Item Next

 ┌───────┐ ┌──────────────┐────────┐
 | ■ |─────| "print" | ■ |
 └───────┘ └──────────────┘────────┘
 ┌─────────────────┘
 ┌──────────────┐────────┐
 | "15─20" | ■ |
 └──────────────┘────────┘
 ┌─────────────────┘
 ┌──────────────┐────────┐
 | "31" | null |

 └──────────────┘────────┘

 Miscellaneous Topics 305

 MTS 16: ALGOL W in MTS

 September 1980

 Getstring is used to break down the command string into its consti-

 tuents. The Iocontrol keywords redefine the string recognition

 algorithm (to block quote and prime delimiters) and allow Getstring to

 resume scanning after processing each "word" in the command string.

 The procedure Process_Command uses a Case statement to check the

 first element of the list for a possible command string. Note the use

 of the Translate predeclared procedure to convert the string to upper

 case. Translate and Uppercase are described later in this section.

 If a command is identified, the relevant command procedure is called.

 Each such procedure is passed the command parameters as the remainder of

 the linked list.

 This procedure demonstrates certain features of structured

 programming:

 (1) There is a separate procedure for each logically separate

 algorithm.

 (2) There are no Goto statements - these could easily destroy the

 logical flow through the program making it unreadable to others.

 (3) It has been coded so that it could easily be extended.

 Extra commands could be added by adding further blocks to the

 Case statement.

 Command abbreviation processing could be added by replacing the

 individual string comparisons by calls to a logical function

 which checked for minimum allowed substrings.

 (4) The detailed comments are not included just to inform readers of

 this manual. It is always good practice to include extensive

 comments within programs. Such documentation can be an invalu-

 able reminder both to the author and to others who may have to

 modify the program later.

 OBTAINING LENGTHS FOR STRING INPUT __________________________________

 Occasionally it is useful to know how many characters were input into

 a string. Algol W provides an aid to the programmer for this purpose.

 When strings are read in free format, that is:

 (1) using Read or Readon, or

 (2) using Get, Geton or Getstring with the format parameter given as

 the reference constant ’null’,

 306 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 the value of the predeclared integer R0 is set to the number of

 characters moved into the string. This number does not include blanks

 added on the right to fill the supplied string or substring.

 For example:

 begin

 string(80) Str;

 integer N, Length;

 Read(N);

 for I := 1 until N do

 begin

 Read(Str); Length := R0;

 Write(I_W := 2, Length, Str)

 end

 end.

 If the following data are supplied:

 5

 These

 are

 "some character strings"

 "to "

 ’be read’

 the program will print:

 5 These

 3 are

 22 some character strings

 5 to

 7 be read

 Note that on the fourth line of output the explicitly specified trailing

 spaces have been included in the character count.

 STOPPING AN EXECUTING PROGRAM _____________________________

 Algol W provides the predeclared procedure Stop to immediately

 terminate execution. The manner of termination is exactly as if normal

 end of program had been passed. The form of the procedure call is:

 Stop(<expression>)

 where <expression> may be any simple expression. However, if the

 expression is a string it will be printed on the ERROR stream before the

 procedure stops program execution.

 Miscellaneous Topics 307

 MTS 16: ALGOL W in MTS

 September 1980

 For example:

 if No_More_Data then Stop(null);

 This If statement will cause normal program termination if the value of

 the logical variable No_More_Data is ’true’.

 TRAPPING ATTENTION INTERRUPT CONDITIONS _______________________________________

 Algol W provides the predeclared procedure Attntrap to allow a

 program to intercept attention interrupt conditions generated when an

 interactive user presses the break key on a conversational terminal.

 The form of the procedure call is:

 Attntrap(<logical-expression>)

 If an expression of simple type other than logical is given the

 procedure call will be ignored. The call

 Attntrap(true)

 enables trapping and sets Attnmark to ’false’. When an attention

 interrupt occurs the predeclared logical variable Attnmark will be set

 to ’true’. Execution of the program continues unchecked and the trap

 remains set. It is the user program’s responsibility:

 (1) to check the value of Attnmark at convenient points within the

 program logic for the occurrence of an attention interrupt and

 act accordingly;

 (2) to reset Attnmark to ’false’ when an attention has been

 processed so that the logic may test for subsequent attentions.

 The call

 Attntrap(false)

 resets the trap. This returns to the default case where attentions are

 handled by MTS. Program execution will be halted by an attention

 interrupt. It may be resumed by issuing the MTS command:

 $RESTART

 See MTS Volume 1, The Michigan Terminal System, for details of the ______________________________

 optional parameters available with $RESTART.

 308 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 EXTENDED STORAGE ACCESS _______________________

 Warning: The facilities described under this heading are intended

 for experienced users needing sophisticated techniques. To be used

 successfully a thorough understanding of data representation on

 System/370 type machines is necessary. Certainly, there should be no

 need for undergraduate students to use these entries in the course of

 initial programming projects.

 Three predeclared functions and five predeclared procedures are

 provided to allow extended access to the machine’s main storage. Their

 purpose is to allow the use of certain machine facilities directly when

 otherwise assembler subroutines would have to be coded to achieve the

 same effect. The routines provided are:

 External

 This predeclared function provides the address of an externally

 defined symbol. It can be used either to locate an external

 subroutine for use with Call, or to provide access (together with

 Fetch and Store) to external data areas such as FORTRAN named

 COMMON sections.

 Halfword

 Halfword returns a halfword representation of its integer argument

 in an integer variable. This could be used to supply a halfword

 parameter to an external subroutine.

 Fullword

 Fullword returns a fullword value converted from its integer

 argument in an integer variable, with the assumption that the

 leading two bytes of this integer represent a halfword. This could

 be used to recover an integer value from a halfword result returned

 by an external subroutine.

 Locate

 This predeclared procedure will return the address of an Algol W

 variable. It provides the same facilities for Algol W as the MTS

 ADROF subroutine provides for FORTRAN users.

 Move

 This predeclared procedure transfers bytes of data from one Algol W

 variable to another without any data conversion, that is it

 provides a straight copy operation regardless of the data type. It

 can provide, by a copy operation, some of the flexibility of the

 FORTRAN EQUIVALENCE feature.

 Miscellaneous Topics 309

 MTS 16: ALGOL W in MTS

 September 1980

 Fetch

 This predeclared procedure transfers data from a region specified

 by a machine address (such as that returned by External) to an

 Algol W variable. It is the converse of the next procedure, Store.

 Store

 This predeclared procedure is the converse of Fetch. Data is

 transferred from an Algol W variable to a region specified by a

 machine address.

 Translate

 This predeclared procedure provides the facilities of the System/

 370 translate instruction. Data bytes in an Algol W variable may

 be converted in situ by information contained in a translate table

 specified either as a string(256) variable or by a machine address.

 When using Move, Fetch, Store and Translate, extreme care must be

 taken to see that only valid data lengths and addresses are given.

 Normal Algol W run-time error checking does not apply to these routines.

 As a result erroneously specified parameters may cause a program

 interruption. This will manifest itself as a fatal run error in the

 59xx series.

 External ________

 External is a predeclared function returning an integer result which

 is the machine address of the external symbol supplied as its parameter.

 The general form of the function call is:

 External(<esdname>)

 where <esdname> is a string constant giving the external symbol name as

 described under Call in the section "External Linkages." A 24-bit

 address is returned as the integer result of the function call; the top

 byte of the integer is zero. This means that integer arithmetic may be

 done safely on the returned address in order to compute related

 addresses.

 Example:

 integer Addr;

 .

 .

 Addr := External("EBCASC");

 310 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 This example shows how to obtain the address of the MTS case conversion

 table, EBCASC. This may be used, together with the Translate prede-

 clared procedure, to convert text held in an Algol W string from EBCDIC

 to ASCII representation.

 Halfword and Fullword _____________________

 Occasionally, when calling external subroutines, parameters are

 required which must be specified as halfword (or short) integers. Algol

 W does not support short integers as a data type. In the past this

 meant that such parameters had to be dealt with in a different manner

 involving either 16-bit shift operations or scaling by an integer factor

 of 65536. To ease the call of subroutines with such parameters, two

 additional predeclared procedures, Halfword and Fullword, are supplied.

 The general form of the function calls are:

 Halfword(<integer-expression>)

 Fullword(<integer-expression>)

 These calls both represent integer expressions. Both of these

 operations are performed within the machine by 16-bit arithmetic shift

 operations which preserve the sign of the argument in the function

 result.

 In the Halfword function the 16-bit shift operation is to the left.

 This means that the number is scaled up so that the leading two bytes of

 the resulting integer become a halfword representation of the fullword

 (or normal Algol W) integer which was supplied as the function argument.

 The Halfword function can therefore be used to supply a halfword

 parameter to an external subroutine as it is called.

 Example:

 integer Length;

 string(80) Card;

 .

 .

 Length := 80;

 Call("SPUNCH", Card, Halfword(Length), 0);

 In this example the MTS system subroutine SPUNCH is being called.

 SPUNCH requires as its second parameter a halfword integer which is the

 number of bytes to be written out. The function Halfword is used to

 supply this by converting the length contained in the integer variable

 Length. Note that this example is intended to demonstrate the use of

 Halfword; within Algol W this particular operation can be more easily

 achieved using the Putcard predeclared procedure.

 Miscellaneous Topics 311

 MTS 16: ALGOL W in MTS

 September 1980

 In the case of Fullword the 16-bit shift operation is to the right.

 This means that the number is scaled down. If the leading two bytes of

 the function argument represent a halfword integer then the function

 result would contain a fullword (or normal Algol W) representation of

 the number. Thus if an external subroutine returns a halfword value

 then an Algol W integer variable can be supplied as the parameter to

 receive this. Subsequently Fullword may be called to recover an integer

 Algol W value corresponding to the halfword so returned.

 Example:

 integer Length, Lenparm, Lnum;

 string(256) Inrec;

 .

 .

 Length := 80;

 Call("SCARDS", Inrec, Lenparm, 0, Lnum);

 Length := Fullword(Lenparm);

 In this example the MTS system subroutine SCARDS is being called.

 SCARDS requires as its second parameter a halfword integer in which it

 will return a value giving the number of bytes which have been read in.

 The Algol W integer Lenparm has been supplied to receive this. The

 subsequent call of the Fullword function has been used to recover the

 returned value so that it may be processed normally within the Algol W

 program. Note that this example is intended to demonstrate the use of

 Fullword; within Algol W this particular input operation can be more

 easily achieved using the Getcard predeclared procedure.

 Because Halfword and Fullword use arithmetic shift operations rather

 then logical ones the sign of the argument is preserved in the result.

 However this does mean that, in the case of Halfword, a scaling up of

 the number could produce an integer overflow condition. This will occur

 if the argument is greater than 32767 or less than -32768. These values

 represent the limits of the range of halfword integers which can be

 represented on the machine.

 Locate ______

 This predeclared procedure is used to return the address of an Algol

 W variable, or the address of the result of the evaluation of an Algol W

 expression.

 The general form of the procedure call is:

 Locate(<item>, <address>)

 where:

 312 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 <item> is the Algol W entity whose address is required; and

 <address> is an integer or bits variable which will receive the

 address of <item>.

 For this predeclared procedure to be useful, <item> will normally be

 specified as a simple variable identifier, a subscripted variable or a

 substring. If <item> is given as an expression then Algol W will

 evaluate this expression and return the address of a temporary region in

 which it is holding the result.

 As with External the value returned is a 32-bit quantity of which the

 top byte is zero and the low three bytes give a 24-bit address.

 Example:

 long real Z;

 integer array Parlist(1::8);

 .

 .

 Parlist(1) := ;

 Locate(Z, Parlist(2));

 .

 .

 Parlist(8) :=;

 Locate (Parlist(1), R1);

 Rcall("QSUB");

 This example shows how a subroutine with a nonstandard S-type calling

 sequence can be called from Algol W using Locate and Rcall. QSUB is

 assumed to be a subroutine of the kind which would normally be accessed

 by Call but where one or more of the parameters is not specified by

 address in the usual way. In such a case an integer array could be used

 to specify the parameter list. For each parameter of the subroutine,

 the corresponding element of the array Parlist must be set up. This

 could be done either by an ordinary assignment, if a parameter value was

 required within the list, or using Locate if the address of the

 parameter is required, as would normally be the case. These two

 alternatives are shown by the first and second parameters for the

 subroutine QSUB in the above example. When the parameter list has been

 completely set up, it is necessary to place the address of the first

 word of the parameter list in machine general register one before the

 subroutine is called. This is done by using Locate to store the address

 of Parlist(1) into the predeclared integer variable R1. Rcall loads

 machine general register one from R1 as it calls QSUB.

 Miscellaneous Topics 313

 MTS 16: ALGOL W in MTS

 September 1980

 Move ____

 This predeclared procedure is used to copy bytes of data from one

 Algol W variable to another.

 The general form of the procedure call is either of:

 Move(<source>, <destination>)

 Move(<source>, <destination>, <length>)

 where:

 <source> specifies the Algol W variable from which data bytes are

 to be copied;

 <destination> specifies the Algol W variable which is to receive

 the data; and

 <length>, if supplied, is an integer expression specifying the

 number of bytes of data which are to be transferred by the

 procedure call.

 <source> and <destination> represent variables of any Algol W simple

 type, and the transfer of bytes of data is a simple copy operation - no

 data conversion of any kind is done.

 If <length> is omitted then the number of bytes of data moved by the

 procedure call is the minimum of the implied lengths of <source> and

 <destination>. This length will depend on the simple type of each

 parameter as declared, as shown in the following table:

 Simple type | Implied Length

 ─────────────┼────────────────
 integer | 4

 real | 4

 long real | 8

 complex | 8

 long complex | 16

 logical | 1

 string(n) | n

 bits | 4

 reference | 4

 If a subscripted variable is specified then the length is that of the

 simple type of the array. If a substring is given then the length of

 the parameter is the designated substring length.

 When a length is given this may be any positive integer. Move may

 then be used to specify an operation which can copy beyond the bounds of

 either <source> or <destination> or both. For instance, several integer

 array elements could be copied into a string of suitable length in one

 operation.

 314 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 Move provides an experienced Algol W user with the kind of facilities

 available to a FORTRAN programmer through that language’s EQUIVALENCE

 statement. In Algol W there is no way in which two different variables

 may be declared to name the same region of storage so that an assignment

 to one also changes the other. When this facility is required, Move

 must be used to copy the required bytes of data from one variable to

 another.

 Example:

 string(80) Card;

 string(4) Owner;

 string(6) Volume;

 string(24) Filename;

 integer array Cinfo(1::16);

 integer array Finfo, Sinfo(1::2);

 .

 .

 .

 Readcard(Card);

 Cinfo(1) := 16; Finfo(1) := Sinfo(1) := 0;

 Call("GFINFO", Card, Filename, 1, Cinfo(1), Finfo(1), Sinfo(1));

 if R_Code = 0 then

 begin

 Move(Cinfo(3), Owner);

 Move(Cinfo(4), Volume, 6);

 Write("File: ", Card);

 Write(" ");

 Write("Owner is ", Owner);

 Write("Resides on disk ", Volume);

 Write("Has been referenced ",I_W := S_W := 1,Cinfo(6),"times");

 end;

 The above example shows a section of an Algol W program calling the

 MTS system subroutine, GFINFO to obtain information about a filename

 which is read into the string Card.

 GFINFO is typical of system subroutines in operating systems like MTS

 which are intended to be called by such languages as Assembler and

 FORTRAN which do not enforce strict separation of data types.

 When calling this subroutine, its specification (in MTS Volume 3,

 System Subroutine Descriptions) specifies the CINFO parameter as the ______________________________

 location of a 16 element array in which catalog information about a file

 will be returned. Inspection of the list of data which may be returned

 as catalog information shows that this includes such differing types as

 the file owner (4 characters), the disk volume on which the file resides

 (6 characters) and the number of times the file has been accessed (an

 integer). While the final parameter can be retrieved easily from the

 corresponding element of the integer array on return from GFINFO, the

 file owner and disk volume are best dealt with in Algol W as strings.

 The data is already represented correctly in main storage but the data

 Miscellaneous Topics 315

 MTS 16: ALGOL W in MTS

 September 1980

 type is inconsistent with Algol W’s view of the contents. The solution

 shown above is to use the Move predeclared procedure to copy the

 contents of the relevant array elements into Algol W string variables.

 Fetch _____

 Fetch is a predeclared procedure like Move with the important

 difference that data is transferred from a region specified by a machine

 address to an Algol W variable. It is intended to allow a transfer of

 information from system tables or external data areas such as a FORTRAN

 named COMMON section. In this context it would be used in combination

 with the predeclared function External, which will return the address of

 such an area.

 The general form of the procedure call is either of:

 Fetch(<source-address>, <destination>)

 Fetch(<source-address>, <destination>, <length>)

 where:

 <source-address> is an integer or bits expression specifying the

 machine address from which data is to be moved;

 <destination> is an Algol W variable to which bytes of data are to

 be transferred; and

 <length> is an optional integer expression specifying the number of

 bytes of data to be transferred by the procedure call.

 If the <length> parameter is omitted then the number of bytes moved is

 the implied length of the <destination> variable. A table of implied

 lengths for the different simple types of Algol W variable is given in

 the previous section on Move.

 If a subscripted variable is specified, then the length is that of

 the simple type of the array. If a substring is given then the length

 of the parameter is the designated substring length.

 When a length is given this may be any positive integer. A copy

 operation may then be specified using Fetch which can copy beyond the

 bounds of the <destination>. For instance, if <destination> specified

 the first element of an array, this could be filled with bytes from a

 suitable address within a FORTRAN COMMON section in one operation,

 provided that the <length> expression gave the number of bytes in the

 array.

 Fetch, together with the converse predeclared procedure Store de-

 scribed in the next section, provides an Algol W programmer with the

 ability to control directly the storage management of externally held

 variables or arrays of variables.

 316 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 integer Address;

 long real array Data(1::100);

 .

 .

 Address := External("COMBLK");

 Fetch(Address + 8, Data(1), 800);

 This partial program is representative of the manner in which bytes of

 data may be copied from a FORTRAN named COMMON block to Algol W

 variables. If the FORTRAN routine had a declaration of:

 INTEGER*4 NUM1, NUM2

 REAL*8 DATAVC

 C

 C DECLARE NAMED COMMON BLOCK

 C

 COMMON /COMBLK/ NUM1, NUM2, DATAVC(100)

 then the Fetch statement in the Algol W program segment would copy all

 of the elements of the FORTRAN array DATAVC into a corresponding Algol W

 array Data.

 Store _____

 Store is a predeclared procedure which is the converse of Fetch. It

 transfers data from an Algol W variable to a region specified by a

 machine address. This allows the transfer of information into external

 data areas such as FORTRAN named COMMON sections.

 The general form of the procedure call is either of:

 Store(<source>, <destination-address>)

 Store(<source>, <destination-address>, <length>)

 where:

 <source> is an Algol W variable from which bytes of data are to be

 transferred;

 <destination-address> is an integer or bits expression specifying

 the machine address to which data is to be moved; and

 <length> is an optional integer expression specifying the number of

 bytes which are to be to be transferred by the procedure call.

 If the <length> parameter is omitted then the number of bytes moved is

 the implied length of the <source> variable. A table of implied lengths

 for the different simple types of Algol W variable is given in the

 earlier section on Move.

 Miscellaneous Topics 317

 MTS 16: ALGOL W in MTS

 September 1980

 If a subscripted variable is specified then the length is that of the

 simple type of the array. If a substring is given then the length of

 the parameter is the designated substring length.

 When a length is given this may be any positive integer. A copy

 operation may then be specified using Store which can copy from beyond

 the bounds of <source>. For instance a complete FORTRAN array in a

 COMMON section could be filled in one procedure call by specifying a

 suitable address within a COMMON section as the <destination-address>.

 Store, together with the converse predeclared procedure Fetch,

 described in the previous section, provides an Algol W programmer with

 the ability to control directly the storage management of externally

 held variables or arrays of variables.

 For example, in the environment of the partial Algol W program used

 as an example in the previous section on Fetch, the statement:

 Store(Data(1), Address + 8, 800);

 would fill the array in the FORTRAN COMMON block with the contents of

 the Algol W array Data.

 Translate _________

 This predeclared procedure provides the facilities of the System/370

 translate instruction. Data bytes in an Algol W variable may be

 converted in situ by information contained in a translate table.

 The general form of the procedure call is either of:

 Translate(<string-variable>, <table>)

 Translate(<string-variable>, <table>, <length>)

 where:

 <string-variable> specifies the Algol W string which is to be

 translated;

 <table>, which controls the action of the procedure, may be given

 either as a 256-byte string expression or as an integer or bits

 expression specifying the address of a 256-byte translate table;

 <length> is an optional parameter specifying the number of bytes

 which are to be translated.

 If <length> is omitted the implied length of the first parameter is

 used, as given in the table in the section describing the Move

 predeclared procedure.

 318 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 If a subscripted variable is specified then the length is that of the

 simple type of the array. If a substring is given then the length of

 the parameter is the designated substring length.

 The action of Translate is as follows. The <string-variable> is

 converted in situ, that is the result of the translation replaces the

 original values of the characters in the string. For each character

 which is to be translated, its integer value is used to fetch a

 character from a position in the table which is offset from the start of

 the table by that integer value. This fetched character then replaces

 the original one in the string being translated. Integer values

 corresponding to string characters are given in Appendix B.

 For a string Chars the operation is equivalent to the Algol W code:

 integer Temp;

 string(80) Chars;

 string(256) Table;

 .

 .

 for I := 0 until 79 do

 begin

 Temp := Decode(Chars(I|1));

 Chars(I|1) := Table(Temp|1)

 end;

 The equivalent operation using Translate would be:

 Translate(Chars, Table);

 As well as being more concise to code, the operation is much more

 efficient because it uses the computer’s translation hardware directly.

 Example:

 integer Ebcdic_To_Ascii;

 .

 .

 Ebcdic_To_Ascii := External("EBCASC");

 Translate(Output_Text, Ebcdic_To_Ascii);

 In this partial program the string Output_Text is being translated from

 the IBM EBCDIC character encoding to the ASCII variety. To do this the

 programmer has used the External predeclared function to locate the MTS

 system table provided for this task.

 See MTS Volume 3, System Subroutine Descriptions, for details of the ______________________________

 entry EBCASC and its inverse ASCEBC. See also the next section for

 descriptions of two translate tables provided by Algol W for case

 conversion.

 Miscellaneous Topics 319

 MTS 16: ALGOL W in MTS

 September 1980

 Predeclared Translate Tables - Lowercase and Uppercase __

 Two predeclared bits variables are provided by Algol W to provide

 case conversion in either direction when used in conjunction with the

 Translate predeclared procedure:

 bits Lowercase

 This variable contains a pointer to a 256 byte translation table.

 When used with Translate it will convert all upper case characters

 to lower case leaving all other characters unchanged.

 bits Uppercase

 This variable contains a pointer to a 256 byte translation table.

 When used with Translate it will convert all lower case characters

 to upper case leaving all other characters unchanged.

 The following program:

 begin

 string(256) Text;

 while

 begin

 Getcard(0, Text);

 ¬ Filemark

 end do

 begin

 Translate(Text, Lowercase);

 Putcard(1, Text)

 end

 end.

 would read in the file on stream zero, translate the text to lower case

 and output the result on stream one. The input text:

 @THREE @MEN IN A @BOAT,

 BY @JEROME @K. @JEROME

 would be output as:

 @three @men in a @boat,

 by @jerome @k. @jerome

 When writing programs which take command lines as input, it is good

 practice to allow any mixture of upper and lower case in the command

 verbs. This can be achieved by using Uppercase to translate the

 relevant string to uppercase before attempting recognition. An example

 of this has already been given earlier in this section in the Section "A

 Simple Command Scanner."

 320 Miscellaneous Topics

 MTS 16: ALGOL W in MTS

 September 1980

 ALGOL W PROGRAMMER’S GUIDE __________________________

 SYSTEM DESIGN PHILOSOPHY ________________________

 A single method of access is provided to the Algol W system. The

 behavior of the system may be modified by parameters given when the

 system is invoked or by control records submitted via the main source

 INPUT stream or by a mixture of both. However in the simple case where

 an Algol W source program is to be compiled and immediately executed

 once only, neither control records nor parameters are required.

 The Algol W system is reentrantly coded. When used it is augmented

 by a subroutine interface which provides communication between the

 system proper and the operating system in use. The property of

 reentrancy allows all simultaneous users of any part of the Algol W

 system to share the object code of the system, with a consequent

 reduction in the memory requirements of individual user tasks.

 ALGOL W IN MTS ______________

 The object of the Algol W system is loaded into storage automatically

 when Algol W is run. The Algol W system is available to users via an

 entry point name in the MTS low core symbol table LCSYMBOL or in

 *LIBRARY. User programs should not depend upon this name directly as it

 may change without notice. This entry point is used to load routines

 necessary for the execution of Algol W main programs and subroutines.

 The loading of these routines is done automatically by MTS and Algol W.

 Input/Output Stream Names _________________________

 Within Algol W there is a predefined set of 25 input/output stream

 names. These are the 5 named streams INPUT, PRINT, PUNCH, ERROR, and

 USER and the 20 numbered streams 0 to 19. The correspondence between

 these stream names and the MTS logical I/O units is as follows:

 Algol W Programmer’s Guide 321

 MTS 16: ALGOL W in MTS

 September 1980

 Algol W MTS logical

 Stream Name I/O Unit ___________ ________

 INPUT SCARDS

 PRINT SPRINT

 PUNCH SPUNCH

 ERROR SERCOM

 USER GUSER

 The Algol W stream numbers 0 to 19 correspond to the MTS logical I/O

 units 0 to 19.

 *ALGOLW _______

 The Algol W system is accessed in MTS via the public file *ALGOLW.

 $RUN *ALGOLW [I/O-assignments] [PAR=parameters]

 The <I/O-unit-assignments> should specify keyword parameters of the

 form:

 <unit>=<file-or-device-name>

 where <unit> is one of the 25 valid MTS logical I/O unit names.

 Compiler source input including control records is read in from SCARDS.

 Any compiler source listing output is written to SPRINT. Any object

 deck will be produced on SPUNCH. Algol W system diagnostic messages

 appear on SERCOM.

 Parameters to *ALGOLW are taken as parameters to be applied to the

 Algol W compiler within the system. They are fully described in the

 section "Compiler Parameters" later in this section.

 BASIC USE OF THE SYSTEM _______________________

 The Algol W system can be invoked in several ways to compile

 programs:

 (1) It can compile a supplied source program and immediately load

 and execute the object program produced.

 (2) It can compile a supplied source program to an object program

 which has a separate existence from the Algol W system.

 Normally this object deck as it is called, would be stored in a

 file until it is required. It can be run many times by loading

 it from the file.

 322 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 The following sections give a series of recipes for use of the Algol W

 system. These will satisfy the needs of most users. However many

 variations and extensions of these recipes are possible and a full

 description of system control records and parameters follows later in

 this section.

 The term "compile, load, and go mode," sometimes abbreviated to CLG,

 covers all use of the system in which successfully compiled programs are

 immediately executed.

 Compiling a source program to an object deck is sometimes referred to

 as "production" or "deck generation" use of a compiler. The term

 production mode will be used in this context in the rest of this

 section.

 The Compile, Load, and Go Default _________________________________

 If the Algol W system is invoked and no system control records

 (explained later) or $RUN parameters are given, then by default the

 system will compile a single source program and, if successful,

 immediately execute it. For example, if the following source deck is

 given to MTS:

 $RUN *ALGOLW

 begin

 for I := 1 until 10 do

 Write(I, I*I, I*I*I)

 end.

 $ENDFILE

 these source records will cause the embedded program source text to be

 compiled. Since the program is correct the compilation will be

 successful, the Algol W system will immediately load and execute the

 resulting object program. In this case it will tabulate the integer

 numbers 1 to 10 with their squares and cubes.

 With this simple method of processing Algol W programs, no data may

 be input from the INPUT stream (MTS SCARDS) since this requires use of

 control records. However input statements within the program may fetch

 data from any other input stream, either predefined or user defined. If

 a predefined stream is specified then the MTS unit assignment for that

 stream must be given with the $RUN command which invokes *ALGOLW.

 Example:

 Assuming that the file -DATA contains:

 2 3 4

 Algol W Programmer’s Guide 323

 MTS 16: ALGOL W in MTS

 September 1980

 then the following source text:

 $RUN *ALGOLW 3=-DATA

 begin

 integer A, B, C;

 Get(3, null, A, B, C);

 Write("Sum = ", A+B+C);

 Write("Product = ", A*B*C)

 end.

 $ENDFILE

 will compile, load, and execute the Algol W program contained within it.

 The Get statement will fetch three integer values from stream 3 in free

 format. Since stream 3 has been assigned to the scratch file -DATA, the

 variables A, B, and C will be assigned the values 2, 3, and 4,

 respectively and the program will output the sum and product of these

 numbers.

 Compile, Load, and Go using Control Records ___

 The Algol W system supports several control records. These are

 distinguished by a slash (/) in column one of the input record followed

 immediately by a sequence of characters which identify the particular

 record. Control records are only recognized when encountered in the

 INPUT stream (MTS SCARDS).

 In this section only two control records are discussed, /COMPILE and

 /EXECUTE.

 /COMPILE indicates that Algol W source text follows, that is a new

 program is to be compiled.

 /EXECUTE indicates the end of an Algol W program and completes

 compilation and loading of the program. It then initiates execution of

 the loaded program.

 If a program has already been loaded and executed by the effect of a

 /EXECUTE record then a further one will cause the program to commence

 execution again. This process may be repeated as many times as desired.

 Any data which the program will read from the INPUT stream should

 immediately follow the /EXECUTE record. If /EXECUTE or /COMPILE are

 encountered when input data is expected, then an end-of-file condition

 will be signalled to the executing program as many times as are

 necessary to cause it to complete execution. The control record which

 caused this action will then be obeyed.

 If a /COMPILE record is encountered while Algol W source text is

 being entered then the compilation of the program will be completed. If

 successful, the program is then loaded and executed with the proviso

 324 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 that no data may be entered from the INPUT stream. In any case, when

 either the compilation has failed or the program so compiled has

 completed execution, the /COMPILE record takes effect and causes the

 Algol W system to be reset so that a new program compilation is started.

 The implication of the above information is that, in one run of the

 Algol W system, one or many Algol W programs may be compiled and each

 program may be executed one or many times as desired.

 Example:

 $RUN *ALGOLW

 /COMPILE

 begin

 integer A, B;

 Read(A, B);

 Write("Sum = ", A+B);

 end.

 /EXECUTE

 2 2

 /EXECUTE

 -45 90

 /EXECUTE

 10 11

 $ENDFILE

 The above sequence compiles a single Algol W program. The first

 /EXECUTE record completes compilation, loads the program, then starts

 execution. The two numbers input by the Read statement are read from

 the next record in the INPUT stream. Since this is all the program

 requires, it will print the sum via the Write statement and execution

 will be terminated. The program remains loaded however, so that the two

 subsequent /EXECUTE records and the data lines associated with them

 cause the program to start execution again each time and act on the two

 different sets of data so supplied.

 So the general scheme for this simple use of control records is:

 $RUN *ALGOLW

 /COMPILE ──┐
 . |

 <source-program-statements> | Repeat

 . |

 /EXECUTE ──────────────┐ Repeat | zero or
 . | zero |

 [<optional-data>] | or more | more

 . ──────────────┘ times | times
 . ──┘
 $ENDFILE

 If, when the program expects to read data a /EXECUTE record is

 encountered instead, then end of file will be signalled to the executing

 program. Since the program in the example does not trap end of file

 Algol W Programmer’s Guide 325

 MTS 16: ALGOL W in MTS

 September 1980

 conditions, this would cause a fatal error and execution of the program

 would be terminated with the relevant error message being printed. The

 /EXECUTE then takes effect and causes execution to start afresh.

 If a /COMPILE record had been encountered when the program was

 executing and expecting data, the same fatal termination would have

 occurred. However, in this case, the program would have been unloaded

 and the system reinitialized ready for a new program. Subsequent input

 records which are not control records are taken as Algol W source

 program text and will be treated accordingly.

 Producing an Object Deck ________________________

 In production mode, an Algol W program is compiled to an object deck

 which has a separate existence outside the Algol W system. It would

 normally be kept in an MTS file. This object program may be run from

 the file as and when desired, provided that no change to the program

 logic is required. For large programs, or for programs which are to be

 run by many different users, it is more efficient to store the object

 program in a file than to compile the Algol W source text each time the

 program is run.

 Production mode is not the default when *ALGOLW is invoked. To

 override a compiler default, a compiler parameter must be specified.

 This may be done in several ways. In this overview only two ways need

 concern us:

 (1) they may be supplied as optional parameters on a /COMPILE

 record;

 (2) they may be supplied in the PAR= field of the MTS $RUN command

 which invokes *ALGOLW.

 If parameters given in the PAR= field conflict with parameters given on

 a /COMPILE record, that is they imply opposites, then the string in the

 PAR= field takes precedence. This overriding action of any parameters

 in the PAR= field is applied every time a /COMPILE record is encountered __________

 and processed. Control parameters on the latter normally indicate

 settings which are local to the next program compilation.

 The important parameter for production mode is DECK.

 DECK causes the Algol W system to compile any program supplied to it

 into an object deck. Once the compiler has started to compile a

 program, the mode of the Algol W system (either compile, load and go or

 production) is fixed for this invocation of *ALGOLW.

 For programs which are successfully compiled in production mode,

 object cards are output. If SPUNCH is assigned, then the object modules

 are written to the specified file or device. If, on the other hand,

 326 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 this stream is not assigned then the scratch file -AWLOAD is obtained,

 emptied and the object module written to it. Note that any previously

 existing information in this file is lost.

 If production mode compilation is normally required then it is wise

 to store the DECK parameter on a /COMPILE record in the file containing

 the Algol W source program text. This both saves typing and prevents

 accidental loading and execution of the program.

 Example:

 If the MTS file PROG.S contained:

 /COMPILE DECK

 begin

 integer A;

 A := 1;

 for I := 1 until 10 do

 A := A * I;

 Write("Product = ", I_W := 1, A);

 end.

 then this program would be compiled in production mode to an object deck

 simply by issuing the MTS command:

 $RUN *ALGOLW SCARDS=PROG.S

 The object module of such a program will be written to the file -AWLOAD.

 It can then either be saved in a permanent file or processed further by

 the object file editor, *OBJUTIL (see MTS Volume 5, System Services, for _______________

 a description of *OBJUTIL.

 Running Object Decks ____________________

 An Algol W object program contained in an MTS file is run in exactly

 the same way as any other object program by using the MTS $RUN command.

 Example:

 $RUN <object-program> [<I/O-unit-assignments>] [PAR=<run-parameters>]

 The <I/O-unit-assignments> should specify keyword parameters of the

 form:

 <unit>=<file-or-device-name>

 where <unit> is one of the 25 valid MTS logical I/O unit names. The

 keyword parameters set up the correspondence between input/output stream

 names used by the Algol W program and the file or device to which they

 are to be attached. The correspondence between Algol W internal stream

 Algol W Programmer’s Guide 327

 MTS 16: ALGOL W in MTS

 September 1980

 names and MTS logical I/O units has already been given in the Section

 "Input/Output Stream Names" earlier in this section. The program given

 in the previous section illustrated the compilation of an object deck

 into the scratch file -AWLOAD. This can be run as follows:

 $RUN -AWLOAD

 in which case the program will produce a single a line of output on the

 Algol W PRINT stream:

 Product = 3628800

 Alternatively the results of this program could be sent to a scratch

 file -PRINT by issuing the following MTS command:

 $RUN -AWLOAD SPRINT=-PRINT

 Any other program containing input/output statements specifying other

 streams can be run in a similar way.

 Note that no special processing takes place for records input via the

 Algol W stream INPUT (MTS SCARDS) when the program is run from an object

 deck in a file; that is, no control records are recognized during this

 mode of execution. If any are encountered, they will be passed to the

 executing program as data.

 If an Algol W program specifies external subroutines or precompiled

 Algol W procedures then the object or library file name specifying the

 location of those subroutines or procedures may be concatenated with the

 name of the Algol W object file name in the usual way.

 For example, an Algol W program stored in MTS file PLOTPROG and which

 invokes the MTS Integrated Graphics package, can be run in the following

 way:

 $RUN PLOTPROG+*IG

 Parameters supplied in the PAR field when an Algol W object deck is run

 are referred to as run-time parameters. These are a different set from

 those expected by *ALGOLW; they are described in the Section "Run-Time

 Parameters" later in this section. None of them are mandatory.

 Basic Compiler Parameters _________________________

 This section describes a small subset of the compiler parameters

 available. All parameters are described fully in the Section "Compiler

 Parameters" later in this section. DECK, which abbreviates to D, has

 already been described in the Section "Producing an Object Deck." It

 requests the production of an object deck.

 328 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 The parameters SLIST (abbreviation S) and NOSLIST (abbreviation NOS)

 provide basic control over the production of a source program listing.

 *ALGOLW will, by default when run in MTS batch mode, write a source

 listing to SPRINT. This can be suppressed by using the NOSLIST

 parameter.

 When run at a conversational terminal *ALGOLW will not produce a

 source program listing by default. If one is desired the parameter

 SLIST should be given. The compiler source listing would be written to

 SPRINT if that stream is explicitly assigned, that is, if SPRINT is the

 subject of an input unit assignment on the $RUN command which invokes

 *ALGOLW. If not, then the scratch file -AWLIST is obtained, emptied and

 used for the purpose. Any previously held information in this file will

 be lost.

 For large programs, it is often useful to have a cross reference

 listing of the identifiers used in the program. With *ALGOLW this can

 be produced by specifying XREF (abbreviation X) as a compiler parameter.

 Note however that a cross reference listing will only be produced if a

 source listing is also produced. The two listings are written to the

 same file or device, one immediately after the other with the source

 listing first.

 In numerical work, calculations on floating point quantities are

 often performed to the full 64-bit precision. This means declaring all

 floating point variables as ’long real’ or ’long complex’, remembering

 to specify the long precision versions of predeclared functions and

 appending a trailing ’L’ to each floating point constant. This task can

 be somewhat laborious. The parameter LONG can achieve all of this: it

 causes all floating point declarations and references to be taken as

 referring to 64-bit precision quantities.

 Building a Precompiled Procedure Library __

 Frequently procedures are compiled separately from a main program.

 This is done either because the main program is becoming so long that it

 is unwieldy, because several different main programs need to share a set

 of procedures, or so that programs written in languages other than Algol

 W (e.g., FORTRAN, Assembler) may call Algol W routines. The object code

 for several precompiled procedures may be stored conveniently in a

 private library in the user’s file space. They are then available on

 request without the overhead needed to compile them with each main

 program.

 When *ALGOLW is run in production mode, several precompiled proce-

 dures may be compiled to an object file from one invocation of the

 compiler system. The Algol W source text and control records should be

 arranged as follows:

 Algol W Programmer’s Guide 329

 MTS 16: ALGOL W in MTS

 September 1980

 /COMPILE DECK

 procedure One(......):

 begin

 end.

 /COMPILE

 procedure Two(......):

 begin

 end.

 /COMPILE

 procedure Three(......):

 begin

 end.

 Assuming this source was contained in the MTS file PROCSOURCE, all of

 the procedures can be compiled to the scratch file -AWLOAD by the single

 MTS command:

 $RUN *ALGOLW SCARDS=PROCSOURCE

 Note that the DECK parameter is necessary on the first /COMPILE record

 only. Once production mode is established by the compilation of the

 first procedure, the mode in which *ALGOLW runs cannot be changed and

 therefore the parameter need not be specified again. Procedure

 libraries are built or changed using the MTS object file editor program

 *OBJUTIL. The object modules of the procedures previously compiled into

 the scratch file -AWLOAD could be formatted into a library file PROCLIB

 using the following MTS command:

 $RUN *OBJUTIL SCARDS=-AWLOAD 0=PROCLIB PAR=LIBRARY

 Note that this command will set up a library in an empty file, add

 modules for new procedures to an existing library, or replace the object

 of existing precompiled procedures with new object modules for changed

 versions of these procedures.

 Object module libraries set up using *OBJUTIL contain special

 directory records recognized by the MTS loader, which then loads only

 the object code of those procedures referenced by a main program. This

 provides an efficient way of storing the object code for a set of

 precompiled procedures in a single file without the overhead of loading

 all of the object code every time the library is referenced.

 An Algol W main program or a program written in any language that

 uses the O/S Type I calling sequence (e.g., FORTRAN, Assembler) in an

 MTS file MAIN could reference procedures in a library PROCLIB simply by

 concatenating their names:

 $RUN MAIN+PROCLIB

 Full details of *OBJUTIL may be found in MTS Volume 5, System Services. _______________

 330 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 CONTROL OF THE SYSTEM _____________________

 This section gives full information on control of the Algol W system,

 that is *ALGOLW, through the use of control records. The control

 records available are:

 Control

 Record Function ______ ________

 /COMPILE enters compilation mode

 /EXECUTE starts program execution

 /EOF issues a ’soft’ end of file

 /STOP completes compile and execute step and exits system

 /COPY copies source text or data from a file

 /GLOBAL supplies global default parameters

 /LIST lists subsequent source text

 /NOLIST does not list subsequent source text

 /INDENT specifies the source listing indent level

 /NOINDENT suppresses source listing indentation

 /SPACE controls white space on the source listing

 /EJECT skips to a new listing page retaining title

 /TITLE skips to new listing page and changes the title

 /CMD issues a system command

 /EDIT invokes system editor

 /COMMENT comments the source deck

 /MESSAGE prints a line of text

 /FLUSH completes the compile and execute step

 /MONITOR not used at UM

 An end-of-file indication to *ALGOLW behaves in the same way as a /STOP

 control record.

 These control records are described in detail in the following

 sections, grouped according to the system context in which they apply.

 The control record identifiers may be abbreviated to their first

 three characters including the slash (/) except for three:

 /COMMENT /COMM

 /COMPILE /COMP

 /NOINDENT /NOI

 The control records /MONITOR and /FLUSH are valid during a normal run of

 *ALGOLW, but users would not normally be expected to use them.

 Algol W Programmer’s Guide 331

 MTS 16: ALGOL W in MTS

 September 1980

 System States _____________

 The Algol W system operates in three distinct states. All control

 records are valid at any time when entry from the INPUT stream is

 possible, regardless of the current state. The three states are:

 Compilation State

 Compilation state is the initial one when *ALGOLW is invoked. Once

 left it can only be reentered by a /COMPILE record. Any input

 record which is not a control record is assumed to be Algol W

 source text and will be sent to the compiler for processing. The

 following control records affect the format of any source program

 listing. While these are valid at all times, they are only

 operative in compilation state.

 /INDENT

 /LIST

 /NOINDENT

 /NOLIST

 /EJECT

 /SPACE

 /TITLE

 They are fully discussed in the Section "Compiler Source Listing

 Control" later in this section.

 Execution State

 During execution state a previously compiled program is being

 executed. If a read request is pending from the INPUT stream, then

 this is the result of the execution of an input statement from

 within the loaded object program. Any record other than a control

 record will be taken as data to the program and sent to the

 run-time support routines for processing. Any control record is

 valid at this point.

 Execution state is entered either as a result of an explicitly

 supplied /EXECUTE record or by one of the following control records

 causing the system to leave compilation state:

 /COMPILE

 /FLUSH

 /STOP (or end-of-file)

 However data may only be read from the INPUT stream by the loaded

 program if execution state was entered via an explicit /EXECUTE

 record. The other three enter execution state only if the program

 is successfully compiled and then only as a step in the progression

 to a different state. For this reason, if programs executing as a

 result of their action request input, the Algol W system always

 returns an end of file indication to the program.

 332 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 Dormant State

 The Algol W system is said to be dormant if a record other than a

 control record read from the INPUT stream would not be sent either

 to the compiler or the run-time support routines. In this state

 the system is expecting control records which are either state

 independent, for example /EDIT, or a /COMPILE record which would

 reenter compilation state, or a /EXECUTE record which would enter

 execution state. /COMPILE is always valid. /EXECUTE will only be

 obeyed if a loaded object program exists as a result of a previous

 compilation. If this is not true then a /EXECUTE cannot be obeyed

 and the system remains in dormant state.

 Compiler Source Listing Control _______________________________

 Compiler listings are produced under the overall control of the

 compiler parameters SLIST, NOSLIST, and FULLSLIST. These are fully

 described in the Section "Compiler Parameters" later in this section.

 If a compiler source listing is being produced then the following

 control records can change the format of the listing locally.

 /LIST and /NOLIST enable or disable the listing of subsequent

 compiler source text.

 /INDENT and /NOINDENT locally change the degree of automatic source

 text indentation for subsequent source input.

 /TITLE and /EJECT both cause the listing to skip to the head of the

 next printer page. /EJECT will not alter the current title setting

 displayed at the head of the listing. /TITLE sets or resets the title

 string in addition to the page skip.

 /SPACE leaves white space on the listing under the control of

 parameters supplied on the same record. As well as skipping a given

 number of blank lines on a listing, it may also be used to skip to the

 head of a new page if less than a specified number of lines remains on

 the current listing page.

 Full desriptions of these control records are given in the Section

 "System Control Records" later in this section.

 Including Source or Data from Other Files ___

 The /COPY control record takes a filename as its single parameter.

 When it is encountered in the INPUT stream, /COPY causes the Algol W

 system to suspend reading from that stream and fetch subsequent input

 Algol W Programmer’s Guide 333

 MTS 16: ALGOL W in MTS

 September 1980

 from the file name specified. When end-of-file is detected, the file is

 released and subsequent source input is fetched from the INPUT stream

 again. Since /COPY is valid at any time, this record may be used to

 include either program source text or data records requested from the

 INPUT stream.

 Currently /COPY requests may not be nested. Also, for reasons of

 clarity the main control records /COMPILE, /EXECUTE, /STOP, /EOF and

 /FLUSH are not valid in text supplied from a file name invoked by /COPY.

 When these control records are encountered in this way, a warning

 message is printed and they are ignored.

 /COPY may be indirectly specified in the form of a compiler parameter

 FILE, in which case the Algol W system is told to fetch a complete

 source program from the specified file. When end of file is detected

 for the included file, the system will attempt to compile and load the

 program. It will not initiate execution, rather it leaves the system in

 dormant state so that a subsequent /EXECUTE may start execution as and

 when desired.

 For example, the following /COMPILE record:

 /COMPILE FILE=PROG

 is exactly equivalent to the set of three records:

 /COMPILE

 /COPY PROG

 /EOF

 SYSTEM CONTROL RECORDS ______________________

 This section gives a complete alphabetical list and description of

 the 19 system control records recognized by the Algol W system. All

 control records start with a slash (/) character in column one, which is

 immediately followed by the record name. If the record has parameters

 these are always optional with the exception of /COPY. Parameters on

 control records are separated from the control record name and any other

 parameters by one or more spaces or by a comma.

 With the exception of /COMPILE, all parameters to a particular record

 must be included in the same input record as the name. /COMPILE may be

 continued across subsequent input records, each of which must start with

 slash-plus (/+) as the first two characters.

 334 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 /CMD [<system-command>]

 /CMD is used to pass system commands to the operating system. Any

 sequence of characters given as a parameter on a /CMD record is

 passed to the operating system for processing. For example in MTS:

 /CMD CREATE DATA001 SIZE=5P

 would cause the command to be passed to MTS to create the file

 DATA001.

 Note that any MTS command may be given on a /CMD record but that

 the following five:

 $RUN $RERUN

 $DEBUG $UNLOAD

 $SIGNOFF

 since these will cause the Algol W system to be unloaded.

 /COMMENT [<any-text>]

 /COMMENT is provided to allow the documentation of card decks.

 This control record is otherwise ignored.

 Example:

 /COMMENT TEXT OF THE FIRST PRECOMPILED PROCEDURE

 If this record is encountered in the source INPUT stream then it is

 ignored: the system will prompt immediately for another record.

 /COMPILE [<compiler-parameters>]

 This control record causes the system to enter compilation state

 where any subsequent records which are not control records will be

 assumed to be Algol W source text and passed to the compiler

 accordingly. Its action proceeds in the following order.

 (1) Any Algol W program which is currently being entered is ended

 and the compilation phase completed. If the compilation is

 successful and the system is in compile, load and go mode,

 then:

 (a) The program is loaded.

 (b) If successfully loaded, execution state is entered with

 the proviso that any request for data from the INPUT

 stream will cause an end of file to be returned.

 (2) The compiler system is reset to the default parameter settings

 extant on initial entry to the system.

 Algol W Programmer’s Guide 335

 MTS 16: ALGOL W in MTS

 September 1980

 (3) Any compiler parameters which have been stored as a result of

 a previously encountered /GLOBAL record are processed. This

 may have the effect of changing the defaults.

 (4) Any parameters on the /COMPILE control record are processed.

 This will change the local default settings.

 (5) Providing that no FILE= parameter is present, the system will

 prompt for more input from the INPUT stream. Continuation

 records for the /COMPILE are read while the first two

 characters of subsequent records are /+. Parameters present

 on these continuation records are processed as the records are

 encountered.

 (6) When a record has been encountered which is neither a

 continuation record nor one of the control records /CMD,

 /COMMENT, /EDIT or /MESSAGE, any parameters which have been

 given in the PAR= field of the MTS $RUN command are then

 processed. These parameters are processed every time a

 /COMPILE record is encountered so that they override the

 defaults and local settings for each compilation during the

 current invocation of the Algol W system.

 (7) Compilation state is now entered. Subsequent records which

 are not control records are passed to the compiler as Algol W

 source text. Subsequent control records are obeyed as

 necessary.

 The control records /COMPILE, /EOF, /EXECUTE, /FLUSH, and /STOP or

 a physical end-of-file will cause an exit from compilation state.

 Note that /COMPILE is not required as an initial record unless

 parameters are needed. The Algol W system is placed in compilation

 state when it is invoked.

 If there are more compiler parameters than will conveniently fit on

 a single /COMPILE record, the additional parameters may be given on

 continuation records with a slash (/) in column one and a plus (+)

 in column two. For example:

 /COMPILE SIZE=120K, SLIST=WHIZBANG.L, XREF

 /+ DECK=WHIZBANG.O

 /+ RUNPARM=(SIZE=96K, DATAPARM, NOCC)

 The compiler and run-time parameters used in the above example are

 documented later in this section.

 336 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 /COPY <file-or-device-name>

 /COPY causes the Algol W system to switch its main input stream to

 the specified file or device. Subsequent input records are taken

 from that file or device until end-of-file is detected, when it is

 released. Subsequent input comes from the main INPUT stream again.

 Example:

 /COMPILE

 /COPY W701:PROG

 /EXECUTE

 /COPY W701:DATA

 /STOP

 These control records compile the program whose source text is held

 in the file W701:PROG and then execute it supplying data from the

 file W701:DATA.

 Note however that program text could also be supplied using the

 FILE= compiler parameter described later.

 /COPY is intended to provide program source text or data to the

 Algol W system. It is not intended to supply an alternative main

 INPUT stream to control the system. For this reason certain

 control records are ignored, although a warning message is printed,

 when they are encountered in a file named on a previous /COPY

 control record. When a nested /COPY record is encountered a

 warning message is printed and control returns to the main INPUT

 stream after releasing the file or device.

 For a discussion of /COPY operation see the previous Section

 "Including Source or Data from Other Files."

 /EDIT [<file-name>] [:<edit-command>]

 /EDIT invokes the system file editor. If no parameters are given

 editor command mode is entered exactly as if $EDIT had been issued

 from MTS command mode. /EDIT may also take a filename and a single

 edit command as its parameters in the same way as the $EDIT

 command. Note that the colon (:) specifying the start of an

 editor command is not necessary if an edit filename has been given

 on the same record.

 Example:

 /EDIT PROG.S

 This control record will cause edit mode to be entered with the

 file PROG.S as the editor file. Subsequent input will expect edit

 commands until the editor terminates normally via an MTS, RETURN or

 STOP editor command or an end-of-file indication. When such editor

 Algol W Programmer’s Guide 337

 MTS 16: ALGOL W in MTS

 September 1980

 termination occurs, the Algol W system will be in exactly the same

 state as it was in when the /EDIT was encountered.

 Example:

 /EDIT PROG.S PRINT 352 C=8

 This is an example of a one shot editor command. In this case it

 would print 8 lines of the file PROG.S starting with line 352.

 When this editor command has been executed, the editor returns

 control immediately to the Algol W system. Editor command mode is

 not entered.

 For a full description of the MTS $EDIT subsystem consult MTS

 Volume 1, The Michigan Terminal System. ____________________________

 /EJECT

 /EJECT causes subsequent source text to be listed on a new printed

 page within the source listing. The title string which appears at

 the head of each page remains unaltered.

 It may be preferable to use the conditional page skip mechanism

 described later under /SPACE as this will generally waste less

 paper while still retaining tidy output.

 /EOF

 /EOF supplies an end-of-file indication to the Algol W system, that

 is it signals end-of-file to the state currently in control but

 does not cause the Algol W system to terminate. If the system is

 dormant, end-of-file has no effect.

 If the system is in compilation state, /EOF sends an end-of-file

 signal to the compiler indicating that no more program source text

 follows and that compilation of the program previously entered

 should be completed. If this compilation is successful, the object

 program will be loaded. The system is then put into dormant state.

 A subsequent /EXECUTE control record could then initiate execution

 of the loaded program.

 If the system is in execution state, an end-of-file indication is

 sent to the run-time support routines. How this is dealt with

 depends on the coding of the Algol W program being run. For

 instance, if the input request was made from a Read call and no

 assignment had been made to the predeclared Endfile reference, then

 execution of a loaded program would terminate with a fatal run

 error message. On the other hand, if the program trapped end-of-

 file conditions, then the effect would be under the control of the

 relevant program logic.

 Note that /EOF is the only way to signal end-of-file to an

 executing program in compile, load and go mode which will leave the

 338 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 system in dormant state with the program still loaded so that a

 subsequent /EXECUTE may restart execution.

 /EXECUTE [<run-time-parameters>]

 This control record causes the system to enter execution state

 where subsequent records which are not control records will be

 assumed to be data read by the executing program from the INPUT

 stream. Its action proceeds in the following order:

 (1) Any Algol W source program which is currently being entered is

 ended and the compilation phase completed. If compilation is

 successful the object program is loaded in compile, load and

 go mode.

 (2) If a loaded object program exists, execution is started. The

 system will now be in execution state.

 (3) If no loaded object program exists then an error message is

 printed and the system is put into dormant state.

 If a program is to be executed in compile, load and go mode and

 that program is to read data from the main INPUT stream, execution

 must be started by a /EXECUTE record because this is the only way

 to enter execution state in such a way that input requests prompt

 for data rather than returning end of file.

 Any characters appearing after /EXECUTE on the record are taken to

 be run-time parameters and are sent to the run-time support

 routines for processing when the program is started. These

 parameters are equivalent to those supplied via the PAR= field when

 the Algol W object program is run from a file. They are described

 in the Section "Run-Time Parameters" later in this section.

 /FLUSH

 /FLUSH is not used at UM but is documented here for completeness.

 Its purpose is to put the system into dormant state with no loaded

 program available but, in route, it will complete all possible

 stages of compilation, loading and execution. It will:

 (1) complete compilation of any partially entered program;

 (2) load the program if compilation was successful;

 (3) if a loaded program exists, which has not yet been executed,

 and the system is not in dormant state, it will start

 execution;

 (4) if the program prompts for data, it will supply an end of file

 indication until execution terminates for this or any other

 reason, such as the time estimate exceeded;

 Algol W Programmer’s Guide 339

 MTS 16: ALGOL W in MTS

 September 1980

 (5) it will then unload the program.

 After a /FLUSH record has been processed the system is effectively

 brought up to date. All output for the previous program has

 appeared and no further Algol W processing can take place until a

 subsequent /COMPILE record reenters compilation state. /FLUSH is

 therefore provided to allow resource scheduling systems to separate

 the output from a stream of individual jobs supplied to the system.

 /GLOBAL [<compiler-parameters>]

 This control record allows a user to change the default settings of

 compiler parameters in such a way that they may be locally

 overridden by parameters from a /COMPILE record. Compilation

 parameters are processed in the following order:

 (1) parameters from the /GLOBAL record;

 (2) parameters from a /COMPILE record and any of its

 continuations;

 (3) parameters from the PAR= field of the $RUN command which

 invoked the system.

 Example:

 /GLOBAL SLIST,XREF

 This record indicates that any subsequent compilations should

 produce a compiler source listing and identifier cross reference

 table unless otherwise overridden. The record:

 /COMPILE NOXREF

 would locally suppress the identifier cross reference for this

 particular compilation. SLIST would still cause a compiler source

 listing to be produced unless otherwise overridden by any PAR=

 field parameters.

 If a /GLOBAL record has no parameters, any previously held global

 parameters are deleted. The /GLOBAL parameters which are in effect

 are only those from the last /GLOBAL record: the effect is not

 additive. If no /GLOBAL record has been encountered then no global

 parameters exist.

 /INDENT [<indent-step>]

 /INDENT sets the automatic indentation level on the compiler source

 listing for subsequently encountered source text. If <indent-step>

 is not specified it defaults to 3.

 Only unsigned integers are valid. Any value greater than 5 is

 treated as though it was 5. When source text is indented on the

 340 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 listing, the number of spaces by which it is indented is determined

 by multiplying the current block level, that is the ’begin’-’end’

 depth, by the current <indent-step>. If the value so determined

 exceeds 32, it is taken as 32.

 Example:

 /INDENT,5

 This sets the <indent-step> to be 5 spaces per block level in

 subsequent source text.

 /LIST

 If the compiler parameter NOSLIST is in effect then /LIST is

 ignored. NOSLIST is the default at a terminal. If a compiler

 source listing is being produced but the listing of source text has

 been temporarily suppressed by a /NOLIST record (see later), then

 the /LIST causes subsequent source text to be listed again.

 /LIST and /NOLIST can be used together to suppress those parts of a

 source program listing in which the user is not currently

 interested, in order to save both time and paper.

 /MESSAGE [<any-text>]

 This record is a printing version of /COMMENT. If any text appears

 on the record, it is printed on SERCOM; otherwise a blank line is

 printed.

 Example:

 /COMPILE

 /MESSAGE Gaussian Elimination Program

 begin

 .

 .

 .

 end.

 /STOP

 In this example the /MESSAGE record causes the character string

 "Gaussian Elimination Program" to be printed on SERCOM. Such

 records provide a means of verifying the program being compiled or

 of following the progress of a long compilation where several

 procedures are being compiled in one run.

 /MONITOR

 This record is provided to allow system programmers to implement

 student batch monitor systems. It is documented here for

 completeness.

 Algol W Programmer’s Guide 341

 MTS 16: ALGOL W in MTS

 September 1980

 /NOINDENT

 This record is equivalent in action to:

 /INDENT,0

 It suppresses automatic indentation of subsequent program text on

 the compiler source listing.

 /NOLIST

 If the compiler parameter FULLSLIST is in effect then this record

 is ignored. If a compiler source listing is being produced then a

 /NOLIST record will disable subsequent listing of source program

 text. This may be left disabled until the end of the program or it

 may be reenabled by a subsequent /LIST record.

 /SPACE [<lines> [<remainder>]]

 /SPACE produces white space on the compiler source listing. It can

 be used to separate procedures or other groups of source program

 text in order to improve the readability of the source program

 listing.

 If /SPACE is given with no parameters then one blank line is left

 on the source listing.

 If /SPACE is given with a single parameter, this should be an

 unsigned integer between 1 and 20. It specifies the number of

 lines of white space to leave on the listing. If less than this

 number of lines remain on the page, a new page is forced exactly as

 if a /EJECT record had been encountered. If more than 20 lines is

 specified then the number is taken as 20.

 If two parameters are given on a /SPACE record, the first is the

 number of lines as just described. The second is an unsigned

 integer between 1 and 20 which specifies the number of lines which

 should remain on the page after the /SPACE record has been obeyed.

 Otherwise a new page is forced, again exactly as if /EJECT had been

 encountered. This could be used to keep a number of lines of text

 together on the same listing page.

 Examples:

 /SPACE 3

 This causes a skip of three lines on the listing.

 /SPACE 4,10

 This will skip four lines and if less than 10 lines then remain on

 the current listing page it will start a new one. If a /SPACE

 command of this form was inserted before every procedure declara-

 342 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 tion then this would ensure that every procedure was separated by 4

 lines from the previous program text and also that the procedure

 heading and body were not separated by a compiler listing page

 boundary, thereby improving readability.

 /STOP

 The purpose of /STOP is to return control to the system which

 invoked Algol W - usually MTS. In route it will complete all

 possible stages of compilation, loading and execution. It will:

 (1) complete compilation of any partially entered program.

 (2) Load the program if compilation was successful in compile,

 load and go mode.

 (3) If a loaded program exists, which has not yet been executed,

 and the system is not in dormant state, it will start

 execution.

 (4) If the program prompts for data, it will supply an end-of-file

 indication until execution terminates for this or any other

 reason such as the time estimate exceeded.

 (5) It will then unload the program.

 (6) It releases all storage and files acquired by the Algol W

 system and returns to the caller, normally MTS.

 /TITLE [<title-string>]

 If a source program listing is being produced, /TITLE causes a new

 page to be forced as would /EJECT. It will also set or reset the

 title string which appears in the center of the first printed line

 on each listing page.

 If no parameter is given with /TITLE, the title string is reset to

 blank. If a parameter is given, it should be a string entered in

 the same format as that required for free format string input to an

 executing program, that is a group of characters delimited either

 by quotes (") or primes (’) or a single group of characters

 containing no primes, quotes, spaces or commas. This string

 becomes the new title string and appears on the first line of each

 listing page until such time as any subsequent /TITLE resets it.

 An end-of-file indication to the system at any time when a control

 record is expected is processed exactly as if /STOP had been entered and

 will therefore cause system termination.

 Algol W Programmer’s Guide 343

 MTS 16: ALGOL W in MTS

 September 1980

 COMPILER PARAMETERS ___________________

 Compiler parameters may be specified in three ways:

 (1) on a /GLOBAL record,

 (2) on a /COMPILE record, and

 (3) as the PAR= field of the $RUN command which invokes *ALGOLW.

 When a particular control record is encountered, parameters are

 scanned in the above order with evaluation taking place from left to

 right if more than one parameter is given in any particular location.

 Compiler parameters take either of the following forms:

 <keyword>

 <keyword>=<expression>

 Keywords may normally be abbreviated down to a minimum of three

 characters if there is more than this number of characters in the word.

 In certain cases shorter abbreviations are allowed. For each keyword

 described, the minimum abbreviation is shown by underlining a part of

 the keyword. Any abbreviation from this limit up to the full keyword is

 acceptable.

 A full description of each of the available compiler parameters is

 given in the following sections. The parameters are grouped into

 logically related sets.

 Selecting Object Deck or Compile, Load, and Go Mode ___

 By default the Algol W system will compile and execute any source

 program which is supplied to it. This state is called compile, load and

 go mode. If an object deck is required, this must be specified by

 parameters which are as follows:

 DECK | DECK=<filename> | EXECUTE Default: EXECUTE _ _ _

 DECK specifies that an object deck is to be generated. If SPUNCH

 is explicitly assigned then the object module will be written to

 the attached file or device. Otherwise the scratch file -AWLOAD is

 obtained, emptied and used for this purpose.

 If the second form is given, then <filename> is emptied and the

 object modules are written to it.

 EXECUTE specifies the default case where object modules are not

 written out but are instead directly loaded in compile, load and go

 mode. This parameter can be used from the PAR= field to override a

 DECK parameter given on a /COMPILE or a /GLOBAL record.

 344 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 Note that once a decision has been made to either generate an object

 deck or execute the first program supplied to *ALGOLW, this mode stays

 in effect for future compilations during this run. DECK or EXECUTE

 parameters for the second and subsequent programs are therefore ignored.

 Examples:

 If an object deck is normally desired for a particular Algol W source

 program then the following record should be the first in the source

 file:

 /COMPILE DECK

 If the object file for a particular program, which is stored in the file

 PGM.S, is always required in a file PGM.O then the first record of file

 PGM.S should be:

 /COMPILE DECK=PGM.O

 This ensures that file PGM.O is emptied before each recompilation writes

 a new object module to the file and this avoids problems which can occur

 if a subsequent version of a program produces a slightly smaller object

 deck than the previous compilation.

 If a compilation fails in pass one or two, so that no object cards

 are produced at all, then an object file, whether implied by default or

 explicitly specified by a DECK=<filename> parameter, will be left

 unchanged. The file is not emptied until the first object record is

 ready to be written to it.

 Source Listing Control ______________________

 By default Algol W will produce a compiler source listing in batch

 mode but not if run at a terminal. This default can be overridden or

 the form of the listing altered by the parameters given below:

 SLIST | SLIST=<filename> | SLIST=* | _ _ _

 FULLSLIST | FULLSLIST=<filename> | FULLSLIST=* | ___ ___ ___

 NOSLIST Default: see text ___

 SLIST specifies that a source listing is to be produced. This is

 the default in batch. At a terminal, NOSLIST is the default so in

 order to produce a source listing SLIST must be specified. If

 SPRINT is explicitly assigned then the source listing is written to

 the attached file or device. Otherwise the scratch file -AWLIST is

 obtained, emptied and used for this purpose.

 Algol W Programmer’s Guide 345

 MTS 16: ALGOL W in MTS

 September 1980

 SLIST=<filename> specifies that a source listing is to be produced

 and written to <filename> which will be emptied before use. An

 explicit assignment to SPRINT will, however, cause the listing to

 be written to that stream rather than the designated file.

 SLIST=* specifies that the source listing is to be written to

 SPRINT regardless of whether the stream has been explicitly

 assigned or left to default by the system. This option can be used

 to force a source listing out onto the terminal.

 The three options of FULLSLIST work in the same way as those for

 SLIST but additionally /NOLIST records encountered in the source

 will be ignored. This keyword can be used to ensure that the

 listing produced is complete.

 NOSLIST is the default at a terminal and suppresses the compiler

 source listing completely. Any /LIST control records encountered

 in the source program are ignored.

 XREF | NOXREF Default: NOXREF _ ___

 XREF specifies that a cross reference listing of the identifiers

 used in the Algol W source program is to be appended to the source

 program listing. A cross reference listing will only be produced

 if a source listing has already been printed. If this is not true

 the XREF parameter will be ignored.

 NOXREF suppresses the production of an identifier cross reference

 listing.

 LINECNT=<integer> Default: LINECNT=60 ___

 This parameter specifies the number of lines per page to be assumed

 by the Algol W system when a compiler source listing is produced.

 The default of 60 defines a normal printer page. A minimum of 25

 and a maximum of 100 lines is enforced.

 INDENT | INDENT=<indent-step> | NOINDENT Default: NOINDENT ___ ___ ___

 INDENT specifies the level by which source text will be indented to

 the right on a compiler source listing. <indent-step> may be an

 unsigned integer between 0 and 5: if it is not specified it

 defaults to 3.

 Source text is indented on the listing by a number of spaces

 calculated by multiplying the current indent step by the current

 level of ’begin’-’end’ nesting. For instance source text at the

 fourth block level with an indent step of 5 spaces per block level

 will be indented 20 spaces to the right. If the indent so

 calculated is greater then 32 spaces, 32 spaces are used. Any

 manual indentation will be preserved in addition to the

 auto-indentation.

 346 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 NOINDENT suppresses automatic text indentation. It is equivalent

 to a specification of INDENT=0.

 NUMBER | NONUMBER Default: NUMBER ___ ___

 NUMBER, which is the default, specifies that source file line

 numbers are to appear on the compiler source listing. They are

 printed to the left of the source program co-ordinates.

 NONUMBER suppresses printing of these line numbers.

 PSKIP | NOPSKIP Default: PSKIP ___ ___

 PSKIP causes a blank line to be produced on the compiler source

 listing before each procedure heading. It therefore separates a

 group of procedures on the listing.

 NOPSKIP suppresses automatic procedure separation on the source

 listing.

 The remaining parameters in this section control automatic translation

 of source text as it is copied to the source listing.

 TRIDENTIFIER=<keyword> Default: TRIDENTIFIER=OFF ___

 This parameter controls translation of the identifier names in the

 source program for display in the source program listing. <key-

 word> is one of the following:

 (1) OFF

 This is the default action.

 No translation is done. Identifiers appear on the listing in

 the form in which they exist in the source program text.

 (2) LOWERCASE or LC ___

 Identifiers are translated to lower case for display in the

 the source listing.

 (3) UPPERCASE or UC ___

 Identifiers are translated to upper case for display in the

 source listing.

 (4) MIXEDCASE or MC ___

 Identifiers are translated to lower case, with the exception

 that the first character and any character immediately follow-

 ing an underscore character (_) are translated to upper case.

 For example, SUM_OF_SQUARES appears as Sum_Of_Squares.

 Algol W Programmer’s Guide 347

 MTS 16: ALGOL W in MTS

 September 1980

 TRRESERVED=<keyword> Default: TRRESERVED=OFF ___

 This parameter controls translation of the reserved words in the

 source program for display in the source program listing. <key-

 word> is one of the following:

 OFF | LOWERCASE | LC | UPPERCASE | LC | MIXEDCASE | MC ___ ___ ___

 These keywords control the translation of reserved words in the

 same way as the keywords of parameter TRIDENTIFIER control that of

 identifier names. The MIXEDCASE option capitalizes only the first

 character as no reserved words contain the underscore character

 (_). The default is to do no translation.

 ULRESERVED={ON|OFF} Default: ULRESERVED=OFF ___

 This parameter controls underlining of reserved words when display-

 ed in the source program listing. Use of this option will cause

 records with the ANSI overstrike carriage control character (+) to

 be included in the source listing file. To be effective the device

 selected to print the source listing must be capable of overstrik-

 ing such lines. All IBM 1403 compatible line printers satisfy this

 requirement.

 TRLITERAL={OFF|UPPERCASE|UC} Default: TRLITERAL=UC ___ ___

 This keyword controls translation of certain characters in con-

 stants when displayed on the source listing. Note: string

 constants are never translated. If the UPPERCASE option is in _____

 effect:

 (1) In long precision floating point constants, the trailing "L"

 is capitalized.

 (2) In imaginary constants the trailing "I" is capitalized.

 (3) In bits constants the hexadecimal digits "A" - "F" are

 capitalized.

 UC is an alternative to UPPERCASE.

 TRCOMMENT={OFF|LOWERCASE|LC} Default: TRCOMMENT=OFF ___ ___

 This keyword controls translation of text within comments. If

 LOWERCASE or LC is specified, all comment text is displayed in

 lower case on the listing. While easy to specify, this is a rather

 lazy way to format comments. Better readability will be obtained

 if the comments are typed in mixed case, leaving TRCOMMENT to

 default OFF.

 It should be noted that several system control records provide certain

 of these functions on a local basis within program source text. These

 are discussed in the previous Section "Compiler Source Listing Control."

 348 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 Compiler Control ________________

 These parameters control the basic action of the compiler during

 compilation but exclude those concerned with source listing control or

 object deck generation.

 SIZE=<integer>[{K|P}] Default: SIZE=16P ___

 This parameter specifies the amount of main storage which will be

 available to the compiler during any particular compilation step.

 SIZE is specified as a number of bytes of storage. Optional scale

 factors of K (kilobytes, value 1024) or P (pages, value 4096) may

 be applied to the integer. A minimum of 6P and a maximum of 256P

 (one segment) are currently enforced. The default value of 16P

 (65536 bytes) is sufficient for moderately large source programs up

 to about 1000 statements.

 Example:

 /COMPILE SIZE=60P

 If a program requires more than the default storage for its

 compilation, it is wise to include the size on a /COMPILE record

 with the source text.

 In compile, load and go mode, storage used during compilation is

 used again by the loaded program. The maximum amount of storage

 available for data and record storage at one time is determined by

 the size of the compiler working storage less the size of the

 compiled program.

 FILE=<filename> _

 FILE can be used on a /COMPILE record to specify a filename

 containing source program text to be compiled. The file specified

 should contain the entire program. The FILE parameter switches the

 compiler INPUT stream to read from this file. Subsequent source

 records are fetched by the Algol W system until end of file is

 detected. Then an end of file indication is sent to the compiler

 itself which causes it to complete the compilation of the program,

 leaving the system in dormant state.

 Example:

 Consider a source program stored in the file MYPGM.S.

 /COMPILE FILE=MYPGM.S

 The /COMPILE record is all that is required to compile this

 program, although, of course, other parameters may be specified as

 desired. The above /COMPILE record is equivalent to:

 Algol W Programmer’s Guide 349

 MTS 16: ALGOL W in MTS

 September 1980

 /COMPILE

 /COPY MYPGM.S

 /EOF

 It is in fact implemented in this way, so that the restrictions on

 control records which apply to a file included by a /COPY control

 record also apply to one included via a FILE parameter.

 TERSE | VERBOSE Default: VERBOSE ___ ___

 By default, VERBOSE operation will print all error messages and

 warnings produced by the compiler. Also, pass one errors do not

 suppress further checking by pass two of the compiler. This

 default action can sometimes produce an exceptional number of error

 messages but the additional information may well be of use to an

 inexperienced Algol W programmer.

 The TERSE parameter is provided for expert users who require only

 to be led to the site of an error rather than being given an

 extensive diagnostic appraisal of it. When TERSE is specified the

 following changes to the compiler behavior take place:

 (1) Fatal, that is nonwarning, error messages in pass one termi-

 nate compilation at the end of that pass. (VERBOSE operation

 would cease at the end of pass two.)

 (2) While all warning messages are printed, (subject to (3) and

 (4)), only one actual error message is printed for each source

 program co-ordinate at which an error is detected.

 (3) A warning message is printed for only the first name parameter

 encountered rather than for each one in the program.

 (4) A warning message is printed for only the first goto statement

 encountered rather than for each one found.

 ECHO | NOECHO Default: see text ___ ___

 ECHO is the default when running at a terminal. If ECHO is in

 effect, Algol W keeps a compressed form of source listing in

 virtual memory during a compilation. If a compiler error is

 detected in either pass one, two or three, this listing is

 interrogated to provide the lines of source listing nearest to the

 error.

 The echoed source listing text is printed immediately before the

 error message. If more than one error message applies to a

 particular source program co-ordinate, the text will only be echoed

 once, before the first error message for that co-ordinate. A

 maximum of eight lines of source text will be echoed for a

 particular source co-ordinate. If a co-ordinate extends over more

 than eight lines, a warning message is printed after the eighth and

 the remainder of the source is suppressed.

 350 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 NOECHO is the default in batch. When it is in effect no compressed

 listing is retained and therefore no source text is printed with

 the error messages.

 Control of Program Loading __________________________

 This section describes compiler parameters which exercise control

 over the loading of object programs. These are mainly concerned with

 compile, load and go mode but the LIBSEARCH parameter applies to

 production mode as well.

 LIBSEARCH=<filename> ___

 Algol W source programs may specify externally defined precompiled

 procedures or subroutines. The LIBSEARCH parameter allows the

 specification of an object file containing the object modules for

 these routines.

 In compile, load and go mode the filenames specified are searched

 by the system loader to resolve undefined symbols. When an object

 deck is being generated, a record containing:

 $CONTINUE WITH <filename> RETURN

 is written as the last record of the object file. This allows the

 MTS loader to find the object for the external routines when the

 program is subsequently run.

 Example:

 /COMPILE DECK, LIBSEARCH=MYLIB+*IG

 This /COMPILE record causes an object deck to be generated with a

 reference to the two library files MYLIB and *IG in the last

 record. Any reference to subroutines in these libraries will then

 be resolved by the MTS loader. This means that the program can be

 invoked merely by typing:

 $RUN <object>

 instead of:

 $RUN <object>+MYLIB+*IG

 Storing library filenames with the program source text is good

 practice because it saves typing and eliminates the risk of

 forgetting to specify library filenames, which would be an irrecov-

 erable error in a batch job.

 Algol W Programmer’s Guide 351

 MTS 16: ALGOL W in MTS

 September 1980

 MAP | NOMAP Default: NOMAP ___ ___

 This parameter only applies in compile, load and go mode. If MAP

 is specified, a loader map of the object program is produced by the

 Algol W loader. If LIBSEARCH has also been specified, an MTS map

 will precede the Algol W map.

 NOMAP suppresses printing of the loader map.

 PROMPT | NOPROMPT Default: PROMPT ___ ____

 This parameter only applies in compile, load and go mode when

 running at a terminal. PROMPT specifies that, if external

 references are not locatable in any supplied library files (spe-

 cifed by LIBSEARCH), the MTS loader should prompt the user for

 filenames from which the missing references may be resolved.

 NOPROMPT suppresses this action: program execution will terminate

 with an Algol W loader error message.

 If the word CANCEL is given as a reply to an MTS loader prompt, the

 Algol W system will continue as if NOPROMPT had been specified.

 When a program is being run conversationally from stored object in

 a file, MTS will always prompt for the location of missing

 references.

 Object Program Attributes _________________________

 The following compiler parameters specify attributes of the compiled

 object program.

 LONG | SHORT Default: SHORT ___ ___

 In many numerical applications all floating point calculations are

 performed to 64-bit precision: for example, in a program which

 calls routines in the NAAS library, since all NAAS subroutines work

 to 64 bit precision. In such a program a user would have to be

 extremely careful to ensure all declarations, constants and func-

 tions specified the relevant long real and long complex forms.

 The LONG compiler parameter makes this operation simple and safe.

 If it is in effect the following actions are taken:

 (1) All declarations of type real are converted to type long real.

 (2) All declarations of type complex are converted to type long

 complex.

 352 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 (3) All real constants are converted to the relevant long real

 constants. For instance 1.234 becomes 1.234L.

 (4) All imaginary constants are converted to the relevant long

 imaginary form. For instance 5I becomes 5IL.

 (5) All references to floating point predeclared functions which

 specify the short form, generate references to the long form,

 for instance Sin refers to Longsin.

 (6) Any references to the predeclared real variable Epsilon

 generate references to the alternative long real predeclared

 variable Longepsilon.

 (7) All variables, constants and functions in the program which

 are already long real or long complex remain unchanged.

 Once again, if it is essential for the correct operation of the

 program that the LONG parameter be specified, it should be stored

 with the program source text on a /COMPILE record.

 SHORT, which is the default, will compile the program as it is

 entered. Only those variables, constants and functions which

 explicitly specify the long real or long complex forms will be

 compiled to use 64-bit precision.

 RUNPARM= | RUNPARM=<run-parameter> | ___ ___

 RUNPARM=(<run-parameter-list>) Default: RUNPARM= ___

 When an object program starts to execute, certain attributes of the

 running program may be set via run-time parameters. These are

 fully described in the Section "Run-Time Parameters" later in this

 section. Run-time parameters may be specified in two ways: either

 by an explicitly specified group of parameters given with the

 instruction which runs the program (either $RUN or /EXECUTE) or by

 using the RUNPARM compiler parameter. When such parameters are

 specified by a RUNPARM compiler parameter they are processed before

 those from a $RUN or a /EXECUTE record. They therefore provide a

 method of changing the default settings of these run-time

 parameters.

 RUNPARM may be specified in three ways. If a single parameter is

 being provided then it is given as the right hand side of the

 RUNPARM specification.

 RUNPARM=SIZE=80K

 If several parameters are to be supplied, they should all be given

 in a single RUNPARM specification enclosed in parentheses.

 RUN=(SIZE=160K, DATAPARM)

 Algol W Programmer’s Guide 353

 MTS 16: ALGOL W in MTS

 September 1980

 Note that the characters within the parentheses take the same form

 as an explicitly supplied $RUN parameter string.

 To suppress completely a previously supplied RUNPARM string a null

 RUNPARM parameter should be given.

 RUNPARM=

 This is the default.

 Note that the RUNPARM string so supplied will be stored in the

 object deck of the compiled program. The stored string is that

 which was given in the last RUNPARM directive encountered: the

 effect is not additive.

 Execution Resource Control __________________________

 The following compiler parameters apply only in compile, load and go

 mode. They are equivalent to run-time parameters which perform the same

 tasks.

 ETIME=<number>[{S|M}] | TIME=<integer>[{S|M}] __ _

 Default: see text

 When a program executes in compile, load, and go mode, a limit may

 be set on the total cpu time which may be used by the program. The

 time limit is determined as follows:

 (1) If a limit is set by the run-time ETIME parameter then this is

 used.

 (2) If no run-time limit is subsequently set, but a compiler ETIME

 parameter specifies one, then this time is used. The run-time

 parameter overrides the compiler parameter.

 (3) If no ETIME parameter of any kind is given, Algol W tries to

 find out if a system time limit exists, and, if so, when the

 program starts to execute the most immediate system limit is

 determined. This may be either a local time limit on the MTS

 $RUN command, or a global time limit on an MTS batch job. If

 none exists, no time limit is set.

 (4) If such a limit does exist, an Algol W time limit is set which

 is slightly ahead of the system limit. This allows Algol W to

 take control before the system does so.

 Using the ETIME parameter, alternative values between 0.2 seconds

 and 60 minutes may be specified. They are given as an unsigned

 number followed by an optional scale factor. If no scale factor is

 given, or it is S, then the quantity is taken to be specified in

 354 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 seconds. If the scale factor is M, it is taken to be in minutes.

 The number given may be specified with up to three places of

 decimals.

 ETIME and TIME are synonyms. They specify the execution time of a

 program. If this time estimate expires before the program com-

 pletes execution, then execution is forcibly terminated and a fatal

 run error message printed. For example:

 /COMPILE ET=1.6S

 This record sets the time estimate for the program to 1.6 seconds.

 Note that this estimate could be overridden in turn by a further

 run-time parameter specified on a /EXECUTE record.

 Time limits given as compiler parameters have no effect on the

 execution of a program run from an object deck.

 EPAGES=<integer> | PAGES=<integer> Default: see text __ _

 When a program executes in compile, load and go mode, a limit may

 be set for the maximum number of pages of printed output which it

 may produce. The page limit is determined as follows:

 (1) If a limit is set by the run-time EPAGES parameter then this

 is used.

 (2) If no run-time limit is subsequently set, but the compiler

 EPAGES parameter specifies one, then this number is used. The

 run-time parameter overrides the compiler parameter.

 (3) If no EPAGES parameter of any kind is given, Algol W tries to

 find out if a system page limit exists, and, if so, when the

 program starts to execute the most immediate system limit is

 determined. This may be either a local page limit on the MTS

 $RUN command, or a global page limit on an MTS batch job. If

 none exists, no page limit is set.

 (4) If such a limit does exist, an Algol W page limit is set which

 is 1 page less then the system one. This allows Algol W to

 take control before the system does so.

 Using the EPAGES parameter, an alternative value for the limit is

 specified as an unsigned integer between 1 and 200.

 The page count is maintained with the following assumptions:

 (1) Before any records are output, the printer is positioned on

 the perforations between two pages.

 (2) Carriage control is in effect. All of the MTS logical

 carriage control characters are accepted.

 Algol W Programmer’s Guide 355

 MTS 16: ALGOL W in MTS

 September 1980

 (3) Printer pages are assumed to have a physical size of 66 lines,

 containing a 3 line header, a 60 line logical page and a 3

 line trailer. Use of the ANSI standard logical carriage

 control characters (space, "0", "-", "1") will write into the

 logical page only, skipping the 6 line trailer and header from

 the bottom of one logical page to the top of the next.

 (4) Only output to the PRINT stream (MTS SPRINT) is counted,

 unless the executing program specifies otherwise using a

 Qualify predeclared procedure call with the PAGELIMIT

 parameter.

 EPAGES and PAGES are synonyms. If an executing program attempts to

 print more pages than the estimate on the streams for which

 pagecount checking is enabled, program execution is forcibly

 terminated with an error message.

 /COMPILE EP=32

 This record sets the page limit to 32 pages. Note that this

 estimate could be overridden in turn by a further run parameter

 specification on a /EXECUTE record.

 When a page limit is given as a compiler parameter, it has no

 effect on the execution of a program run from an object deck.

 Run-Time Checking and Diagnostics _________________________________

 The Algol W run-time support system provides extensive checking for

 error conditions arising as a result of program execution. The

 following compiler parameters control how much checking is done and the

 behavior of the Algol W system when a fatal error is detected.

 DEBUG | DEBUG=<number-of-levels> | DEBUG=ALL | ___ ___ ___

 CHECK | NODEBUG | NOCHECK Default: DEBUG=10 ___ ___ ___

 These parameters specify a hierarchy of three levels of run-time

 checking and diagnostic printing.

 The default setting of DEBUG causes Algol W to generate code to:

 (1) check at run-time for the following possible error conditions:

 (a) array subscripts out of range,

 (b) invalid substring index,

 (c) invalid case selection index,

 (d) incompatible reference field designator;

 (2) retain sufficient information from the compiler identifier

 tables to allow a post mortem dump of active variables and

 their values to be printed if a fatal error occurs.

 356 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 NODEBUG suppresses retention of the identifier tables.

 NOCHECK suppresses both retention of the identifier tables and

 generation of code for run-time consistency checks. Please note

 the warning given later in this parameter description.

 CHECK has no effect if DEBUG is in effect. If NOCHECK is in effect

 it will cause code for run-time consistency checks to be generated,

 that is CHECK overrides NOCHECK to provide the same midway compiler

 state as NODEBUG produces when overriding DEBUG.

 The hierarchy is :

 DEBUG

 CHECK NODEBUG

 NOCHECK

 Going up this hierarchy increases the level of checking and

 diagnostic support available. It also increases the size of the

 compiled object code and slightly increases the compilation time.

 There is no difference in speed of execution for the top two levels

 of the hierarchy. However programs compiled with NOCHECK may run

 considerably faster, particularly if they contain many references

 to arrays.

 Warning: While NOCHECK provides an increase in speed of execution, _______

 the considerable assumption is made that the program will always

 execute correctly for any data supplied to it. It is possible that

 some errors may not be detected as they occur and may give rise to

 more serious errors such as a program interrupt (59xx series error)

 elsewhere in the program. Worse still, the program may continue

 after failing to detect an error and thereby produce erroneous

 results. For this reason the Computing Center will not accept as

 evidence of a malfunction of the Algol W system the results of a

 program execution where the program was compiled with the NOCHECK

 parameter. It is for use strictly at the user’s risk.

 When a post mortem dump is produced as the result of a fatal error

 condition, the values of variables are dumped for the current block

 or procedure and then for the preceding blocks or procedures out to

 a predefined number of levels. Finally the outermost block is

 dumped if this has not already been done.

 By default a post mortem dump will print the values of variables

 for 10 levels before skipping to the outermost block but this may

 be reset by an integer number given with the DEBUG parameter. This

 integer should be in the range 1 to 254.

 If the keyword ALL is given, all levels will be dumped.

 Example:

 Algol W Programmer’s Guide 357

 MTS 16: ALGOL W in MTS

 September 1980

 /COMPILE DEBUG=5

 Note that the number of levels given with such a DEBUG parameter

 applies only to compile, load and go mode and may be overridden by

 a setting of the run-time DEBUG parameter.

 ARRAYDUMP=<number-of-elements> Default: ARRAYDUMP=10 ___

 When arrays are dumped by the post mortem dumping mechanism, a

 predefined number of elements are dumped and then the value of the

 last element is printed, if this has not been done already. By

 default 10 elements will be printed but this may be reset by giving

 an integer value in the range 1 to 254 with the ARRAYDUMP

 parameter.

 The keyword ALL will dump all elements.

 Example:

 /COMPILE ARRAYDUMP=1

 This would print only the values of the first and last elements in

 any array dumped.

 Note that the number of elements specified with such an ARRAYDUMP

 parameter applies only to compile, load and go mode and may be

 overridden by a setting of the run-time ARRAYDUMP parameter.

 Miscellaneous Parameters ________________________

 The following parameter is ignored by Algol W but is documented here

 for completeness.

 ID=<identifier>

 <identifier> is a string of 1 to 8 alphanumeric characters.

 The following parameters control the generation of object code.

 SYNTAX | GENERATE Default: GENERATE ___ ___

 SYNTAX causes the compiler to cease execution after pass two. The

 program is checked for grammatical correctness only: no object

 code is generated, as this is done by the third and final pass in

 the compiler. SYNTAX provides a cheap way of checking the

 correctness of an Algol W program without using the additional

 resources required for code generation.

 GENERATE, which is the default, is the opposite of SYNTAX.

 Grammatically correct programs will be compiled to object code.

 358 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 The remaining parameters in this section are provided for those

 maintaining the Algol W compiler. While they may be of some interest to

 Computing Science students they are documented here only for

 completeness.

 ALIST ___

 This parameter will print a pseudo-assembly listing of any generat-

 ed object code produced by the compiler. Instructions are identi-

 fied by the usual System/370 mnemonics. Object code and the code

 segment location counter are printed in hexadecimal. The Algol W

 source program co-ordinate is printed, in decimal, to the left of

 this information.

 TABLES ___

 This parameter will print the contents of the compiler internal

 tables: in particular the compiler identifier name table, the

 block list and the segment table.

 CTRACE ___

 This parameter combines the effect of the two previous ones and in

 addition prints the edit code (tokenized form) from pass one and

 the tree(s) produced by pass two.

 PTRACE ___

 This parameter produces a trace of the pass two parser algorithm.

 PSTACK ___

 If this parameter is in effect and a syntax error is detected, the

 current contents of the parser stack will be printed with an error

 message.

 RUN-TIME PARAMETERS ___________________

 Run-time parameters control the action of a compiled Algol W program

 during execution. Where they may appear depends on whether the program

 is executing under the control of the compile, load, and go system or is

 being run from an object deck.

 When being run in compile, load, and go mode, a subset of the

 run-time parameters may be set using the relevant compiler parameters as

 supplied on a /COMPILE or /GLOBAL record or in in the PAR= field of the

 $RUN command which invoked *ALGOLW. This subset is:

 Algol W Programmer’s Guide 359

 MTS 16: ALGOL W in MTS

 September 1980

 ETIME | TIME

 EPAGES | PAGES

 DEBUG

 ARRAYDUMP

 When these parameters are given in the form of compiler parameters, they

 effectively reset the defaults for the run-time system for this program

 only.

 Run-time parameters may be given in two other ways. They may be

 stored with the compiled program object using the RUNPARM compiler

 parameter to supply an initial run parameter string. They may also be

 supplied explicitly when program execution is started, in which case

 they are given on a /EXECUTE record in compile, load and go mode, or in

 the PAR= field of the MTS $RUN command which invokes an Algol W object

 deck stored in a file.

 The order of evaluation of run-time parameter strings is as follows:

 (1) Compiler parameters which provide run-time functions, that is

 those from the list above. This only applies in compile, load

 and go mode.

 (2) The initial run-time parameter string supplied as the right-hand

 side expression of a RUNPARM compiler parameter.

 (3) Parameters supplied explicitly when the program is run, either

 from a /EXECUTE record or a PAR= field on the RUN command.

 Any or all of these parameter fields may, of course, be blank. No

 run-time parameters are mandatory. Note also that the DATAPARM run-time

 parameter described below has the property of suspending step (3) if

 given in step (2).

 The parameters and their descriptions follow.

 SIZE=<integer>[{K|P}] Default: SIZE=16P ___

 The SIZE run-time parameter is available only when a program is

 being run from a file. It specifies the size of main storage which

 the run-time system is to acquire for use by the executing program

 for storage of all variables and records. If a program only

 occasionally requires storage larger than the default size, this

 parameter may be given when the program is run. On the other hand,

 if the program regularly requires more than the default storage, or

 will not run at all without an overriding parameter, then it is

 wise to include a SIZE specification via the compile time RUNPARM

 parameter.

 SIZE is specified as an integer number of bytes followed by an

 optional scaling factor: K (kilobytes, value 1024) or P (pages,

 value 4096). The default allocation of 16P therefore allocates

 65536 bytes.

 360 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 In compile, load and go mode, working storage is provided at

 run-time by the release of storage provided for the compiler. The

 size of the run-time working storage is therefore decided in this

 case by the compile-time SIZE parameter.

 FILE=<filename> _

 FILE can be used to specify a filename containing data records to

 be input to the program during execution. This parameter is

 similar, but not identical to, the FILE compiler parameter.

 When FILE=<filename> is given, a user defined input/output stream

 named "FILE" is created during Algol W’s run time initialization

 and assigned to the specified <filename>. The basic input stream

 is then set to be FILE instead of the default INPUT (MTS SCARDS).

 This means that any program which uses for input the predeclared

 procedures Read, Readon or Readcard, or the special basic input

 stream name Rdr, will read in from the filename specified in the

 FILE= assignment.

 This behavior differs from the compiler FILE parameter because the

 records are not read via the INPUT stream. Control records are not

 therefore valid within the specified filename and will be treated

 as data records.

 For example:

 /EXECUTE FILE=W702:JDATA

 Read statements within the program fetch data records from the file

 W702:JDATA, rather than the INPUT stream.

 ETIME=<number>[{S|M}] | TIME=<number>[{S|M}] Default: see text __ _

 When an Algol W object program executes, a limit may be set on the

 total cpu time which may be used by the program. The time limit is

 determined as follows:

 (1) If the program is executing in compile, load and go mode, and

 if a limit is set by the run-time ETIME parameter then this is

 used.

 (2) If no run-time limit is subsequently set, but a compiler ETIME

 parameter specifies one, then this time is used. The run-time

 parameter overrides the compiler parameter.

 (3) If no ETIME parameter of any kind is given, Algol W tries to

 find out if a system time limit exists, and, if so, when the

 program starts to execute the most immediate system limit is

 determined. This may be either a local time limit on the MTS

 $RUN command, or a global time limit on an MTS batch job. If

 none exists, no time limit is set.

 Algol W Programmer’s Guide 361

 MTS 16: ALGOL W in MTS

 September 1980

 (4) If a such limit does exist, an Algol W time limit is set which

 is slightly ahead of the system one. This allows Algol W to

 take control before the system does so.

 Using the ETIME parameter, alternative values between 0.2 seconds

 and 60 minutes may be specified. They are given as an unsigned

 number followed by an optional scale factor. If no scale factor is

 given, or it is S, then the quantity is taken to be specified in

 seconds. If the scale factor is M, it is taken to be in minutes.

 The number given may be specified with up to three places of

 decimals.

 ETIME and TIME are synonyms. They specify the execution time of a

 program. If this time estimate expires before the program com-

 pletes execution, then execution is forcibly terminated and a fatal

 run error message printed. For example:

 /EXECUTE ET=3.5S

 This record sets the time estimate for the program to 3.5 seconds.

 Note that this estimate would override any previous compiler

 parameter, for example on a /COMPILE record.

 EPAGES=<integer> | PAGES=<integer> Default: see text __ _

 When an Algol W object program executes, a limit may be set for the

 maximum number of pages of printed output which it may produce.

 The page limit is determined as follows:

 (1) If a limit is set by the run-time EPAGES parameter then this

 is used.

 (2) If no run-time limit is subsequently set, but a compiler

 EPAGES parameter specifies one, then this is used. The

 run-time parameter overrides the compiler parameter.

 (3) If no EPAGES parameter of any kind is given, Algol W tries to

 find out if a system page limit exists, and, if so, then when

 the program starts to execute the most immediate system limit

 is determined. This may be either a local page limit on the

 MTS $RUN command, or a global page limit on an MTS batch job.

 If none exists, no page limit is set.

 (4) If such a limit does exist, an Algol W page limit is set which

 is 1 page less then the system one. This allows Algol W to

 take control before the system does so.

 Using the EPAGES parameter, an alternative value for the limit is

 specified as an unsigned integer between 1 and 200.

 The page count is maintained with the following assumptions:

 362 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 (1) Before any records are output, the printer is positioned on

 the perforations between two pages.

 (2) Carriage control is in effect. All of the MTS logical

 carriage control characters are accepted.

 (3) Printer pages are assumed to have a physical size of 66 lines,

 containing a 3 line header, a 60 line logical page and a 3

 line trailer. Use of the ANSI standard logical carriage

 control characters (space, 0, -, 1) will write into the

 logical page only, skipping the 6 line trailer and header from

 the bottom of one logical page to the top of the next.

 (4) Only output to the PRINT stream (MTS SPRINT) is counted,

 unless the executing program specifies otherwise using a

 Qualify predeclared procedure call with the PAGELIMIT

 parameter.

 EPAGES and PAGES are synonyms. If an executing program attempts to

 print more pages than the estimate on the streams for which

 pagecount checking is enabled, program execution is forcibly

 terminated with an error message.

 /EXECUTE EP=5

 This record sets the page limit to 5 pages. Note that this

 estimate would override any compiler parameter specified, for

 example on a /COMPILE record.

 CC | NOCC Default: CC __ ___

 Where an executing Algol W program performs output operations using

 the predeclared procedures Write, Writeon and Writecard, carriage

 control characters are generated automatically in column one of

 each output record. The NOCC parameter suppresses this action so

 that the first character of each line is now the first character

 specified by the relevant output statement. This can be used as a

 method either of supplying an alternative carriage control charac-

 ter explicitly or of removing them when they are not required, that

 is when writing a data file.

 CC overrides NOCC and will cause automatic carriage control

 character generation.

 Note that the effect of these parameters can be achieved within a

 program by assignments to the predeclared logical variable Write_Cc

 which these parameters in fact set. Setting Write_Cc to ’false’ is

 the equivalent of specifying NOCC as a run-time parameter.

 Algol W Programmer’s Guide 363

 MTS 16: ALGOL W in MTS

 September 1980

 DATAPARM ___

 This is only effective if specified in the initial run time

 parameter string given as the right-hand side of a RUNPARM compiler

 parameter. Its effect is to suspend keyword processing of any

 subsequently encountered run-time parameter string. The latter,

 which might have come from either a /EXECUTE record or a $RUN PAR

 field is padded on the right with blanks to a length of 256 bytes

 and passed, in its entirety without editing, to the predeclared

 string(256) variable Sysparm. This enables a user to avoid Algol

 W’s parameter processing but still examine the parameter field

 using the logic of the executing program.

 DEBUG | DEBUG=<number-of-levels> | ___ ___

 DEBUG=ALL | NODEBUG Default: DEBUG=10 ___ ___

 This parameter is only effective if the DEBUG compiler parameter is

 also in effect. Otherwise the object code will include insuffi-

 cient information to perform the required action.

 DEBUG without any expression implies DEBUG=10.

 When a post mortem dump is produced as the result of a fatal error

 condition, the values of variables are dumped for the current block

 or procedure and then for the preceding blocks or procedures out to

 a predefined number of levels. Finally the outermost block is

 dumped if this has not already been done.

 By default a post mortem dump will print the values of variables

 for 10 levels before skipping to the outermost block, but this may

 be reset by an integer number given with the DEBUG parameter. This

 integer should be in the range 1 to 254.

 The keyword ALL will dump all levels.

 Example:

 /EXECUTE DEBUG=5

 NODEBUG suppresses any post mortem dump should a fatal run error

 subsequently occur.

 ARRAYDUMP=<number-of-elements> Default: ARRAYDUMP=10 ___

 When arrays are dumped by the post mortem dumping mechanism, a

 predefined number of elements are dumped, and then the value of the

 last element is printed, if this has not been done already. By

 default 10 elements will be printed, but this may be reset by

 giving an integer value in the range 1 to 254 with the ARRAYDUMP

 parameter.

 The keyword ALL will dump all elements.

 364 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 Example:

 /EXECUTE ARRAYDUMP=1

 This would print only the values of the first and last elements in

 any array dumped.

 ALLTIMES | NOTIMES | TOTALCPU |

 PROBLEMCPU | SUPERCPU | ELAPSED Default: see text

 These parameters override the default setting for the timing print

 which Algol W writes to SERCOM when a program ceases execution.

 Their action is as described under the equivalent parameters to the

 predeclared procedure Iocontrol. These are described in the

 Section "Timing Information" in the section "Miscellaneous Topics."

 The default setting is TOTALCPU when running from a conversational

 terminal and ALLTIMES in batch.

 <string> Default: " "

 If a run-time parameter is not identifiable as one of the above

 keywords or keyword expressions, it is examined to see if it is a

 character string delimited by either quotes (") or primes (’). If

 this is found to be the case, the value of the character string,

 after compressing double delimiters within the string to single

 characters, is padded on the right with blanks to a length of 256

 bytes and placed in the predeclared string (256) variable Sysparm.

 If more than one run-time parameter specifies a string, only the

 last string encountered will be processed and passed in Sysparm.

 No concatenation takes place.

 THE ALGOL W COMPILER SYSTEM ___________________________

 The Algol W compiler provides an implementation of the Algol W

 language. No such implementation can perfectly reflect the language

 design in all respects, so certain additional information is necessary

 to a programmer preparing code for this particular compiler. The

 following sections provide such implementation dependent information for

 the MTS compiler accessed via *ALGOLW.

 Algol W Programmer’s Guide 365

 MTS 16: ALGOL W in MTS

 September 1980

 Symbol Representation _____________________

 Algol W programs are built up from the following basic character set:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

 0 1 2 3 4 5 6 7 8 9

 " # ’ | , ; : . () + - * / ¬ _ = < > %

 These characters are used according to the rules of the language to form

 identifiers, reserved words, and special symbols. The reserved words of

 Algol W are:

 abs algol and array assert begin bits case

 comment div do else false for fortran go

 goto if integer is logical long not null

 of or procedure real record reference rem

 result shl short shr step string to true

 until value while

 A full list of all Algol W basic symbols, with their meanings, is given

 in Appendix D. See also the section on "Input Format" later in this

 section for details of case independence.

 Note that embedded blanks are not allowed in reserved words,

 identifiers and numbers. Adjacent reserved words, identifiers and

 numbers must be separated by at least one blank. Otherwise blanks may

 be used freely in an Algol W program.

 Predeclared Identifiers _______________________

 The following identifiers are predeclared in the Algol W environment

 but may be redeclared by the user:

 A_Count Arccos Arcsin Arctan Assign Attnmark Attntrap

 Base10 Base16 Bitstring Call Canreply Cmd Code

 Control Cos Cosh Cot Cxcos Cxexp Cxln Cxsin

 Cxsqrt Date Decode Divzero Empty Endfile Entier

 Epsilon Erf Erfc Error Exception Exp Exponent

 External Fetch Filemark Flush Fn_Value Fullword

 Function Gamma Get Getcard Geton Getstring Halfword

 I_W Imag Imagpart Input Intbase10 Intbase16

 Intdivzero Intovfl Iocontrol Link Ln Lngamma Locate

 Log Longarccos Longarcsin Longarctan Longbase10

 Longbase16 Longcos Longcosh Longcot Longcxcos Longcxexp

 Longcxln Longcxsin Longcxsqrt Longepsilon Longerf

 Longerfc Longexp Longgamma Longimag Longimagpart Longln

 Longlngamma Longlog Longrealpart Longsin Longsinh

 Longsqrt Longtan Longtanh Lowercase Maxinteger Maxreal

 366 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 Move Newline Number Odd Ovfl Pi Print Protect

 Punch Put Putcard Puton Putstring Qualify R_Cmplx

 R_Code R_D R_Expchar R_Float R_Format R_Sig R_W

 Rcall Rdr Read Readcard Reader Readon Realpart

 Release Rewind Round Roundtoreal R0 R01 R1 S_W

 Sense Sin Sinh Sqrt Stop Store Syscode Sysindex

 Sysparm Tan Tanh Time Trace Translate Truncate Unfl

 Uppercase User Write Write_Cc Writecard Writeon

 Writer Wtr Xcpaction Xcplimit Xcpmark Xcpmsg Xcpnoted

 Xdelete Xgetcard Xputcard

 These identifiers are of three types:

 (1) Predeclared procedures, which provide input/output and other

 facilities. See the list in Appendix E.

 (2) Predeclared functions, which provide standard analytic functions

 and transfer between data of differing simple types. See the

 list in Appendix F.

 (3) Predeclared variables, which are provided for a variety of

 different reasons. See the list in Appendix G.

 Restrictions ____________

 The implementation imposes the following restrictions which may

 affect some users:

 (1) Identifiers consist of a maximum of 256 characters.

 (2) A maximum of fifteen record classes may be declared.

 (3) Approximately 256 constants are allowed in a procedure or a

 nontrivial block (including constants in trivial blocks con-

 tained in the procedure or nontrivial block).

 (4) The maximum number of dimensions for an array is 15.

 (5) A maximum of 34 arguments is allowed in a procedure call.

 (6) Not more than 999 procedures or blocks containing declarations

 (that is nontrivial blocks) are allowed.

 (7) The data area at run-time for each active procedure or nontrivi-

 al block, excluding array elements, is limited to 4096 bytes.

 (8) The total amount of space occupied by the constants and machine

 code in any procedure or nontrivial block may not exceed 8192

 bytes.

 Algol W Programmer’s Guide 367

 MTS 16: ALGOL W in MTS

 September 1980

 (9) No block may be included in more than 29 other blocks.

 (10) Nontrivial blocks, blocks associated with procedures, argument

 lists, For statements and labels may not be nested within each

 other to a depth of more than eight counting the initial

 ’begin’. In other words, no declaration is allowed below the

 eighth block nesting level.

 (11) A maximum of 256 external references generated by ’algol’ or

 ’fortran’ constructs is allowed per program or precompiled

 procedure.

 (13) Not more than 63 procedures may be referenced within a single

 procedure. Here "procedure" means a procedure, nontrivial block

 or an external reference generated by the use of the Call or

 Rcall predeclared procedures or the External predeclared

 function.

 (13) A maximum of one megabyte (1048576 bytes) of storage may be

 allocated to a program at run-time for all variable and record

 storage. This is a restriction imposed by the MTS operating

 system.

 Input Format ____________

 The compiler accepts input records of any length. However only the

 first 255 characters of an input line will be scanned for Algol W source

 text. Additionally, the Algol W compiler’s input scanner routine

 regards each input line as being separated from the next by a single

 space. This implies that identifiers, reserved words and constants may

 not be broken across an input line boundary. For string constants, an

 extension of the syntax allows strings to be broken over a line boundary

 in a way best described by example:

 S := "ABCDEFGHIJK"

 "LMNOPQRSTUV"

 "WXYZ";

 This statement is exactly equivalent to:

 S := "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 Note that this form of string concatenation applies to string constants

 only. ____

 The implemenation of Algol W is case independent. Identifiers,

 reserved words and arithmetic or bits constants may be entered in any

 mixture of upper and lower case. When lower case alphabetics are

 encountered in an identifier or a reserved word, they are assumed to

 represent the equivalent uppercase character. Differences in case only ____

 368 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 do not distinguish two otherwise identical identifiers or reserved

 words. String constants may use any of the 256 possible EBCDIC

 character encodings (see Appendix B) and, if alphabetic, the case of

 such text is preserved by the compiler. However the following instances

 of string use will work correctly with any mixture of upper and lower ___

 case.

 (1) External references: using the Call or Rcall predeclared

 procedures, the External predeclared function or the ’algol’ or

 ’fortran’ constructs.

 (2) Procedure references in the Link predeclared function.

 (3) Values of the predeclared variable R_Format or format codes used

 in format directed input/output.

 (4) Strings used as input/output stream designators.

 (5) String keywords to the Control, Iocontrol, Qualify or Sense

 predeclared procedures.

 External references and Control keywords are capitalized by the Algol W

 system before use.

 SYSTEM OUTPUT _____________

 The compiler and run-time system produce the following output:

 (1) A compiler source listing is written to SPRINT if assigned, or

 to the file or device specified via an SLIST compiler parameter.

 This output may optionally include an identifier cross reference

 table.

 (2) In production mode, an object deck is written to SPUNCH if

 assigned, or to the file or device specified via a DECK compiler

 parameter.

 (3) Compiler diagnostic messages, including timing information, are

 written to SERCOM.

 (4) Run-time diagnostic messages, including timing information, are

 also written to SERCOM (the ERROR stream).

 The following MTS file listing shows a file containing a valid Algol

 W program and control records:

 Algol W Programmer’s Guide 369

 MTS 16: ALGOL W in MTS

 September 1980

 # $LIST qqsv

 > 1 /COMPILE DECK,SLIST,INDENT,TRIDENT=MC,TRRESERV=LC

 > 2 /TITLE "SUM OF SERIES"

 > 3 BEGIN

 > 3.5 INTEGER SUM_SQUARE, SUM_CUBE, LIMIT;

 > 4 READ(LIMIT);

 > 5 SUM_SQUARE := SUM_CUBE := 0;

 > 6 FOR INDEX := 1 UNTIL LIMIT DO

 > 7 BEGIN INTEGER SQUARE, CUBE;

 > 8 SQUARE := INDEX * INDEX;

 > 9 SUM_SQUARE := SUM_SQUARE + SQUARE;

 > 10 CUBE := SQUARE * INDEX;

 > 11 SUM_CUBE := SUM_CUBE + CUBE

 > 12 END FOR_LOOP;

 > 13 WRITE("SUM OF SQUARES = ", SUM_SQUARE);

 > 14 WRITE("SUM OF CUBES = ", SUM_CUBE)

 > 15 END OF_PROGRAM.

 > END OF FILE

 As explained earlier in this section, it can be compiled using *ALGOLW

 in the following way:

 # $RUN *ALGOLW SCARDS=qqsv

 # EXECUTION BEGINS

 Source listing: "-AWLIST"

 Object program: "-AWLOAD"

 (MAIN) 0.14 seconds to compile, size 824 bytes

 # EXECUTION TERMINATED

 The messages lines shown above are diagnostic information, written to

 SERCOM. Note that the CPU time given is the total time, including

 system overheads for input/output performed by the compiler.

 The following subsections describe the compiler output on the various

 input/output streams, mostly by reference to the example program and

 compilation above.

 Source Program Listing ______________________

 The listing file from the program given at the head of this section

 will look like this:

 370 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 Algol W : File=W701:QQSV SUM OF SERIES

 3 0000 1- begin

 3.5 0001 -- integer Sum_Square, Sum_Cube, Limit;

 4 0002 -- Read(Limit);

 5 0003 -- Sum_Square := Sum_Cube := 0;

 6 0004 -- for Index := 1 until Limit do

 7 0004 2- begin integer Square, Cube;

 8 0006 -- Square := Index * Index;

 9 0007 -- Sum_Square := Sum_Square + Square;

 10 0008 -- Cube := Square * Index;

 11 0009 -- Sum_Cube := Sum_Cube + Cube

 12 0009 -2 end For_Loop;

 13 0010 -- Write("SUM OF SQUARES = ", Sum_Square);

 14 0011 -- Write("SUM OF CUBES = ", Sum_Cube)

 15 0011 -1 end Of_Program.

 Options (UN230) :- main, debug

 (MAIN) 0.14 seconds to compile, size 824 bytes

 Some variation in the form of the compiler source listing is possible by

 specifying the appropriate compiler parameters.

 The first line on each listing page gives the source input filename

 and any title string supplied on a /TITLE control record. It also gives

 the time, date and listing page number. This last information is on the

 extreme right of the listing line and hence does not appear in the

 example above.

 Taking the listing columns from left to right:

 (1) Source file line number. The MTS line number from which the

 source input record was taken is printed in this column. If the

 input record echoed on this listing line is a continuation, the

 line number field is blank and the most immediate previous line

 number applies. This field is not printed when the compiler

 parameter NONUMBER is in effect.

 (2) Source statement number. This field contains the statement (or

 co-ordinate) number referenced in all Algol W error messages.

 It is a count from zero of each ’begin’ and each semicolon (;),

 excluding those ending comments.

 (3) Block nesting level indicator. This two character code indi-

 cates the ’begin’...’end’ block nesting depth. Normally both

 characters are "-", but when either ’begin’ or ’end’ appears on

 a source statement the change in block level is indicated in the

 characters of this indicator. Each ’begin’ encountered incre-

 ments the block nesting counter by one and the first character

 of the indicator shows the level after the ’begin’. After each

 ’end’ the block nesting counter is decremented by one and the

 last character of the indicator shows the level after the ’end’.

 Algol W Programmer’s Guide 371

 MTS 16: ALGOL W in MTS

 September 1980

 (4) Source record image. The remainder of the listing line shows

 the source input record itself. Note that both the production

 and form of the source record image are under the control of

 many compiler parameters and control records as described

 earlier in this section. In this example the three parameters

 INDENT, TRINDENT=MC and TRRESERV=LC, among others, were included

 on the /COMPILE card. Thus in this listing the source images

 are indented three spaces per block level, the indentifiers are

 translated to a mixed case form, and the reserved words are

 translated to lower case.

 At the end of the listing two further lines appear:

 (1) The "Options" line gives a list of the most important compiler

 parameters in force, mainly those which affect subsequent

 execution of the object program produced. The five characters

 within parentheses, here "UN230", are an encoded release date

 for this particular version of the Algol W system.

 (2) The second line shown is the last listing record output by the

 compiler for each compilation. The first item in it is either

 "(MAIN)" for a main program or the external symbol definition

 name (ESDname) for a precompiled procedure. The rest of the

 line gives the total CPU time used by the compiler during

 compilation, and the total number of bytes of code generated in

 the resultant object program.

 Compiler Diagnostic Output __________________________

 In the previous example the program compiled successfully. Where the

 rules of the Algol W language are violated, the compiler will issue an

 error message (or messages) on the ERROR stream, MTS SERCOM. If the

 listing device and the ERROR stream do not have the same assignment, the

 compiler diagnostic messages are also written to the listing file, in

 which case they appear after the source listing (and cross reference, if

 any) but before the final summary line. If the messages indicate fatal

 errors preventing successful compilation of the program, the final

 listing line will indicate this with the words "no code generated."

 A list of all compiler (and run-time) error messages, with full

 explanations, is given in Appendix C.

 When the Algol W compiler is run at a conversational terminal, the

 ECHO parameter is the default and the relevant part of the source

 program listing is printed preceding the error message. If in the

 program used in the previous example of a source listing, the variable

 Square on line 8 had been misspelled as Squre, the following output

 would have appeared:

 372 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 # EXECUTION BEGINS

 Source listing: "-AWLIST"

 8 0006 Squre := Index * Index;

 Error 2002 near 0006 - "squre" is undeclared

 (Found near " ; squre ")

 (MAIN) 0.17 seconds to compile, no code generated

 # EXECUTION TERMINATED RC=16

 This output appears on the terminal because the MTS SERCOM device name

 defaults to the "master sink," which is the terminal when running

 conversationally and the line printer in batch.

 Because the listing is being sent to a different destination, a copy

 of these diagnostic messages will also appear in the listing file

 "-AWLIST".

 The Algol W compiler may produce more than one message for each

 actual coding error detected. If this is the case, and if some of the

 error messages are not clear, the technique recommended is to fix as

 many errors as possible and then recompile. If actual errors remain in

 the program the new set of messages should be more concise and may well

 provide clearer information.

 Identifier Cross Reference Listing __________________________________

 Specification of the XREF compiler parameter will cause a cross

 reference listing to be appended to the source program listing. For the

 program used in the above examples this would take the form:

 Algol W : File=W701:QQSV Cross Reference

 27 references

 Cube 0005 0008 0009

 Index 0004 0006 0006 0008

 Limit 0001 0002 0004

 Read 0002

 Square 0005 0006 0007 0008

 Sum_Cube 0001 0003 0009 0009 0011

 Sum_Square 0001 0003 0007 0007 0010

 Write 0010 0011

 Cross reference listings are very useful for much larger programs than

 can be shown in examples in this manual.

 The listing is output in two columns to optimize paper use. The

 identifier names are listed alphabetically, with all the source state-

 Algol W Programmer’s Guide 373

 MTS 16: ALGOL W in MTS

 September 1980

 ment numbers where each is used printed after the name, eight to a line.

 A maximum of 14 characters of the identifier name will be printed; use

 of the same name in declarations of different identifiers is not

 distinguished in the cross reference listing.

 If insufficient storage is available for cross reference processing,

 a partial cross reference will be output with a warning message at the

 head. Running the compiler with a larger SIZE parameter will produce

 the full cross reference.

 Object Deck Output __________________

 When an Algol W program is successfully compiled, an object deck is

 produced.

 When running the compiler in compile load and go mode, this object

 deck is immediately passed to the Algol W loader without any action

 being required on the part of the user.

 In production mode, the object deck is output to a file as specified

 either through a DECK compiler parameter, or an assignment to the SPUNCH

 logical device name on the MTS $RUN command.

 The object deck so output contains one object module (representing

 one control section) for each program segment compiled. A program

 segment is a program, a procedure or a nontrivial block (one containing

 variable declarations). Each module contains the standard object cards

 (ESD, TXT, RLD, END) as described in MTS Volume 5, System Services. _______________

 For a main program only, the first two modules output do not

 correspond to any program segment. They are:

 (1) Module name : AWXSTART. This contains lead in information used

 by the run-time system to locate the relevant modules at Algol W

 system initialization. Algol W object programs always enter at

 AWXSTART.

 (2) Module name: AWXRCTBL. This contains information about record

 declarations and is used by the run-time system to keep track of

 records created during program execution.

 For a main program, module names are of the form:

 AWXSCnnn

 where "nnn" is a three character group running 001, 002, 003, etc.

 AWXSC001 is the first segment of an Algol W program proper; the run-time

 initialization routines called by AWXSTART in turn call AWXSC001 to

 start program execution.

 374 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 For a precompiled procedure, the module name of the first segment is

 always the procedure name capitalized and truncated to eight characters

 if necessary. If the procedure is complex enough to warrant more than

 one segment, subsequent object module names are formed by truncating the

 name further to five characters (or padding with hash marks (#) to that

 length), and appending 002, 003, 004, etc. to form an eight character

 ESDname.

 Specification of a compiler parameter such as:

 LIBSEARCH=<filename>

 will cause the compiler to output a record:

 $CONTINUE WITH <filename> RETURN

 at the end of the normal object deck output. The MTS loader will load

 from the specified object or library filename when the program is $RUN.

 Run-Time Diagnostics ____________________

 Programs which compile successfully do not always run correctly. If

 the program used in the previous examples is run with the data record:

 10

 then the program will function correctly producing the output:

 SUM OF SQUARES = 385

 SUM OF CUBES = 3025

 0.02 seconds in execution

 If on the other hand the data record was:

 400

 then trouble is in store when the program is run. The sum of cubes

 computed in this program will exceed the maximum integer which can be

 represented on the machine. The following diagnostic output will be

 produced:

 Algol W Programmer’s Guide 375

 MTS 16: ALGOL W in MTS

 September 1980

 Run error 5908 near 0009 in (MAIN) -- Integer overflow exception.

 Algol W Post Mortem Dump

 Trace of active segments

 Dump of local variables near coord 0009 in <BLOCK>

 Square = 92416 Cube = 28094464

 Dump of local variables near coord 0004 in (MAIN)

 Sum_Square = 9411080 Sum_Cube = 2121155136

 Limit = 400 Index = 304

 0.03 seconds in execution

 This is written to the ERROR stream, MTS SERCOM, so that it would be

 seen even if the normal output was being sent to a file.

 The first line of the diagnostic output is the run error message

 giving the cause of the failure, in this case integer overflow. This

 message may run to several lines depending on the cause of the error. A

 list of run time error messages, with full explanations, is given in

 Appendix C.

 The remainder of the diagnostic output gives the values of the

 program variables at the time of the error. This is called a post

 mortem dump, for fairly obvious reasons. The dump can only appear if

 sufficient information has been retained when the object program was

 produced by the compiler. This is under the control of the DEBUG

 parameter; it is the default, so a post mortem dump is normally produced

 when a run-time error occurs.

 Note the order in which the variables are dumped. The system starts

 with those nearest the point of error, and then dumps segments outwards

 until the main program block is reached.

 By default the post mortem dump routines will dump ten program

 segments and then skip to the outer (main program) block, which it will

 dump before terminating. This may dump all active blocks; alternatively

 a message such as:

 ... 58 segments skipped

 may appear, indicating that, in this case, 58 active segments have been

 skipped. A large number of segments may have been active through an

 involved series of procedure calls or because a procedure has called

 itself recursively many times. The number of segments dumped is under

 the control of the DEBUG compiler and run-time parameters.

 When the values of array elements are dumped, a similarly abbreviated

 form of print is the default action. The first ten elements and the

 last are dumped. For a small array this may dump the whole array; for a

 larger one a dump such as:

 376 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 A(1) = 84 A(2) = 91 A(3) = 14 A(4) = -76

 A(5) = -96 A(6) = -28 A(7) = 66 A(8) = 99

 A(9) = 41 A(10) = -54 ... A(4000) = -68

 might appear. The elipsis (...) indicates that elements have been

 skipped in the dump of A, a 4000 element single dimension array. The

 number of array elements dumped is under the control of the ARRAYDUMP

 compiler and run-time parameters.

 Reference variables dump as an occurrence of the record class of

 which they are a member. The occurrence is an integer constant linked

 by a period (.) to the record class name. For instance:

 Theatre = 25.Main_List

 indicates that the reference variable Theatre points to the 25th

 instance of a record of class Main_List.

 The values of variables which have not been assigned are displayed in

 the dump as a question mark (?). In the case of string variables a

 repeated pattern of question marks indicates the part of the string

 which has not been assigned a value.

 System Return Codes ___________________

 The Algol W system leaves a return code in general register fifteen

 on exit. This may be tested by MTS conditional commands and appropriate

 action taken.

 The compiler return codes are:

 0 Program compiled correctly.

 12 Program compiled and the object program is loadable, but

 nonfatal pass three errors have marked certain paths through the

 code as nonexecutable.

 16 Fatal errors were detected during compilation. Either no or an

 incomplete object program was produced.

 The run-time system return codes are:

 0 Program execution terminated normally.

 4 Program termination was caused by an end-of-file condition

 processed using the Endfile predeclared reference.

 8 Program termination was caused by a fatal run error other than

 end-of-file. When an Algol W object program is run from a file,

 it will terminate with one of these run-time codes.

 When *ALGOLW is run, either in compile, load, and go mode, or

 production mode, the single return code on system termination is the

 maximum of the individual step return codes for each of the compilation

 and execution phases performed.

 Algol W Programmer’s Guide 377

 MTS 16: ALGOL W in MTS

 September 1980

 378 Algol W Programmer’s Guide

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX A: AN ALGOL W BIBLIOGRAPHY ____________________________________

 This manual is the definitive document describing the Algol W

 language and its current implementation. However, the following biblio-

 graphy lists material that is concerned with either Algol W or the

 design of Algol-like languages in general, and may be of interest.

 Wirth, Niklaus and Hoare, C.A.R., A Contribution to the Development _________________________________

 of Algol, Communications of the A.C.M., 9:6, June 1966 ________

 This paper contains the original published description of the

 Algol W language, although it differs in several respects from

 actual implementations.

 Bauer, H., Becker, S. and Graham, S., Algol W Implementation, ______________________

 Stanford University Technical Report CS98, Stanford, Calif.,

 USA, 1968

 The original internal documentation for the Stanford implementa-

 tion. It is now considerably out of date in many respects.

 Genuys, F. (Editor), Programming Languages, Academic Press, Lon- _____________________

 don, England and New York, N.Y., 1968

 This book is a collection of the text of a series of lectures

 given at a summer school in Villard-de-Lans, France, in 1965.

 The Algol W interest is in the section by C.A.R. Hoare on

 "Record Handling".

 Bauer, Henry R., Introduction to Algol W Programming, Computer _____________________________________

 Science Department, Stanford University, Stanford, Calif., 1970

 The original Stanford tutorial document on Algol W.

 Aho, Alfred V. and Ullman, Jeffrey D. Principles of Compiler ________________________

 Design, Addison-Wesley, Reading, Mass., 1978 ______

 For any student of compiling techniques, this popular volume is

 one of the standard works.

 Sites, Richard L., Algol W Reference Manual, Computer Science ___________________________

 Department, Stanford University Technical Report STAN-CS-71-230,

 Stanford University, Stanford, California, 1972

 The original Algol W reference manual, now replaced in MTS by this

 present manual.

 An Algol W Bibliography 379

 MTS 16: ALGOL W in MTS

 September 1980

 Kieburtz, Richard B., Structured Programming and Problem Solving ___

 With Algol W, Prentice-Hall, Englewood Cliffs, N.J., 1975 ____________

 Satterthwaite, Edwin H., Source Language Debugging Tools, Stanford _______________________________

 University Technical Report STAN-CS-75-494, Stanford, Calif.,

 USA, 1975

 Another valuable source of Algol W internals documentation. Ed

 Satterthwaite worked on the development of Algol W during the

 period 1969-72.

 Marsland, T.A. (Editor), Algol W References, Technical Report ____________________

 TR75-15, University of Alberta Computer Science Dept., U. of

 A., Edmonton, Alta, Canada, 1975

 Contains a description of the original Alberta/Manitoba format

 directed input/output extensions, on which the present scheme

 was based.

 Palay, Roger M. and Benson, Peter, FANGET AN: An Algol W _________________________

 Primer,Collegiate Publishing, Columbus, Ohio, 1978 ______

 An excellent text for use as an introduction to computer

 programming. The basic concepts of computing as well as Algol W

 are presented.

 Palay, Roger M. and Benson, Peter, The Programming Psalter, ________________________

 Collegiate Publishing, Columbus, Ohio, 1978

 A book of Algol W programming examples for use with "Fanget An".

 Hunter, Alan and Hindmarsh, Margaret M., Algol W Development at _________________________

 Newcastle, Newcastle University Computing Laboratory, Technical _________

 Report Series, No. 124, 1978

 The initial design specification for the present release of

 Algol W. Now inaccurate in several respects, as the actual

 implementation evolved from a discussion of this proposal

 amongst the member installations of the MTS Community.

 380 An Algol W Bibliography

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX B: CHARACTER ENCODINGS ________________________________

 The following table presents the correspondence between printable

 string characters and their (EBCDIC) encodings. This encoding estab-

 lishes the ordering relation on characters and thus on strings. Those

 characters in parentheses are available only on line printers having a

 TN print train, or on other printers with an equivalent character set.

 Integer codes not listed below do not correspond to any established

 character. (see Code, Decode in the section "Strings").

 64 space 129 (a) 193 A 240 0

 74 (¢) 130 (b) 194 B 241 1

 75 . 131 (c) 195 C 242 2

 76 < 132 (d) 196 D 243 3

 77 (133 (e) 197 E 244 4

 78 + 134 (f) 198 F 245 5

 79 | 135 (g) 199 G 246 6

 80 & 136 (h) 200 H 247 7

 90 (!) 137 (i) 201 I 248 8

 91 $ 145 (j) 209 J 249 9

 92 * 146 (k) 210 K

 93) 147 (l) 211 L

 94 ; 148 (m) 212 M 139 ({)

 95 ¬ 149 (n) 213 N 155 (})

 96 - 150 (o) 214 O 173 ([)

 97 / 151 (p) 215 P 189 (])

 107 , 152 (q) 216 Q

 108 % 153 (r) 217 R

 109 _ 162 (s) 226 S

 110 > 163 (t) 227 T

 111 ? 164 (u) 228 U

 122 : 165 (v) 229 V

 123 # 166 (w) 230 W

 124 @ 167 (x) 231 X

 125 ’ 168 (y) 232 Y

 126 = 169 (z) 233 Z

 127 "

 Note particularly that the code sequences for the characters of the

 alphabet are in three parts, for "A"-"I", "J"-"R", and "S"-"Z", and that

 the upper case letters are 64 character positions after the equivalent

 lower case ones.

 A full list of the 256 internal codes possible, together with their

 meanings, will be found in the "IBM System/370 Reference Summary", form

 number GX20-1850-3.

 Character Encodings 381

 MTS 16: ALGOL W in MTS

 September 1980

 382 Character Encodings

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX C: ERROR MESSAGES ___________________________

 Error messages generated by the compiler, loader or run time system

 are listed here.

 There are two basic types of errors: errors which occur during

 compilation and errors which occur while a compiled program is execut-

 ing. Compilation errors are discussed below in subdivisions of pass 1,

 pass 2, and pass 3 error messages. Errors which occur while a compiled

 program is executing are called run-time errors. The messages they

 generate are the last type discussed in this appendix.

 The compiler is divided into three passes: pass 1 reads the program,

 lists it, and saves it in memory in a compressed (tokenized) form; pass

 2 parses the program, examining each statement to see if it is correctly

 formed; pass 3 generates the machine code for the program. Each pass is

 capable of detecting a different set of errors. (Pass 4, the loader

 pass, on rare occasions may also generate messages.)

 All error messages from passes 1, 2, and 3 are of the form:

 Error zxxx near yyyy - message

 or:

 Warning zxxx near yyyy - message

 where "zxxx" is the error number, "z" is 1, 2, or 3 according to the

 pass which generates the message and "yyyy" corresponds to one of the

 coordinate numbers in the second column on the program listing. If

 there are several statements on a line, only the coordinate of the first

 one appears on the program listing. If any pass one or pass two error

 messages occur (other than warnings), then compilation stops at the end

 of pass two. Warnings do not cause compilation to stop.

 Note however that if the compiler parameter TERSE has been specified,

 only one error per coordinate is reported, and any errors detected

 during pass one will stop compilation at the end of that pass.

 Error Messages 383

 MTS 16: ALGOL W in MTS

 September 1980

 PASS ONE ERROR MESSAGES _______________________

 Error 1001 - incorrectly formed declaration

 (1) ’string(x)’ or ’bits(x)’, where x is not a number.

 (2) ’string(0)’ or ’string(>256)’.

 (3) ’bits(not 32)’.

 Error 1002 - incorrect constant

 (1) More than 256 digits.

 (2) A bad exponent.

 Error 1003 - missing "end"

 A final "." or a control record encountered before an ’end’

 matching each ’begin’. (Check the block numbers in program

 listing.)

 Error 1004 - unmatched "end" deleted

 An ’end’ encountered after what appeared to be the final ’end’.

 (Check the block numbers in the second column of the program

 listing.)

 Error 1005 - missing ")"

 ’string(x’ or ’bits(x’ with no closing ")".

 Error 1006 - illegal character

 An erroneously punched or overpunched character. Overpunched

 characters may print as blanks; the card should be inspected in

 this case.

 Warning 1007 - missing final "."

 A control record encountered without a preceding ".". The compiler

 inserts a "." automatically.

 Error 1008 - invalid string length

 A string constant of length > 256, or a completely empty string.

 An example of source program:

 384 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 begin

 string(256) B;

 B := "this is a very very very very very very very very very"

 "very very very very very very very very very very very"

 "very very very very very very very very very very very"

 "very very very very very very very very very very very"

 "very very very very very very very very very very very"

 "very long string constant";

 end.

 The string constant assigned to B is too long.

 Error 1009 - invalid bits length

 (1) "#" not followed by hex digits.

 (2) "#" followed by more than 8 hex digits.

 Error 1010 - missing "("

 ’reference’ not followed by "(".

 Error 1011 - error table overflow

 More than 50 error messages from pass 1. Subsequent errors are not

 listed.

 Error 1012 - compiler table overflow

 The program is too big to fit in memory during compilation. There

 is no more room in one of the tables constructed by the compiler.

 Recompile with a larger SIZE parameter to make the tables larger.

 Error 1013 - identifier length > 256

 An identifier is too long.

 Error 1014 - unexpected "."

 An apparently final "." not followed by a control record, such as

 in a constant with an inadvertently inserted space, as in this

 line: X := 3. 14

 Error 1015 - too many record classes

 Only 15 are allowed.

 Warning 1016 - "else" preceded by (deleted) ";"

 The sequence ’; else’ has been replaced by ’else’. Occasionally,

 this warning may appear along with a seemingly contradictory error

 message, namely,

 Error Messages 385

 MTS 16: ALGOL W in MTS

 September 1980

 Error 2047 - expecting ";" but "else" was found

 (found near "...")

 This will happen if the following sample program is run:

 begin

 integer A, B, C;

 Read(A);

 if A < 0

 then

 B := 1;

 C := 2;

 else

 B := 0

 end.

 The error in the above program is that the ’begin’ and ’end’

 enclosing the block of the ’then’ clause are omitted. The compiler

 first deletes the semicolon preceding the ’else’, and then inter-

 prets the "B := 1;" as the end of the If statement and searches for

 a semicolon after the "C := 2". The messages returned are:

 Warning 1016 - "else" preceded by (deleted) ";"

 Error 2047 - expecting ";" but "else" was found

 (found near " 2 else ")

 The problem can be corrected by enclosing the ’then’ clause with a

 ’begin’ and ’end’, and removing the semicolon after the 2.

 Error 1017 - too many blocks

 A block is enclosed in more than 29 other blocks.

 Error 1018 - compiler interface error

 An error has been detected by the routines which fetch input

 records for the compiler, probably while processing a /COPY record.

 Details of the error appear within the compiler source listing.

 Error 1019 - procedure name is reserved word

 This error trap provides a clear error message for the case where a

 reserved word has been specified as a procedure name. Reserved

 words may not be used as identifiers. This error is commonly made

 by beginning Algol W programmers who specify something like:

 procedure result(.....);

 ’result’ is a reserved word.

 386 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 1020 - unclosed string found at end of line

 A common error made by Algol W users is to forget the closing quote

 (") for a string constant. This could lead to many errors being

 generated for the remainder of the program. To circumvent this

 problem, Algol W will not allow string constants to cross a line

 boundary. If an unclosed string is found the compiler produces the

 above error message and proceeds as if the string had been closed;

 that is it inserts a quote. For example:

 Write("Results are as follows);

 Write("A =", A, "B =", B, "C =",C);

 A quote has been omitted after the word ’follows’. Algol W notices

 the error and closes the string by adding a quote to the end of

 that line. The program will still be in error but the misleading

 effects which could have arisen, such as parsing ’A =’ as program

 text, will be avoided.

 PASS TWO ERROR MESSAGES _______________________

 All pass 2 error messages are supplemented by:

 (found near "...")

 where "..." indicates a pair of symbols. In general, the first symbol

 is the input symbol or phrase after which the error was detected; the

 second is the next symbol to be scanned.

 If any pass one or pass two error messages occur (other than warnings

 or notes), then compilation stops at the end of pass two. Several error

 messages may be generated for what is essentially a single mistake.

 Error 2001 - more than one declaration of "<name>" in this block

 The identifier <name> has been declared more than once in the same

 block.

 Error 2002 - "<name>" is undeclared

 The identifier <name> has not been declared in the current block or

 in one containing it.

 Error 2003 - compiler error

 The compiler has malfunctioned in some way. Leave the card deck or

 source file exactly as it is and present it to the appropriate

 member of the Computing Center staff.

 Error Messages 387

 MTS 16: ALGOL W in MTS

 September 1980

 Error 2004 - invalid procedure designator

 In a call of the Link predeclared function, the parameter specify-

 ing the procedure to be called is invalid. It must be a string

 constant giving the name of the procedure only, with no leading,

 trailing, or embedded blanks.

 Error 2005 - mismatched parameter

 An actual parameter (that is an argument) in a procedure statement

 is not of a type compatible with the corresponding formal parameter

 in the procedure declaration.

 Error 2006 - incorrect number of actual parameters

 The number of actual parameters (that is arguments) in a procedure

 call does not equal the number of formal parameters in the

 procedure declaration.

 Error 2007 - incorrect dimension

 (1) The number of dimensions of an actual parameter (that is

 argument) array does not equal the number of dimensions

 declared for the corresponding formal parameter array.

 (2) The wrong number of subscripts have been used in an array

 element reference.

 Error 2008 - data area exceeded

 The data space for each procedure or block with declarations is

 limited to 4096 bytes. Read the suggestions for error 3001.

 Error 2009 - incorrect number of fields

 In creating a record, too many or too few initial values have been

 specified.

 Error 2010 - incompatible string lengths

 (1) In String1 := String2, String2 is longer than String1.

 (2) In String3(x|y), the substring specified exceeds the declared

 size of String3.

 (3) A long string has been passed to a shorter formal string

 parameter. This could happen if the formal parameter was call

 by name or call by value.

 (4) A shorter string has been passed to a longer formal string

 parameter. This could happen if the formal parameter was call

 by name, call by result, or call by value result.

 388 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 2011 - incompatible references

 A reference variable refers to a record class to which it is not

 bound.

 Error 2012 - blocks nested too deeply

 Nontrivial blocks (that is blocks with declarations, or the blocks

 associated with a procedure) or actual parameter (that is argument)

 lists are nested more than eight deep. The error is detected early

 in the ninth block.

 Warning 2013 - ";" should not follow expression

 In ’begin ...<expression>; end’ the semicolon is incorrect but

 ignored.

 Error 2014 - reference must refer to record class

 In ’reference (<name>)...’ , <name> is not a record class.

 Error 2015 - expression missing in procedure body

 A function procedure must have its final value specified by an

 expression standing alone immediately before the ’end’.

 Error 2016 - improper combination of types

 Mixing incompatible types as alternatives of a conditional or Case

 expression.

 Error 2017 - result parameter must be a variable

 In a procedure declaration, a formal parameter is declared ’...

 result <name>’, but a call to that procedure has passed an

 expression which is not a variable.

 Error 2018 - proper procedure ends with an expression

 A procedure which returns no value nonetheless ends with an

 expression. (This will happen if a final assignment statement is

 using "=", instead of ":=".)

 Error 2019 - syntax error in <item>

 The program violates the Algol W syntax rules for the construction

 <item>. This message usually occurs where there are many legal

 constructions possible, so the compiler cannot be more specific.

 The compiler will recover by throwing away the whole statement,

 declaration, etc., in which the error occurs.

 Error Messages 389

 MTS 16: ALGOL W in MTS

 September 1980

 Error 2020 - array id used incorrectly

 A simple variable must be used here.

 Error 2021 - too many constants in procedure

 Only 256 different constants (approximately) are allowed.

 Error 2022 - incorrect string length

 In S(x|y), y is less than or equal to zero, or greater than 256.

 Error 2023 - compiler table overflow

 The program is too big to fit into memory during compilation -

 there is no more room for the parse trees that represent the

 program. Recompile with a larger SIZE parameter or compile some

 procedures separately.

 Error 2024 - too many procedures

 Only 999 different procedures or blocks with declarations(’code

 segments’) are allowed by the compiler.

 Error 2025 - constant out of range

 (1) The absolute value of an integer is greater than (2**31)-1

 (that is more than 9 digits).

 (2) The absolute value of the adjusted exponent in a real number

 is greater than 75. (The exponent entered is adjusted to

 include the number of digits written in front of the decimal

 point in the mantissa.)

 Error 2026 - index of array or string must be integer

 (1) In S(x|y), x is not an expression of integer type.

 (2) An array subscript is not an expression of integer type.

 Error 2027 - incorrect operand type for <item>

 <item> is a unary operator.

 (1) ’long’ is applied to something which is already ’long’, or to

 string, bits, logical, or reference.

 (2) ’short’ is applied to something which is neither long real nor

 long complex.

 (3) ¬ or ’not’ (both mean not) is applied to something which is

 neither logical nor bits.

 390 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 (4) Prefix + or - is applied to something which is logical,

 string, bits, or reference.

 (5) ’abs’ is applied to something which is logical, string, bits,

 or reference.

 (6) In field Name(x), x is not a reference.

 (7) In ’for I := x...’, x is not an integer expression.

 (8) In various other contexts, an integer or logical operand is

 required.

 Error 2028 - incorrect operand type(s) for <item>

 <item> is a binary operator. Even when the error is in the first

 operand, the error is detected after both operands are inspected.

 (1) ’and’ or ’or’ is applied to expressions which are not both

 bits or both logical.

 (2) A relational operator (such as >) is applied to something

 which is complex, logical, or reference.

 (3) ’shl’ or ’shr’ is applied to something which is not bits, or

 is followed by either an expression not enclosed in parenthe-

 ses or a value which is not of integer type.

 (4) In ’x is <recordclass>’ , x is not of type reference.

 (5) In ’x**y’ , y is not of type integer.

 (6) In a For statement, the ’until’ expression is not of type

 integer.

 (7) In various other contexts, an integer type operand is

 required.

 Error 2030 - assignment incompatibility

 An attempt to assign an expression of one type to a variable of a

 different type (or pass an actual parameter (that is argument) to a

 formal parameter of a different type). The only automatic conver-

 sions allowed are integer to real, integer to long real, real

 to/from long real, integer/real/long real to complex/long complex,

 complex to/from long complex (real cannot be assigned to integer

 without using Truncate, Entier, or Round).

 Warning 2031 - name parameter; prefer "value result"

 -- or --

 Warning 2031 - at least one name parameter found

 Error Messages 391

 MTS 16: ALGOL W in MTS

 September 1980

 This is not an error, just a suggestion. In procedure declara-

 tions, it is more often the case that formal parameters have

 ’value’ (and/or ’result’) specified. Name parameters are very

 inefficient, and occasionally cause strange side effects. Check

 that leaving out ’value’ (and/or ’result’) is necessary. Very few

 algorithms require name parameters.

 If the compiler parameter TERSE is in effect, the second form of

 the message is printed for the first name parameter only; other

 name parameters (if any) are passed without warning.

 Error 2032 - simple variable id used incorrectly

 The identifier in a substring designator is not type string.

 Error 2033 - ... further messages suppressed

 More than 64 errors detected; compilation continues with further

 messages suppressed.

 Error 2034 - <xxx> found where <yyy> should be

 The compiler expects to find <yyy> here, but the program actually

 has <xxx> instead. The compiler will recover by substituting some

 arbitrary <yyy> for <xxx>.

 Warning 2034 - <xxx> found where <yyy> should be

 The compiler expects to find <yyy> here, but the program actually

 has <xxx> instead. The compiler will continue as if <yyy> were

 really there instead of <xxx>.

 Error 2035 - missing <xxx> (inserted)

 The compiler expects to find <xxx> here, and guesses that it has

 been omitted. It will continue by inserting some arbitrary <xxx>.

 Warning 2035 - missing <xxx> (inserted)

 The compiler expects to find <xxx> here, and guesses that it has

 been omitted. It will continue as if <xxx> were really there.

 Warning 2036 - <xxx> is illegal here (deleted)

 This symbol (usually some punctuation symbol such as "," or ";") is

 not needed here - in fact, it is illegal here. The compiler will

 ignore it.

 Warning 2037 - "result value" should be "value result"

 According to the specifications of Algol W, ’value result’ is legal

 but ’result value’ is not. However, this compiler can understand

 either order, and should compile the program properly regardless.

 392 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 2038 - redundant or contradictory attributes

 An example of redundant attributes in a declaration:

 integer value integer result X

 An example of contradictory attributes:

 integer string Y

 Error 2039 - a "procedure" parameter cannot be value, result, or array

 A procedure parameter can only be specified as call by name. (A

 procedure parameter is the name of one procedure which is passed to

 another procedure as a parameter.)

 Error 2040 - an array parameter cannot be value or result

 An array can only be passed to a procedure by name; it cannot be a

 value or result parameter.

 Warning 2041 - assignment operator should be ":="

 An assignment statement was apparently intended, but "=" was

 employed instead of ":=" . Examples:

 A := B

 takes the value of B and puts it in A, and is called an

 assignment.

 A = B

 is a logical expression which compares A and B; its value is

 either ’true’ or ’false’.

 If a logical expression was intended, this message means that an

 assignment statement would have been legal here, but a logical

 expression is not. This message also appears if "=" is used

 instead of ":=" in a For statement; ’for I := ...’ is the correct

 form.

 Warning 2042 - true part of "if" not a simple statement

 In an ’if ... then ... else’ statement, the statement between

 ’then’ and ’else’ must be a simple statement. This restriction is

 necessary to avoid possible ambiguities.

 Error 2043 - illegal quantity to left of ":="

 In an assignment statement, the part to the left of the ":=" is

 something whose value cannot legally be changed in this way.

 Examples:

 Error Messages 393

 MTS 16: ALGOL W in MTS

 September 1980

 A + B := 5

 is illegal because A + B is an expression, not a variable.

 5 := A + C

 is illegal because 5 is a constant, not a variable.

 for A+B := 1 until N

 is illegal because A+B is an expression, not a variable.

 The left-hand side of the assignment operator := must be a

 variable, not a constant or an expression.

 Warning 2044 - non-simple statement as predeclared procedure argument

 Any statements among the parameters of a Write statement must be

 simple statements. The only reason for allowing statements here is

 to allow one to change the values of the output editing variables.

 If this is not the intention, this feature should not be used.

 Error 2045 - compiler stack overflow

 This message occurs when the program is too complicated for the

 compiler to handle. This usually means a very complicated expres-

 sion with many levels of parentheses. Remedy: Try to rewrite the

 program to avoid such complicated constructions.

 Error 2046 - declaration is not within a program

 This declaration is not inside any main program. (Programs must

 begin with ’begin’ and end with ’end.’.)

 Error 2047 - expecting <xxx>, but <yyy> was found

 The compiler is looking for some <xxx> here, but the symbol in the

 program is <yyy>, and <yyy> is not <xxx> (or is not a legal first

 symbol for an <xxx>). The compiler will recover by throwing away

 the whole statement, declaration, etc., in which the error occurs.

 Error 2048 - type must precede other attributes

 A parameter declaration must begin with the parameter’s type (such

 as ’integer’ or ’string’). Examples:

 value integer X

 is incorrect.

 integer value X

 394 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 is correct.

 Error 2049 - no type specified in declaration

 In the declaration of a parameter, the type has been omitted.

 Examples:

 procedure A(X, Y);

 real procedure B(value result Z);

 In each example, a type (such as ’integer’ or ’string’) must be

 included for each parameter.

 Error 2050 - expression found in middle of block

 An expression has been found where a statement should be, among the

 statements of a block. The error is not detected until the end of

 the expression. This can be caused by writing "=" instead of ":="

 for an assignment.

 Warning 2051 - goto statement; prefer other control structures

 -- or --

 Warning 2051 - at least one goto statement found

 This is not an error, just a suggestion to improve one’s program-

 ming style. In most cases, Algol W programs can be made clearer

 and simpler by avoiding Goto statements and using other control

 statements (such as While and If statements) instead.

 If the compiler parameter TERSE is in effect, the second form of

 the message appears for the first goto statement encountered; other

 occurrences are passed without warning.

 Error 2052 - declarations must precede statements

 In any block, all declarations must come before all executable

 statements. This includes procedure declarations as well as

 variable declarations. This message is sometimes caused by earlier

 syntax errors in declarations. Remedy: If the program is other-

 wise correct, just rearrange the declarations and statements in

 this block.

 Error 2053 - substring length must be constant

 The length of the substring (the quantity after the "|" or "//")

 must be an integer constant. Substrings must have constant lengths

 in Algol W, just like string variables.

 Error 2054 - "<name>" is undeclared in this block

 A variable with this name has been declared somewhere in the

 program, but the place where the variable is used (where the error

 Error Messages 395

 MTS 16: ALGOL W in MTS

 September 1980

 message occurs) is not within the scope of the declaration.

 Remedy: Move the declaration to some outer block.

 Error 2055 - "array" missing in array declaration

 The word ’array’ must appear in an array declaration. Example:

 integer A(1::10)

 is incorrect.

 integer array A(1::10)

 is correct.

 Error 2056 - error recovery fails; more errors may follow

 The compiler has reported some errors in the program and is trying

 to continue, but it has detected inconsistencies in its internal

 tables. This is frequently caused by serious syntax errors in

 declarations. This is not a bug in the compiler; it is doing the

 best it can. Remedy: Fix the errors which the compiler found and

 recompile.

 PASS THREE ERROR MESSAGES _________________________

 Pass 3 errors with numbers from 3001 to 3008 are disastrous, causing

 immediate termination of the compilation. After any fatal pass 3 error,

 a table of triples (coordinate number, byte offset, byte length), is

 listed, indicating how much code was generated for each statement in the

 current program segment. The last entry of this table and the last two

 byte lengths are occasionally not meaningful.

 Pass 3 errors with numbers of 3009 or greater cause part of the

 compiled program to be inconsistent. Usually this is because a

 predeclared procedure argument error has been noticed which could not be

 detected in passes 1 or 2 because it did not violate the rules of Algol

 W grammar. A run time error 5023 will occur if this path through the

 program is executed. Compilation continues after the error message has

 been issued, and a complete object deck will be output.

 Error 3001 - program segment overflow

 This error message occurs because of a design constraint of the

 compiler: the total amount of machine code and constants for any

 procedure or other block with declarations must be less than 8192

 bytes (a segment of code). All of the constants for a block are

 allocated in front of the first statement. Therefore, if the byte

 offset of the first statement is very large, constants are taking

 up too much space. This sometimes happens in programs with many

 396 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 string constants (ten 80 character string constants take up 800

 bytes). It is necessary to reduce the number of statements and/or

 constants in the block; this can be achieved by introducing new

 procedures or by inserting at least one declaration into some

 internal block(s), thereby forcing part of the block that was too

 big into more than one segment of code.

 Error 3002 - compiler stack overflow

 A push-down stack, used by the compiler while generating code, has

 overflowed. A program segment overflow was probably imminent. The

 remedies suggested in Error 3001 apply.

 Error 3003 - compiler logic error

 Internal consistency checks performed by the compiler have failed.

 Leave your card deck or source file exactly as it is. Take the _______

 program listing and card deck (or terminal output) to the appropri-

 ate member of the Computing Center staff.

 Error 3004 - program area overflow

 There is insufficient space in memory to contain the compiled

 program. Recompile with a larger SIZE parameter.

 Error 3005 - data segment overflow

 The data for each procedure or block with declarations are limited

 to 4096 bytes. Read the suggestions in error message 3001.

 Error 3006 - coordinate table overflow

 The table being constructed to supply the coordinate number in

 run-time error messages has overflowed. Recompile with a larger

 SIZE parameter.

 Error 3007 - too many procedure calls

 References to only 63 procedures are allowed within any single

 procedure. In this context, procedure means a code segment, and

 includes programs, procedures, non-trivial blocks, and external

 references.

 Error 3008 - too many procedure parameters

 A maximum of 34 arguments are allowed in the call of a procedure.

 This error message is also produced when the Call predeclared

 procedure is used to call a subroutine with more than 48

 parameters.

 Error Messages 397

 MTS 16: ALGOL W in MTS

 September 1980

 Error 3009 - expression in get list

 In a call to Get, Geton, or Getstring the third or subsequent

 argument specifies an expression. Such arguments designate the

 destination of a value obtained as the result of an input

 conversion, and must specify a variable. The statement:

 Get(3, "2X,I8", Var*3);

 would produce this error message.

 Error 3010 - literal constant in get list

 Read the comments for error 3009. A literal constant may not be

 specified as the destination for an input value. If allowed, such

 an action would overwrite program object code. The statement:

 Get(4, "F8.4", 1.23);

 would result in this error message.

 Error 3011 - invalid predeclared procedure nesting

 While the grammar of the language allows a predeclared procedure

 call as an argument to a predeclared procedure, in certain cases

 run time system restrictions make this impossible. For instance:

 Put(6, "H0,I10", Get(5, null, A), A);

 which is legal in the grammar cannot be handled by the run time

 system.

 This error message results if a direct call of this kind is issued

 and can be detected by the compiler. If the call is indirect, such

 as a procedure called as an argument subsequently calling another

 predeclared procedure, then the compiler cannot detect this. The

 error is reported at run time instead. See the description of

 error 5030.

 Error 3012 - procedure needs string parameter

 In a call to one of the string input/output predeclared procedures

 a particular argument was expected of simple type string and was

 not found to be so. For example:

 integer Card;

 .

 Readcard(Card);

 Predeclared procedures which can cause this error message are

 Readcard, Writecard, Getcard, Putcard, Xgetcard, and Xputcard.

 398 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 3013 - invalid format designator

 A format designator is the second argument to one of the prede-

 clared procedures Get, Geton, Getstring, Put, Puton, or Putstring.

 It must be either a string expression or the ’null’ constant

 reference.

 Error 3014 - procedure needs more parameters

 Certain predeclared procedures need a minimum of two arguments;

 others need a minimum of three. Failure to provide at least this

 number will produce this error message. See the specification of

 the predeclared procedure in question in the main manual.

 Error 3015 - predeclared procedures nested too deeply

 This message should never occur. It is a consequence of a

 consistency check performed by the compiler during processing of

 predeclared procedures. A limit of 31 levels of nesting for

 predeclared procedure or predeclared function calls are allowed.

 Error 3016 - parameters supplied with register call

 An Rcall statement has more than one argument. Parameters supplied

 during an R-call subroutine call are taken from the predeclared

 variables R0 and R1.

 Error 3017 - Sense key is not a string

 A Sense statement has a second argument which is not a string

 expression. This second argument supplies keywords which request

 information about an input/output stream.

 Error 3018 - invalid external symbol designator

 An external symbol designator is the first argument of Call, or the

 single argument of External or Rcall, which specifies the external

 (loader) symbol definition name (ESDname) of a subroutine or data

 area. It must be given as a string constant from one to eight

 characters in length with no embedded blanks.

 Error 3019 - procedure needs integer index

 A predeclared procedure argument must be of simple type integer,

 and was not. For example, the second argument to Xgetcard should

 be an integer line number.

 Error 3020 - Link must be nested in Call

 An occurrence of the Link predeclared function was found which was

 not an argument of the Call predeclared procedure. The following

 sequence:

 Error Messages 399

 MTS 16: ALGOL W in MTS

 September 1980

 integer Ptr;

 Ptr := Link("Myproc");

 Call("SUBR", ..., ..., Ptr, ...);

 is not allowed, since Myproc may not be in scope when the call is

 issued. Instead:

 Call("SUBR", ..., ..., Link("Myproc"), ...);

 is the required method of coding the call.

 Error 3021 - invalid procedure designator

 An argument to Link is invalid. The procedure designator must be a

 string constant containing the name of the procedure to be linked

 in, with no embedded blanks and between one and 32 characters in

 length.

 Error 3022 - integer or bits parameter needed

 A predeclared procedure argument must be of simple type integer or

 bits, and was not. For example, the second argument to Locate is

 an integer or bits variable which will receive a machine address.

 Error 3023 - facility not allowed in monitor mode

 This error should not normally occur and is documented here only

 for completeness.

 LOADER ERROR MESSAGES _____________________

 Loader error messages are all of the form:

 Error 4xxx - message

 With the exception of 4009, which is a warning, all of these errors are

 disastrous and terminate processing.

 Error 4001 - unrecognized loader record

 An object card has been encountered which is not one of the set

 recognized by the loader. This should not occur; consult a member

 of the Computing Center staff.

 Error 4002 - library search not available in monitor mode

 This error should not normally occur and is documented here only

 for completeness.

 400 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 4003 - section definition not 1st esd item on card

 An unexpected ordering of ESD items has been noticed by the loader.

 This should not occur; consult a member of the Computing Center

 staff.

 Error 4004 - symbol on "RLD" card not defined

 A symbol whose address is to be determined by the loader cannot be

 found. This should not occur; consult a member of the Computing

 Center staff.

 Error 4005 - insufficient space to load program

 Object programs generated by the compiler are loaded into the

 storage area vacated by the compiler tables. If this is not large

 enough, there will not be enough room. Recompile with a larger

 SIZE parameter.

 Error 4006 - insufficient space to run program

 Read the comments for error 4005. After the program has been

 loaded, remaining storage is allocated to the program for data and

 record storage during execution. If less than six pages remain,

 the loader will refuse to accept the program. Recompile with a

 larger SIZE parameter.

 Error 4007 - section definition name repeated

 Two program segments have been found with the same section

 definition name. This should not occur; consult a member of the

 Computing Center staff. Because the MTS loader overwrites, if

 possible, new definitions of routines over the old image, multiple

 definitions of external routines cannot be detected. A warning

 message is printed by MTS only if a subsequent definition is

 longer. Beware...

 Error 4008 - symbols are undefined

 One or more external (loader) symbols are undefined. A program

 references precompiled Algol W procedures or FORTRAN (or other O/S

 Type I) subroutines, and the object for these routines has not been

 supplied. It should have been given via a LIBSEARCH=<filename>

 compiler parameter.

 Note: This message will normally only appear if CANCEL is given as

 a reply to the MTS undefined symbol prompt, or if *ALGOLW has been

 invoked in batch.

 Error Messages 401

 MTS 16: ALGOL W in MTS

 September 1980

 Error 4009 - warning: low core symbol table undefined

 A low core symbol (LCS) table card has been encountered which

 specifies an unknown symbol. This should not occur; consult a

 member of the Computing Center staff.

 Error 4010 - address constant length not 4 bytes

 A short address constant has been encountered. This should not

 occur; consult a member of the Computing Center staff.

 Error 4011 - card out of sequence

 The Algol W loader expects object module cards to be submitted in

 the sequence ESD-TXT-RLD-END, and a loader card has been found out

 of sequence. This should not occur; consult a member of the

 Computing Center staff.

 RUN-TIME ERROR MESSAGES _______________________

 All run-time error messages are in one of the two forms:

 Run error 5xxx near <location> in <name> - message

 or:

 Exception 5xxx near <location> in <name> - message

 The first form indicates a fatal run error; execution of the program

 will be terminated after the message and any post-mortem dump informa-

 tion has been printed.

 The second form, distinguished by the word "exception", indicates an

 exceptional condition detected by Algol W and processed in accordance

 with the value of the relevant predeclared reference variable. This

 value will have been assigned to the variable in the user program.

 Execution of the program is restarted after the message has been

 printed.

 Any exceptional condition which will terminate execution prints the

 first form of error message.

 In the error message, <location> is a source program coordinate near

 to the cause of the error, and <name> is the name of the procedure which

 contains this coordinate. If the procedure is a main program, the

 characters "MAIN" are printed.

 Under certain conditions Algol W cannot determine the location of a

 run time error or exception, so in these cases,

 402 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 ... near <location> in <name> ...

 is replaced by:

 ... at unknown location ...

 Programs compiled with the NOCHECK compiler parameter can never report a _____

 run time location.

 Fatal Run Error Conditions __________________________

 Error 5001 - run parameter list

 An error has been detected in the scanning of run time time

 parameters. These come from:

 (1) the right hand side of a RUNPARM compiler parameter;

 (2) parameters supplied at run time, from a /EXECUTE control

 record in compile, load and go mode, or via the MTS $RUN PAR=

 field with a program run from an object deck.

 Error 5002 - case selection indexing

 An index in a Case statement or Case expression is less than one or

 greater than the number of cases. Check for correct assignment of

 the variable or variables forming the expression.

 Error 5003 - substring indexing

 The substring selected extends off one end of the string. All of

 the characters specified by a substring designator must lie within

 the bounds of the string. Check the assignments to the variable or

 variables, if any, forming the offset expression. Does the

 addition of the constant length specify a character beyond the end

 of the string?

 Error 5004 - assignment to name parameter

 An attempt has been made to assign to an actual parameter which is

 not a variable, but is instead an expression, a constant, or a

 control identifier. When a procedure assigns a new value to a name

 parameter, the assignment takes place directly to the actual

 parameter supplied in the procedure call. That actual parameter

 must then be a variable, that is a quantity which would be legal on

 the left hand side of an assignment statement.

 Error Messages 403

 MTS 16: ALGOL W in MTS

 September 1980

 Error 5005 - data area overflow

 No more storage is left for variables. This can happen if a

 procedure gets into a loop calling itself recursively, or if there

 really is not enough memory. In the latter case, running the

 program with a larger SIZE parameter may cure the trouble.

 The message information includes the size of the run time work

 space, which is shared by both the data stack and record storage.

 Before this message is produced Algol W will attempt to reclaim

 more space for the data area stack by compacting the record storage

 area. Only if this is unsuccessful will this message appear.

 Error 5006 - actual-formal mismatch in procedure call

 An actual parameter passed to a procedure is not assignment

 compatible with the corresponding formal parameter. The number of

 the parameter in error is printed with this message. Check this

 parameter against the declaration of the procedure named as the

 actual parameter for the formal procedure referenced by the

 erroneous call.

 Error 5007 - record storage area overflow

 No more storage exists for records. Running the program with a

 larger SIZE parameter may cure the trouble.

 The message information includes the size of the run time work

 space, which is shared by both the data area stack and record

 storage.

 Before this message is produced Algol W will attempt to reclaim

 more space for record storage by compacting the existing record

 storage area. Only if this is unsuccessful will this message

 appear.

 Error 5008 - length of string input

 The string read in is longer than the length of the receiving

 string variable or substring. Possibly a quote (") or prime (’)

 has been omitted in the data, or two adjacent strings have no

 separating blank causing two quotes or two primes to be interpreted

 as a single character within the first string. Check your data.

 Error 5009 - Link function error

 An error condition has been detected during execution of the Link

 function, which provides the facility to call back main code

 procedures from a called FORTRAN subroutine. Certain restrictions

 are imposed, and the message gives details of the violation

 detected.

 404 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 5010 - input conversion failed

 An input data item could not be converted to the type of the

 destination variable. The message gives details of the type of

 conversion requested, the data item in error, and the stream

 assignment from which it was input.

 Error 5011 - reference input

 Reference values may not be input. Input assignments to records

 must be made to the individual record field designators.

 Error 5012 - reference output

 Reference values may not be output. Output of records must be done

 by specifying the individual record field designators.

 Error 5013 - incorrect number of parameters

 The number of actual parameters in a procedure call is different

 from the number of formal parameters declared in the called

 procedure. Check the declaration of the procedure named as the

 actual parameter for the formal procedure referenced by the

 erroneous call.

 Error 5014 - array too large

 Either the first n-1 dimensions of an array declaration define too

 many elements, or an attempt has been made to declare an array

 greater than one megabyte in size. The product of the first n-1

 dimension lengths (<upper-bound> - <lower-bound> + 1) multiplied by

 the size of a single element must be less than 32768 .

 The element sizes are:

 logical - 1

 integer, real, bits, reference - 4

 long real, complex - 8

 long complex - 16

 string - as declared

 For example:

 long real array A(1::4, 1::5000);

 long real array B(1::5000, 1::4);

 Array A is correct; array B will produce this error message. 5000

 times the element length (eight for long real) is 40000, which is

 greater than the maximum of 32767 allowed.

 Error 5015 - array subscripting

 Error Messages 405

 MTS 16: ALGOL W in MTS

 September 1980

 An array subscript is not within the declared bounds of the array.

 Check for correct assignment of the variable or variables forming

 the subscript expression or expressions.

 Error 5016 - real to integer conversion failed

 A real value whose modulus is greater than the maximum possible

 integer, 2147483647, cannot be converted to an integer value.

 Number representation is discussed in Appendix J.

 Error 5017 - page estimate exceeded

 The number of pages estimated has been exceeded. Page limit

 checking is on by default only for the PRINT stream (MTS SPRINT),

 but the program may have changed the default by calling the Qualify

 predeclared procedure.

 The page limit in effect is that set by the PAGES compiler or run

 time parameters. In compile, load and go mode, if no PAGES

 parameter is given but a system limit is in force (MTS local or

 global page limit) then the Algol W system estimate is set to one

 less than the next system limit at the time the program commences

 execution. This ensures that Algol W diagnostic messages are

 printed before execution is stopped by the operating system.

 Error 5018 - time estimate exceeded

 The execution CPU time estimated has been exceeded.

 The time limit in effect is that set by the ETIME or TIME compiler

 or run time parameters. In compile, load and go mode, if no

 parameter is given but a system limit is in force (MTS local or

 global time limit) then the Algol W system estimate is set to

 slightly less than the next system limit at the time the program

 commences execution. This ensures that Algol W diagnostic messages

 are printed before execution is stopped by the operating system.

 Error 5019 - format string processing failed

 One of the rules for the construction of format strings has been

 broken. The message printed gives the reason for rejecting the

 format string and the position within the string at which the error

 was detected. See the section "Format Directed Input and Output".

 Error 5020 - format / type mismatch

 An attempt has been made to input or output a value with a format

 code which is not compatible with the value’s simple type. The

 message gives the simple type and format code involved. See the

 section "Format Directed Input and Output".

 406 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 5021 - incompatible field designator

 An attempt has been made to access a field of a record using a

 reference which does not designate a record of the corresponding

 record class. The reference might be null or undefined. If it is

 not, check the record class used for its most recent assignment.

 Error 5022 - assertion failed

 The result of the evaluation of the logical expression in an Assert

 statement was false or undefined. The value of the assertion

 counter predeclared variable A_Count, which is incremented by one

 by each assert statement processed, is printed with the message.

 Error 5023 - error marker encountered

 An attempt has been made to execute a path through the program

 which was flagged as invalid by the code generation phase of the

 compiler.

 This error will be produced at run time if one of the non-fatal

 pass three compiler errors has been given for the section of

 program in question. Marking such sections of code as invalid

 allows the program to be run safely to test other paths through the _____

 program without recompilation.

 Error 5024 - no read allowed on this I/O stream

 An input/output stream could not be accessed from an input

 statement.

 (1) One of the named predefined output streams PRINT, PUNCH, or

 ERROR has been used in an input statement.

 (2) The file-or-device attached to the specified input/output

 stream may not be accessed to read data in. If a file, check

 that it is permitted for read access.

 Error 5025 - no write allowed on this I/O stream

 An input/output stream could not be accessed from an output

 statement.

 (1) One of the named predefined input streams INPUT or USER has

 been used in an output statement.

 (2) The file-or-device attached to the specified input/output

 stream may not be accessed to write data. Did you intend to

 write to it? If a file, check that it is permitted for write

 access. If a magnetic tape, check that it was mounted with

 the necessary write-permit ring.

 Error Messages 407

 MTS 16: ALGOL W in MTS

 September 1980

 Error 5026 - rewind of this I/O stream is not allowed

 An attempt has been made to rewind a file or device which is not

 rewindable.

 (1) One of the named predefined streams INPUT, PRINT, PUNCH,

 ERROR, or USER has been used in a Rewind statement. These

 streams may not be rewound.

 (2) The file-or-device attached to the specified input/output

 stream does not have rewind capability. Did you intend to

 rewind it? Devices such as terminals, card readers and

 printers cannot be rewound; files and tapes may be.

 Error 5027 - invalid or undefined I/O stream

 The stream designator specified in an input/output procedure call

 is either incorrectly constructed or is not defined. Algol W

 input/output stream names must be either predefined or user

 defined. If the latter, they must be defined by a call to Assign

 before being used in any other input/output predeclared procedure

 call. Valid stream names are constructed as follows:

 (1) A string expression containing the name of a predefined

 input/output stream. Either:

 (a) one of the named streams INPUT, PRINT, PUNCH, ERROR, or

 USER, or

 (b) one of the numbered streams, 0 to 19

 (2) An integer expression containing a value between 0 and 19,

 specifying a predefined numbered stream.

 (3) One of the predeclared bits variables Input, Print, Punch,

 Error, or User, representing the corresponding named prede-

 fined stream.

 (4) Either of the predeclared bits variables Rdr or Wtr, repre-

 senting the basic reader or writer stream.

 (5) A string expression containing the name of a user defined

 stream. This string must contain only alphanumeric charac-

 ters, with no embedded blanks.

 Error 5028 - Empty failed

 An attempt has been made to empty a stream which is either not

 assigned, not a file, or for which the required access is not

 available.

 408 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 (1) One the named predefined streams INPUT, PRINT, PUNCH, ERROR,

 or USER has been used in an Empty statement. These streams

 may not be emptied.

 (2) The attached file-or-device is not a file; only disk files may

 be emptied.

 (3) The file attached to the specified input/output stream may not

 be emptied. Did you intend to empty it? Check that you have

 the necessary write access to the file.

 Error 5029 - too many I/O streams

 A maximum of 25 user defined input/output streams may be simultane-

 ously active. An attempt to create more than that number will

 produce this error message. User defined streams should be

 released when no longer needed by the program; have you forgotten

 to do so?

 Error 5030 - predeclared procedures illegally nested

 An attempt has been made to call an input/output predeclared

 procedure while a similar procedure call was being processed.

 This error message indicates a condition trapped at run time

 because it could not be detected at compile time. See the comments

 for error 3011.

 Has a proper or function procedure call been issued from within the

 argument list of an I/O predeclared procedure call? Does the

 called procedure contain an I/O procedure call?

 Error 5031 - I/O error on read

 A serious error (not end-of-file) has been detected while trying to ___

 input a record from the specified file-or-device. The system I/O

 subroutine return code is reported as part of the message.

 Error 5032 - I/O error on write

 A serious error has been detected while trying to output a record

 to the specified file-or-device. The system I/O subroutine return

 code is reported as part of the message.

 Error 5033 - Assign failed

 Either a file or device name was not given, or it could not be

 attached.

 (1) The stream specified was one the named predefined streams

 INPUT, PRINT, PUNCH, ERROR, or USER. These particular streams

 may not be reassigned.

 Error Messages 409

 MTS 16: ALGOL W in MTS

 September 1980

 (2) All of the characters in a file-or-device name are blanks.

 (3) A character string has been supplied which is not a valid MTS

 file-or-device name.

 Error 5034 - Release failed

 The file or device attached to the specified stream could not be

 released.

 (1) The stream specified was one the named predefined streams

 INPUT, PRINT, PUNCH, ERROR, or USER. These particular streams

 may not be released.

 (2) For any other valid input/output stream this error condition

 should not occur. Please consult a member of the Computing

 Center staff.

 Error 5035 - indexed operation on this I/O stream not allowed

 An attempt has been made to perform an indexed input/output

 operation using a stream which is not assigned, not a file, or for

 which the required access is not available.

 (1) One of the named predefined streams INPUT, PRINT, PUNCH,

 ERROR, or USER has been used in a call to Xgetcard, Xputcard,

 or Xdelete. These streams may not be referenced by an indexed

 input/output operation.

 (2) The attached file-or-device is not a file; indexed input/

 output is available only for disk files.

 (3) The file attached to the specified input/output stream is of a

 type (such as sequential) which does not support indexed

 operations. Did you intend such an operation?

 Error 5036 - Control failed

 A control command passed to the operating system via the Control

 predeclared procedure has been rejected. The system return code

 for the failure is printed with the message.

 Error 5037 - Qualify failed

 A keyword or keyword expression given as a string argument to the

 Qualify predeclared procedure could not be recognized.

 Error 5038 - Iocontrol failed

 A keyword or keyword expression given as a string argument to the

 Iocontrol predeclared procedure could not be recognized.

 410 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 Error 5039 - no Sense keyword

 In the second argument supplied in a call to the Sense predeclared

 procedure, either no keyword was given, or the list of keywords has

 been exhausted.

 Error 5040 - Sense keyword processing failed

 A keyword or keyword expression given as a string argument to the

 Sense predeclared procedure could not be recognized.

 Error 5041 - Sense keyword and data type inconsistent

 In a call to the Sense predeclared procedure, a supplied keyword

 and the simple type of the corresponding receiving variable are

 incompatible.

 Error 5042 - data driven replication factor for input

 The special data driven replication factor "R" may not be specified

 for an input operation. This factor is intended for use in calls

 such as:

 Put(Print, "4X,RX,RH*", Num_Spaces, Num_Asterisks);

 where the length of a space or character field, or an output tab

 position, are supplied in put-list variables. The equivalent input

 operation is not supported.

 Error 5043 - input field all break characters

 In a format directed input operation, an attempt has been made to

 decode an input data item from a field composed entirely of break

 characters (blanks or commas).

 Error 5044 - data item not alone in field

 In a format directed input operation, an attempt has been made to

 decode an input data item from a field which contained more than

 one data item. Break characters (spaces or commas) are not allowed

 within a data item. For example:

 Get(Input, "3I5", Ia, Ib, Ic);

 with an input data line:

 123 456 789

 will fail while decoding the value of Ia since the I5 field will

 contain "123 4", instead of the expected single integer value.

 Error Messages 411

 MTS 16: ALGOL W in MTS

 September 1980

 Error 5045 - break characters in hexadecimal field

 This error message is produced as a result of a condition detected

 during "Z" format input of a floating point value. Such values

 must be completely specified. For instance, a long real variable

 occupies 8 bytes of storage and requires exactly 16 hexadecimal

 digits ("0"-"9" or "A"-"F" or "a"-"f") to specify it.

 Error 5046 - Hexadecimal input conversion failed

 During a format directed input operation, "Z" format hexadecimal

 input conversion has failed. This means that a character has been

 found which is not a valid hexadecimal digit ("0"-"9" or "A"-"F" or

 "a"-"f").

 Error 5047 - Bad parameter to NEWLINE

 The predeclared procedure NEWLINE has been called with a parameter

 value that is less than zero or greater than 60.

 Error 5048 - An Algol W string function procedure has been called from a

 non-Algol W routine.

 Algol W string function procedures may not be called from proce-

 dures written in languages other than Algol W because there is no

 standard way of returning string values using the O/S Type I

 calling convention.

 Predeclared Function Exceptional Conditions ___

 Run time error messages in the following ranges are the result of

 conditions detected during the evaluation of predeclared functions of

 analysis:

 5201-5299 real predeclared functions

 5301-5399 long real predeclared functions

 5401-5499 complex predeclared functions

 5501-5599 long complex predeclared functions

 This is not to say that there are four hundred different error

 conditions; there are not. The information given with the error message

 is sufficient to identify the function in error and includes the invalid

 argument supplied to it. For this reason a complete list of error

 messages is not given here. The information in Appendix F includes the

 valid argument ranges for each function. In many cases this is

 considerably less the range of rational numbers which may be represented

 on the computer.

 Predeclared functions of analysis may report error conditions for one

 of several reasons.

 412 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 (1) Argument values for which the function is not defined; for

 instance Log(-1). The logarithm of a negative argument yields a

 complex result.

 (2) Argument values which are singularities in the definition of a

 function; for instance Cot(0). The cotangent function is

 discontinuous at this argument value.

 (3) Argument values for which the evaluation of the function yields

 a result which may not be represented on the computer; for

 instance Exp(500). The exponential function value for this

 argument is greater than machine ’infinity’. (Number represen-

 tation is discussed in Appendix J.)

 (4) Although the function is defined for the specified argument and

 the result representable on the computer, round-off would

 destroy the accuracy; for instance Sin(3’+17). The sine func-

 tion is computed by reducing the argument to the equivalent in

 the range 0 to 2*pi. If this cannot be done with sufficient

 accuracy (because significance is lost) then the sine cannot be

 computed.

 Predeclared function error messages normally start with the words "Run

 error" and cause a fatal termination of the executing program. This

 action can be overridden by assignments to the predeclared system

 reference variable Function. Where such an assignment causes the error

 condition to be recovered sufficiently so that execution will resume,

 the word "Exception" replaces "Run error" at the start of the message if

 one is printed.

 Program Interruption Exceptional Conditions ___

 A program interruption occurs on a computer when a program attempts

 execution of an instruction which is either invalid, at an invalid

 location, or specifies one or more instruction operands which are

 invalid or at invalid locations.

 For an example of this consider the following small section of an

 Algol W program:

 real Dividend, Divisor, Quotient;

 Read(Dividend, Divisor);

 Quotient := Dividend / Divisor;

 When the compiler generates object code for the last statement, a divide

 instruction is assembled as part of the object program output. When the

 program segment executes, however, the Read statement may supply a value

 of zero for the divisor. Division by zero has no defined result, so the

 computer halts the program at this point with a program interruption.

 Algol W can take control when such conditions occur, and an error

 Error Messages 413

 MTS 16: ALGOL W in MTS

 September 1980

 message in the 59xx series is printed. In this case the "xx" is the

 system’s program interruption code; the explanation of the code is

 printed as part of the message.

 The errors in this series are:

 Number Interrupt ______ _________

 5901 operation

 5902 privileged operation

 5903 execute

 5904 protection

 5905 addressing

 5906 specification

 5907 data

 5908 integer overflow

 5909 integer division by zero

 5910 decimal overflow

 5911 decimal division by zero

 5912 exponent overflow

 5913 exponent underflow

 5914 significance

 5915 floating point division by zero

 5916 software

 The message printed for these error conditions may also include certain

 location information. If the error message states that the condition

 occurred within an Algol W library routine, please contact a member of

 the Computing Center staff. (The 5916 message is a ’catch all’ for any

 other condition or library error and should never occur.)

 The message may state instead that the error occurred while executing

 an external routine. If so, the error occurred during the execution of

 a non-Algol W routine to which control has been passed via a Call or

 Rcall predeclared procedure or a FORTRAN statement. Algol W attempts to

 determine whether the called routine was coded in FORTRAN. If it was,

 the name of the called subroutine or function subprogram is printed with

 the error message. If not, the entry point address of the called

 routine is printed.

 Error messages which do not specify either a library routine or an

 external location refer to an error condition during execution of Algol

 W object code. Certain of these error conditions may be intercepted by

 prior assignment to one the predeclared reference variables listed

 below:

 Variable Condition ________ _________

 Intovfl 5908 -- integer overflow

 Intdivzero 5909 -- integer division by zero

 Ovfl 5912 -- exponent overflow

 Unfl 5913 -- exponent underflow

 Divzero 5915 -- floating point division by zero

 414 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 When an error message is printed as a result of one of these conditions,

 and a prior assignment has been made to the relevant predeclared

 variable, the phrase "Run error" in the message is replaced by the word

 "Exception". Note also that occurrences of the exponent underflow

 condition will never be reported unless an assignment is made to the

 Unfl variable, since its value is initialized to ’null’.

 An addressing exception within Algol W object code may be the result

 of a null or undefined reference; other conditions not in the prede-

 clared variable list above should be reported to Computing Center staff.

 End-of-File Exceptional Conditions __________________________________

 This section refers to message number 5999.

 End-of-file detected by the following predeclared procedures is

 treated as an exceptional condition:

 Read

 Readon

 Readcard

 Get

 Geton

 Note however that the following predeclared procedures do not treat

 end-of-file or record absent as an exceptional condition:

 Getcard

 Xgetcard

 These two procedures only set the predeclared variable Filemark to

 ’true’, and it is the responsibility of the program to test for

 end-of-file or record absent on return.

 For the first list of predeclared procedures, end-of-file exceptions

 are processed under the control of the Endfile predeclared reference.

 By default end-of-file conditions cause a fatal run error message

 (number 5999) to terminate the program. If a prior assignment to the

 Endfile reference will cause the program to resume execution, then the

 phrase ’Run error’ is changed to ’Exception’ as with the other

 exceptional conditions.

 Error Messages 415

 MTS 16: ALGOL W in MTS

 September 1980

 416 Error Messages

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX D: BASIC SYMBOLS __________________________

 CHARACTER SET _____________

 Algol W programs are written using the following character set.

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

 0 1 2 3 4 5 6 7 8 9

 + - * / = : ; . , # " ’ | ¬ () < > % _

 Note that in reserved words and identifiers, described later, lower case

 letters are treated as if they were the equivalent upper case letter.

 Within quotes ("), any character from the set of 256 valid EBCDIC

 codes is valid when defining a string constant.

 SPECIAL CHARACTER SYMBOLS _________________________

 Symbol Description Function ______ ___________ ________

 " quotation mark string quotes

 # hash mark hexadecimal prefix

 ’ prime scientific notation for

 decimal exponentiation

 | vertical bar signifies substring

 // double slash alternative to the vertical

 bar in a substring

 , comma separates elements in a

 sequence

 ; semicolon separates declarations and

 statements

 : colon signifies preceding label

 Basic Symbols 417

 MTS 16: ALGOL W in MTS

 September 1980

 . period decimal point or end of

 program

 (left parenthesis multiple uses

) right parenthesis multiple uses

 + plus sign unary and binary addition

 - minus sign unary and binary subtraction

 * asterisk multiplication or formal array

 parameter dimension

 / slash division

 ** double asterisk exponentiation

 ¬ not sign logical negation

 _ underscore possible character in identifier

 = equal sign equality

 ¬= not sign followed not equal

 by equal sign

 < less than sign less than

 <= less than sign less than or equal to

 followed by

 equal sign

 > greater than sign greater than

 >= greater than sign greater than or equal to

 followed by

 equal sign

 :: double colon separates lower from upper

 array bound

 := colon followed by assignment operator

 equal sign

 % percent sign delimits a brief comment;

 such comments may also be

 terminated by a semicolon

 418 Basic Symbols

 MTS 16: ALGOL W in MTS

 September 1980

 RESERVED WORDS ______________

 The following character sequences are reserved words of the Algol W

 language; they may not be used as identifiers.

 Reserved ________

 Word Function ____ ________

 abs operator; absolute value of operand

 algol defines precompiled procedure ’body’

 and operator; logical and of operands ___

 array used in subscripted variable declarations

 assert used in Assert statement; causes fatal exit

 if following logical expression is ’false’

 begin starts a block, or group, of statements

 bits simple type designator in declarations

 case case selection; Case statement or expression

 comment starts a comment; ended by next semicolon

 complex simple type designator in declarations

 div arithmetic operator; integer division

 of operands without remainder

 do ends a ’while’ or ’for’ clause

 else starts an ’else’ clause in an If statement

 or expression

 end ends a block of statements started by

 a previous ’begin’

 false logical constant

 for iteration; declares a local control integer

 variable which is incremented until a limit is

 reached

 fortran obsolete; see Call predeclared procedure

 defines a subroutine as a procedure body

 goto Goto statement; unconditional jump

 go to ’to’ is a reserved word only if it follows ’go’

 Basic Symbols 419

 MTS 16: ALGOL W in MTS

 September 1980

 if conditional execution; If statement or expression

 integer simple type designator in declarations

 is operator; returns logical ’true’ if both reference

 operands are bound to the same record class

 logical simple type designator in declarations

 long modifies ’real’ or ’complex’ declarations to be

 long precision simple type designators; as an

 operator the operand is converted to

 long precision

 not operator; logical negation; this reserved word

 is exactly equivalent to the special character, ¬

 null reference constant; points to no record

 of ends ’case’ selection clause

 or operator; the logical or of operands __

 procedure type designator in declarations; declares either

 the start of a logically grouped set of

 statements, or a formal procedure parameter within

 a proper or function procedure heading

 real simple type designator in declarations

 record type designator in declarations; declares a

 data structure

 reference simple type designator in declarations; declares

 a pointer to a data structure defined in a record

 class declaration

 rem arithmetic operator; the remainder after the

 integer division of the operands

 result qualifies a simple type parameter in a procedure

 heading; indicates an expected returned value

 shl operator; defines a logical left shift operation

 short arithmetic operator; the operand is converted to

 short precision

 shr operator; defines a logical right shift operation

 step precedes an optional increment in a For statement

 420 Basic Symbols

 MTS 16: ALGOL W in MTS

 September 1980

 string simple type designator in declarations

 then ends an ’if’ clause conditional expression

 to see ’goto’; (not strictly a reserved word)

 true logical constant

 until precedes a For statement limit

 value qualifies a simple type parameter in a procedure

 heading; indicates a value passed within the

 parameter (as opposed to a name parameter)

 while iteration statement; terminates when subject

 condition becomes ’false’

 IDENTIFIERS ___________

 An identifier is comprised of between 1 and 256 characters. The

 first character of an identifier must be alphabetic (A-Z, a-z).

 Subsequent characters may be any mixture of alphabetic, numeric (0-9),

 or the underscore character (_).

 When lower case alphabetics are encountered in an identifier they are

 assumed to represent the equivalent upper case character. Differences

 in case only do not distinguish two otherwise identical identifiers. ____

 Reserved words may not be used as identifiers.

 In the Algol W environment, a number of identifiers are predefined

 (Pi, Write, Log, etc.). These identifiers may be assumed to be declared

 in a conceptual block enclosing the entire Algol W program. They may

 therefore be redeclared in the user program if so desired. However, if __________

 this is done the system meaning of the symbol will not be available in

 the scope of the redeclared identifier.

 EMPTY SYMBOL ____________

 The symbol <empty>, where <empty> is no physical symbol, is also

 considered an element of the Algol W set of symbols.

 Basic Symbols 421

 MTS 16: ALGOL W in MTS

 September 1980

 422 Basic Symbols

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX E: PREDECLARED PROCEDURES ___________________________________

 This appendix gives a summary of all predeclared procedures defined

 within the Algol W environment. The list is in alphabetical order of

 procedure name.

 All of these predeclared procedures may be assumed to be declared as

 Algol W proper procedures in an outer block enclosing the user source

 program. However any type checking of parameters is done as a result of

 the implementation; it is not forced by the grammar of the language.

 The identifier names assigned to these procedures may be redeclared

 within the user program block structure.

 All procedures listed here are fully described in the main manual. ______ _________

 In the summaries which follow:

 (1) angle brackets, < >, specify an item which should be replaced by

 an actual parameter;

 (2) square brackets, [], specify an optional item;

 (3) braces, { }, specify a set of alternative items. These

 alternatives are separated by vertical bars, |.

 Assign(<stream>, <fdname>)

 The Algol W input/output stream designated by the first parameter

 is attached to the file-or-device specified by the second in the

 form of a string expression. Any previous file-or-device so

 attached is released first. The named predefined streams INPUT

 (SCARDS), PRINT (SPRINT), PUNCH (SPUNCH), ERROR (SERCOM), and USER

 (GUSER) may not be reassigned.

 Attntrap(<logical-expression>)

 If the logical expression evaluates to ’true’, attention interrupt

 trapping is enabled. If it is ’false’, the trap is disabled.

 While the trap is enabled, attentions do not interrupt program

 execution; instead the predeclared logical variable Attnmark is set

 to ’true’. It is the responsibility of the user program to inspect

 and act on the value of this variable.

 Call(<esdname> [, <parameters>])

 The external O/S Type I linkage subroutine designated by the first

 parameter is called. This parameter must be:

 Predeclared Procedures 423

 MTS 16: ALGOL W in MTS

 September 1980

 (1) a string constant from 1 to 8 characters in length, specifying

 the entry point external symbol definition name of the desired

 subroutine; or

 (2) an integer or bits expression specifying the entry point

 address.

 The parameters given may be of any simple type, but should

 correspond to those required by the called subroutine. For a full

 description of this procedure see the section "External Linkages";

 the O/S Type I linkage is described in Appendix K.

 Cmd(<string-expression>)

 The string expression is evaluated and passed to the system for

 execution as an MTS command. Control will return to the next

 statement in the program provided that the command executed does

 not cause unloading of the program.

 Control(<stream>, <string-expression>)

 The string expression is evaluated and sent to the system as a

 control command for the input/output stream specified by the first

 parameter. This allows system control commands for terminals,

 tapes and files to be issued under program control.

 Empty(<stream>)

 The file, if any, attached to the designated input/output stream is

 emptied if possible. The named predefined streams INPUT (SCARDS),

 PRINT (SPRINT), PUNCH (SPUNCH), ERROR (SERCOM), and USER (GUSER)

 may not be emptied.

 Fetch(<source-address>, <target-variable> [, <length>])

 Use with care. The first parameter should be an integer or bits

 expression specifying a machine address. The second parameter may

 be any Algol W variable. Bytes are copied from the address

 designated by the first parameter to the variable designated by the

 second. The number of bytes moved defaults to the implied length

 of the target variable, but may be explicitly given by an integer

 expression supplied as the optional third parameter.

 Flush(<stream>)

 Any pending information in the output buffer for the designated

 input/output stream is immediately written to the attached

 file-or-device.

 Get(<stream>, {<format-string> | null} [, <get-list>])

 Provides format-directed or free-format input operations from the

 input/output stream designated by the first parameter. The second

 424 Predeclared Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 parameter specifies the format to be used (if a string expression)

 or that the operation is to proceed in free format (if it is the

 null reference). The get-list is a list of one or more variables,

 separated by commas, which are assigned values from left to right

 as a result of the input operation. This get-list is optional

 because a format string may merely specify a positional operation

 (tabbing or skipping of records). Each Get will fetch a new

 physical input record.

 Getcard(<stream>, <string-variable>)

 A single physical input record is fetched from the stream desig-

 nated by the first parameter, and the bytes are placed in the

 string variable without editing (truncated or padded with blanks on

 the right as necessary). Note: for this procedure it is the

 responsibility of the user program to test for end-of-file by

 inspecting the predeclared logical variable Filemark on return.

 Geton(<stream>, {<format-string> | null} [, <get-list>])

 Geton is similar to Get; the only difference is that while Get will

 always fetch a new physical input record, Geton will only do so if

 the information on the current record is exhausted (or a format

 string specifies such action).

 Getstring(<string-expression>, {<format-string> | null} [, <get-list>])

 The conversion operations performed by Getstring are similar to

 those of Get; the difference lies in the first parameter which for

 this procedure is a string expression which takes the place of a

 physical input record. Error detection by the user program is

 possible with this procedure - see main text description.

 Iocontrol({<integer-expression> | <string-expression>})

 Action depends on the value of the parameter; for each integer

 recognized there is an equivalent keyword character string. If a

 string expression is specified it is assumed to consist of one or

 more keywords separated by blanks or commas. Iocontrol allows:

 (1) control of basic input/output operations;

 (2) selection of termination timing information display;

 (3) selection of program interrupt information display;

 (4) modification of Getstring action;

 (5) modification of the string recognition algorithm.

 Predeclared Procedures 425

 MTS 16: ALGOL W in MTS

 September 1980

 Locate(<variable>, <integer-or-bits-variable>)

 Use with care. The second parameter variable is set to the machine

 address of the first parameter variable. Avoid use of the address

 of a variable when that variable is not in scope.

 Move(<source-variable>, <target-variable> [, <length>])

 Use with care. The first and second parameters may specify any

 Algol W variables. Bytes are copied from the variable designated

 by the first parameter to the variable designated by the second.

 The number of bytes moved defaults to the minimum of the two

 implied lengths of the variables, but may be explicitly given by an

 integer expression supplied as the optional third parameter. No

 type conversion is done by this procedure.

 Newline({<integer-expression> | <string-expression>})

 Skips one or more lines on the basic output stream.

 (1) If an integer expression is given, that many lines are

 skipped, subject to a maximum of sixty. If the expression

 value is zero, an overstruck line is begun.

 (2) If a string expression is supplied, a new line is begun with

 the carriage control character set to the value of the first

 character of the string.

 Protect(<stream>)

 If any information is currently held in the output buffer for the

 designated stream, it is flushed out to the attached file-or-

 device. If the stream is attached to a file then the system

 virtual file buffers are written to disk; that is the disk copy of

 the file is brought up to date. This might be required at critical

 stages in file processing to protect against the effects of a

 system failure.

 Put(<stream>, {<format-string> | null} [, <put-list>])

 Provides format-directed or free-format output operations to the

 input/output stream designated by the first parameter. The second

 parameter specifies the format to be used (if a string expression)

 or that the operation is to proceed in free format (if it is the

 null reference). The put-list is a list of one or more expres-

 sions, separated by commas, whose values are output from left to

 right as a result of the output operation. This put-list is

 optional because a format string may merely specify a positional

 operation (tabbing or skipping of records). Each Put will start a

 new physical output record.

 426 Predeclared Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 Putcard(<stream>, <string-expression>)

 A single physical output record is sent to the stream designated by

 the first parameter, comprising the bytes from the string expres-

 sion. Any information in the output buffer will be flushed to the

 assigned file-or-device name first.

 Puton(<stream>, {<format-string> | null} [, <put-list>])

 Puton is similar to Put; the only difference is that while Put will

 always start a new physical output record, Puton will only do so if

 the output buffer becomes full (or a format string specifies such

 action).

 Putstring(<string-variable>, {<format-string> | null} [, <put-list>])

 The conversion operations performed by Putstring are similar to

 those of Put; the difference lies in the first parameter which for

 this procedure is a string variable which takes the place of a

 physical output record.

 Qualify(<stream>, <string-expression>)

 Sets attributes of the input/output stream designated by the first

 parameter according to a keyword or keywords contained in the

 string expression. An example of its use would be to change the

 input or output lengths used by Algol W to determine input/output

 buffer overruns.

 Rcall(<esdname>)

 The external O/S Type I linkage subroutine designated by the single

 parameter is called. This procedure is similar to Call but

 provides for the case where parameters are expected in machine

 general registers. The ESDname is as specified for Call. General

 registers zero and one are loaded from the predeclared integer

 variables R0 and R1 before control is transferred to the

 subroutine.

 Read(<read-list>)

 Provides free-format input operations from the basic input stream.

 The read-list is a list of one or more variables, separated by

 commas, which are assigned values from left to right as a result of

 the input operation. Each Read will fetch a new physical input

 record.

 Readcard(<string-variable>)

 A single physical input record is fetched from the basic input

 stream, and the bytes are placed in the string variable without

 editing (truncated or padded with blanks on the right as

 necessary).

 Predeclared Procedures 427

 MTS 16: ALGOL W in MTS

 September 1980

 Reader(<stream>)

 The input/output stream designated becomes the basic input stream.

 Initially the basic input stream is INPUT (MTS SCARDS).

 Readon(<read-list>)

 Readon is similar to Read; the only difference is that while Read

 will always fetch a new physical input record, Readon will only do

 so if the information on the current record is exhausted.

 Release(<stream>)

 Any file-or-device attached to the designated stream is released.

 If the stream is a predefined one, it is unassigned on return. If

 the stream is a user defined one, it is deleted from the system

 tables. This procedure is intended for use with Assign to

 dynamically access files-or-devices, in that it frees them when no

 longer needed. The named predefined streams INPUT (SCARDS), PRINT

 (SPRINT), PUNCH (SPUNCH), ERROR (SERCOM), and USER (GUSER) may not

 be released.

 Rewind(<stream>)

 The file-or-device attached to the designated stream is rewound.

 Note that in MTS only the currently active member of a concatena-

 tion will be rewound. The named predefined streams INPUT (SCARDS),

 PRINT (SPRINT), PUNCH (SPUNCH), ERROR (SERCOM), and USER (GUSER)

 may not be rewound.

 Sense(<stream>, <string-expression>, <sense-list>)

 Information about the stream designated by the first parameter is

 returned according to requests by keywords supplied in the string

 expression. The sense-list is a list of variables which receive

 the information by assignment from left to right as it is returned.

 Sense provides an input operation, as does Get, but the data

 returned is information about the attached file-or-device rather

 than the result of a physical read operation from it. Sense can be

 used to check the validity of an operation (such as indexed

 input/output or rewinding) before issuing the relevant request.

 Stop({<string-expression> | null})

 Execution of the program is immediately terminated. If the

 parameter is a string expression, the result of its evaluation is

 printed on ERROR (MTS SERCOM).

 Store(<source-variable>, <target-address> [, <length>])

 Use with care. The first parameter may be any Algol W variable.

 The second parameter should be an integer or bits expression

 specifying a machine address. Bytes are copied from the variable

 428 Predeclared Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 designated by the first parameter to the address designated by the

 second. The number of bytes moved defaults to the implied length

 of the source variable, but may be explicitly given by an integer

 expression supplied as the optional third parameter.

 Trace(<expression>)

 This procedure currently does nothing; it may not remain so.

 Translate(<source-variable>, <translate-table> [, <length>])

 Use with care. The first parameter may designate any Algol W

 variable, but should normally be a string. The second parameter

 should either specify a string(256) expression, or an integer or

 bits expression whose value is the machine address of a 256-byte

 region. This second parameter is a translate table, and bytes

 within the source variable are translated in situ by reference to

 it. The number of bytes translated defaults to the implied length

 of the source variable, but may be explicitly given by an integer

 expression supplied as the optional third parameter.

 Write(<write-list>)

 Provides output operations to the basic output stream. The

 write-list is a list of one or more expressions, separated by

 commas, whose values are output from left to right as a result of

 the output operation. Each Write will start a new physical output

 record. The output operations are under the control of a set of

 predeclared format variables.

 Writecard(<string-expression>)

 A single physical output record is sent to the basic output stream,

 comprising the bytes from the string expression. Any information

 in the output buffer will be flushed to the assigned file-or-device

 name first.

 Writeon(<write-list>)

 Writeon is similar to Write; the only difference is that while

 Write will always start a new physical output record, Writeon will

 only do so if the output buffer becomes full (or the format

 specifies such action).

 Writer(<stream>)

 The input/output stream designated becomes the basic output stream.

 Initially the basic output stream is PRINT (MTS SPRINT).

 Predeclared Procedures 429

 MTS 16: ALGOL W in MTS

 September 1980

 Xdelete(<stream>, <integer-expression>)

 The physical data record located at the line number given by the

 second parameter is deleted from the file attached to the stream

 designated by the first parameter.

 Xgetcard(<stream>, <integer-expression>, <string-variable>)

 Fetches a complete physical input record, like Getcard, but the

 operation is an indexed one. The record is fetched from a line

 number specified by the second parameter in the file attached to

 the stream designated by the first parameter. If no record exists

 at the specified location, the condition is treated as end-of-file.

 As with Getcard, the user program must test for this condition by

 inspecting the value of the predeclared logical variable Filemark.

 Xputcard(<stream>, <integer-expression>, <string-expression>)

 Sends a complete physical output record, like Putcard, but the

 operation is an indexed one. The record is sent to a line number

 specified by the second parameter in the file attached to the

 stream designated by the first parameter.

 430 Predeclared Procedures

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX F: PREDECLARED FUNCTIONS __________________________________

 This appendix gives a summary of all predeclared functions defined

 within the Algol W environment. The list is in alphabetical order of

 function name, with the exception that the long precision versions of

 floating point functions will be found listed with the short precision

 name. For instance, Longsin is listed with Sin.

 All of these predeclared functions may be assumed to be declared as

 Algol W function procedures in an outer block enclosing the user source

 program. They may be redeclared within the user program block

 structure.

 All functions listed here are fully described in the main manual, but ______ _________

 domain of definition information (where applicable) is provided in this

 list only. ____

 real procedure Arccos(real value X);

 long real procedure Longarccos(long real value X);

 Returns the inverse cosine of X.

 Domain of definition of these functions:

 Arccos : |X| <= 1.0

 Longarccos : |X| <= 1.0

 real procedure Arcsin(real value X);

 long real procedure Longarcsin(long real value X);

 Returns the inverse sine of X.

 Domain of definition of these functions:

 Arcsin : |X| <= 1.0

 Longarcsin : |X| <= 1.0

 real procedure Arctan(real value X);

 long real procedure Longarctan(long real value X);

 Returns the inverse tangent of X.

 Domain of definition of these functions:

 Arctan : all values of X

 Longarctan : all values of X

 Predeclared Functions 431

 MTS 16: ALGOL W in MTS

 September 1980

 string(12) procedure Base10(real value X);

 string(20) procedure Longbase10(long real value X);

 Both of these functions return a string encoding of X in radix 10

 (decimal) form. The formats returned are:

 Base10 : "b+EE-DDDDDDD" /

 Longbase10 : "b+EE-DDDDDDDDDDDDDDD" /

 where "b" is a blank; "+" is a sign (blank for a zero or positive /

 mantissa); "E" is an exponent decimal digit; and "D" is a mantissa

 decimal digit.

 string(12) procedure Base16(real value X);

 string(20) procedure Longbase16(long real value X);

 Both of these functions return a string encoding of X in radix 16

 (hexadecimal) form. The formats returned are:

 Base16 : "bb+BB+AAAAAAA" //

 Longbase16 : "bb+BB+AAAAAAAAAAAAAAA" //

 where "b" is a blank; "+" is a sign (blank for a zero or positive /

 mantissa); "B" is an exponent hexadecimal digit; and "A" is a

 mantissa hexadecimal digit.

 bits procedure Bitstring(integer value N);

 Returns a bits value with the same internal representation as the

 integer N parameter. The returned value is the two’s complement

 representation of N. Number representation is discussed in Appen-

 dix J.

 string(1) procedure Code(integer value N);

 Returns a string(1) value with the numeric code given by abs(N rem

 256); see Appendix B for a list of integer codes corresponding to

 printable characters.

 real procedure Cos(real value X);

 long real procedure Longcos(long real value X);

 Returns the cosine of X.

 Domain of definition of these functions:

 Cos : |X| < (2**18)*pi = 823549.625

 Longcos : |X| < (2**50)*pi = 3.537118’+15

 432 Predeclared Functions

 MTS 16: ALGOL W in MTS

 September 1980

 real procedure Cosh(real value X);

 long real procedure Longcosh(long real value X);

 Returns the hyperbolic cosine of X.

 Domain of definition of these functions:

 Cosh : |X| < 175.3662

 Longcosh : |X| < 175.3662

 real procedure Cot(real value X);

 long real procedure Longcot(long real value X);

 Returns the cotangent of X.

 Domain of definition of these functions:

 Cot : |X| < (2**18)*pi = 823549.625

 Longcot : |X| <= (2**50)*pi = 3.537118’+15

 Both functions exclude the singularities at:

 X = n*pi,

 where n = ..., -1, 0, 1, ...

 complex procedure Cxcos(complex value Z);

 long complex procedure Longcxcos(long complex value Z);

 Returns the complex cosine of Z.

 Let Z = X+Yi; domain of definition of these functions:

 Cxcos : |X| < 823549.625; |Y| < 174.673

 Longcxcos : |X| < 3.537118’+15; |Y| < 174.673

 complex procedure Cxexp(complex value Z);

 long complex procedure Longcxexp(long complex value Z);

 Returns the complex exponential of Z.

 Let Z = X+Yi; domain of definition of these functions:

 Cxexp : -180.2182 < X < 174.673; |Y| < 823549.625

 Longcxexp : -180.2182 < X < 174.673; |Y| < 3.537118’+15

 If undeflow is not being trapped (the default case) then the X

 value may be less than -180.2182 and the real part of the result is

 returned as zero. See the comments for Exp and Longexp.

 Predeclared Functions 433

 MTS 16: ALGOL W in MTS

 September 1980

 complex procedure Cxln(complex value Z);

 long complex procedure Longcxln(long complex value Z);

 Returns the complex natural logarithm (base e) of Z.

 Domain of definition of these functions:

 Cxln : excludes the singularity at Z = 0.0

 Longcxln : excludes the singularity at Z = 0.0

 complex procedure Cxsin(complex value Z);

 long complex procedure Longcxsin(long complex value Z);

 Returns the complex sine of Z.

 Let Z = X+Yi; domain of definition of these functions:

 Cxsin : |X| < 823549.625; |Y| < 174.673

 Longcxsin : |X| < 3.537118’+15; |Y| < 174.673

 complex procedure Cxsqrt(complex value Z);

 long complex procedure Longcxsqrt(long complex value Z);

 Returns the complex square root of Z.

 Let Z = X+Yi; domain of definition of these functions:

 Cxsqrt : all values of Z

 Longcxsqrt : all values of Z

 string(24) procedure Date(integer value N);

 Returns a string encoding of the time and date, in a format

 determined by N. This is best illustrated by examples of strings

 returned:

 Date(0) : " 15:08:40 03-25-80 3 085"

 Date(1) : " 3:08 pm Tue 25 Mar 80"

 Both of these examples show the same time. Note that in the N = 0

 ’data’ format, the date is given in the United States form

 month-day-year; 3 is the day of the week (Tuesday); and this is the

 85th day of the year.

 The result for any other value of N is undefined.

 integer procedure Decode(string(1) value S);

 Returns the numeric code for the character S; see Appendix B for a

 list of integer codes corresponding to printable characters.

 integer procedure Entier(real value X);

 Returns an integer value I such that: I <= X < I + 1

 434 Predeclared Functions

 MTS 16: ALGOL W in MTS

 September 1980

 real procedure Erf(real value X);

 long real procedure Longerf(long real value X);

 Returns the error function of X.

 Domain of definition of these functions:

 Erf : all values of X

 Longerf : all values of X

 real procedure Erfc(long real value X);

 long real procedure Longerfc(long real value X);

 Returns the complementary error function of X.

 Domain of definition of these functions:

 Erfc : all values of X

 Longerfc : all values of X

 real procedure Exp(real value X);

 long real procedure Longexp(long real value X);

 Returns the exponential of X.

 Domain of definition of these functions:

 Exp : -180.2182 < X < 174.6730

 Longexp : -180.2182 < X < 174.6730

 If underflow detection is off (the default) then argument values

 below -180.2182 will return a function value of zero. If underf-

 lows are being trapped, that is the UNFL predeclared reference has

 been been reassigned, arguments below this value will be treated as

 a run error.

 integer procedure Exponent(real value X);

 Returns the integer value of the unbiased hexadecimal exponent used

 in the computer’s representation of a floating point number.

 Number representation is discussed in Appendix J. The return value

 is:

 (1) if X=0 then 0; otherwise

 (2) the largest integer I such that:

 I <= (Log(|X|) / Log(16)) + 1

 integer procedure External(string(8) value Ename);

 Returns the machine address of the external symbol definition name

 (ESDname) given by Ename. This ESDname must be given as a string

 constant. External allows an Algol W program to locate externally

 defined data areas or subroutines.

 Predeclared Functions 435

 MTS 16: ALGOL W in MTS

 September 1980

 integer procedure Fullword(integer value N);

 Returns a fullword representation of a halfword (2-byte) integer

 which is assumed to occupy the leading two bytes of N. The

 trailing two bytes are discarded. The operation is implemented as

 a 16-bit System/370 Shift Right Arithmetic operation.

 real procedure Gamma(real value X);

 long real procedure Longgamma(long real value X);

 Returns the gamma function of X.

 Domain of definition of these functions:

 Gamma : 0.1381786’-75 < X < 57.57441

 Longgamma : 0.1381786’-75 < X < 57.57441

 integer procedure Halfword(integer value N);

 Returns a halfword representation of a fullword (4-byte) integer

 given by N. After the operation a halfword representation of the

 number will occupy the leading two bytes of the result, with all

 bits zero in the trailing two bytes. The action is implemented as

 a 16-bit System/370 Shift Left Arithmetic operation. Domain of

 definition of this function: -32768 <= N <= 32767

 complex procedure Imag(real value X);

 long complex procedure Longimag(long complex value X);

 Returns the complex value 0+Xi to the specified precision.

 real procedure Imagpart(complex value Z);

 long real procedure Longimagpart(long complex value Z);

 Returns as a real value the imaginary component of the complex

 number Z to the specified precision.

 string(12) procedure Intbase10(integer value N);

 Returns a string encoding of N in radix 10 (decimal) form. The

 format is:

 "b+DDDDDDDDDD" /

 where "b" is a blank; "+" is the sign (blank if N is zero or /

 positive); and "D" is a decimal digit. Leading zeros are not

 suppressed.

 string(12) procedure Intbase16(integer value N);

 Returns a string encoding of N in radix 16 (hexadecimal), unsigned

 two’s complement form. The format is:

 436 Predeclared Functions

 MTS 16: ALGOL W in MTS

 September 1980

 "bbbbAAAAAAAA" ////

 where "b" is a blank; and "A" is a hexadecimal digit. Leading /

 hexadecimal zeros are not suppressed.

 integer procedure Link(string(32) value Proc_Name);

 Returns the address of a dynamically built O/S Type I linkage

 subroutine which may call a main code Algol W procedure, subject to

 the following restrictions:

 (1) Proc_Name specifies a string constant containing the name of

 the procedure to be called;

 (2) The procedure so designated must be in scope at the point

 where the Link call is issued;

 (3) Certain restrictions apply to the procedure parameters - see

 main text description in the section "External Linkages";

 (4) Link may only be issued as a parameter to the Call predeclared

 procedure.

 Link provides the mechanism whereby a called FORTRAN subroutine may

 call back during execution to invoke a main code Algol W procedure.

 Several widely available mathematical subroutine libraries, such as

 NAAS, require this facility.

 real procedure Ln(real value X);

 long real procedure Longln(long real value X);

 Returns the natural logarithm (base e) of X.

 Domain of definition of these functions:

 Ln : X > 0.0

 Longln : X > 0.0

 real procedure Lngamma(real value X);

 long real procedure Longlngamma(long real value X);

 Returns the natural logarithm (base e) of the gamma function of X.

 Domain of definition of these functions:

 Lngamma : 0.0 < X < 4.293705’+73

 Longlngamma : 0.0 < X < 4.293705’+73

 real procedure Log(real value X);

 long real procedure Longlog(long real value X);

 Returns the logarithm to the base 10 of X.

 Domain of definition of these functions:

 Log : X > 0.0

 Longlog : X > 0.0

 Predeclared Functions 437

 MTS 16: ALGOL W in MTS

 September 1980

 integer procedure Number(bits value B);

 Returns the integer with the two’s complement representation given

 by B. Number representation is discussed in Appendix J.

 logical procedure Odd(integer value N);

 Returns the logical value: (N rem 2) = 1

 real procedure Realpart(complex value Z);

 long real procedure Longrealpart(long complex value Z);

 Returns as a real value the real component of the complex quantity

 Z to the specified precision.

 integer procedure Round(real value X);

 Returns the value of the integer expression:

 if X < 0

 then Truncate(X - 0.5)

 else Truncate(X + 0.5);

 See the description of Truncate; the effect is to return the

 integer value nearest to X.

 real procedure Roundtoreal(long real value X);

 Returns the properly rounded real (short precision) value of the

 long precision value X.

 real procedure Sin(real value X);

 long real procedure Longsin(long real value X);

 Returns the sine of X.

 Domain of definition of these functions:

 Sin : |X| < (2**18)*pi = 823549.625

 Longsin : |X| < (2**50)*pi = 3.537118’+15

 real procedure Sinh(real value X);

 long real procedure Longsinh(long real value X);

 Returns the hyperbolic sine of X.

 Domain of definition of these functions:

 Sinh : |X| < 175.3662

 Longsinh : |X| < 175.3662

 438 Predeclared Functions

 MTS 16: ALGOL W in MTS

 September 1980

 real procedure Sqrt(real value X);

 long real procedure Longsqrt(long real value X);

 Returns the square root of X.

 Domain of definition of these functions:

 Sqrt : X >= 0.0

 Longsqrt : X >= 0.0

 real procedure Tan(real value X);

 long real procedure Longtan(long real value X);

 Returns the tangent of X.

 Domain of definition of these functions:

 Tan : |X| < (2**18)*pi = 823549.625

 Longtan : |X| < (2**50)*pi = 3.537118’+15

 Both functions exclude the singularities at:

 X = (n+1/2)*pi, where n = ..., -1, 0, 1, ...

 real procedure Tanh(real value X);

 long real procedure Longtanh(long real value X);

 Returns the hyperbolic tangent of X.

 Domain of definition of these functions:

 Tanh : all values of X

 Longtanh : all values of X

 integer procedure Time(integer value N);

 Returns an integer value determined by interrogation of the

 computer’s clock. The time value returned, and its units, are

 determined by N:

 N = -2 Elapsed time (1/60 second)

 N = -1 Time of Day (1/60 second)

 N = 0 Total CPU Time (1/100 minute)

 N = 1 Total CPU Time (1/60 second)

 N = 2 Total CPU Time (1/38400 second)

 N = 3 Problem CPU Time (1/38400 second)

 N = 4 Supervisor CPU Time (1/38400 second)

 The result for any other value of N is undefined.

 integer procedure Truncate(integer value X);

 Returns the integer value I such that:

 |I| <= |X| < |I| + 1 and I * X >= 0; ___

 Predeclared Functions 439

 MTS 16: ALGOL W in MTS

 September 1980

 440 Predeclared Functions

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX G: PREDECLARED VARIABLES __________________________________

 This appendix gives a summary of all predeclared variables defined

 within the Algol W environment. The list is in alphabetical order of

 variable name. All of these variables may be assumed to be defined,

 with the relevant initial assignment statements, in an outer block

 enclosing the user source program. They may be redeclared within the

 user program block structure.

 All variables listed here are fully described in the main manual. An ______ _________

 initial value given as ’sysxcp’ indicates a special system reference

 which is not directly accessible to user programs.

 integer A_Count

 Initial value = 1

 Contains the value of the assertion counter maintained by the Algol

 W system. It is incremented by one for each Assert statement

 successfully completed, and printed in the error message if the

 assertion fails.

 logical Attnmark

 Initial value = false

 If attention trapping has been enabled, using the Attntrap prede-

 clared procedure, then this variable is set to ’true’ when an

 attention interrupt occurs.

 logical Canreply

 This variable is initialized to ’true’ if the executing program is

 being run at a conversational terminal, or ’false’ if the program

 is being run in batch.

 reference(Exception) Divzero

 Initial value = sysxcp

 This reference controls processing of the exceptional condition

 recognized when floating point division by zero is attempted.

 reference(Exception) Endfile

 Initial value = sysxcp

 This reference controls processing of the exceptional condition

 recognized when an attempt to read from a file-or-device returns

 end-of-file. It does not affect end-of-file conditions returned by

 Predeclared Variables 441

 MTS 16: ALGOL W in MTS

 September 1980

 Getcard or record absent conditions returned by Xgetcard; in these

 cases control always returns to the program.

 real Epsilon

 Initial value = 9.536743’-07

 This variable contains the largest positive real number e provided

 by the implementation such that: 1 + e = 1

 bits Error

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 ERROR stream (MTS SERCOM).

 record Exception

 A predeclared record class with the declaration:

 record Exception(

 logical Xcpnoted;

 integer Xcplimit;

 integer Xcpaction;

 logical Xcpmark;

 string(64) Xcpmsg);

 Prior record assignments to the predeclared reference(Exception)

 variables Divzero, Endfile, Function, Intdivzero, Intovfl, Ovfl and

 Unfl will modify the error processor action when the relevant

 exceptional condition is recognized by Algol W.

 logical Filemark

 Initial value = false

 This variable is set after every input operation. It becomes

 ’true’ if an end-of-file condition is recognized. For the proce-

 dures Get, Geton, Read, Readon and Readcard, inspection of the

 Endfile reference would take control away from the program unless

 it had been previously reassigned. For Getcard and Xgetcard,

 inspection of the value of Filemark is the only way to detect

 end-of-file or record absent conditions.

 long real Fn_Value

 Initial value = 0.0L

 This variable may supply a replacement returned value for an

 analytic predeclared function which has been called with an illegal

 argument. For this to occur there must have been an assignment of

 the predeclared reference Function with the Xcpaction field set to

 2.

 442 Predeclared Variables

 MTS 16: ALGOL W in MTS

 September 1980

 reference(Exception) Function

 Initial value = sysxcp

 This variable controls processing of the exceptional conditions

 recognized when a predeclared function call has an invalid argu-

 ment. The function may not be defined for the argument; or the

 argument may be a singularity in the definition; or roundoff errors

 may prevent its computation.

 integer I_W

 Initial value = 14

 This integer supplies the field width used in integer output where

 no format string is being obeyed (for example using Write). If I_W

 has too small a value to print the number, it will be overridden.

 bits Input

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 INPUT stream (MTS SCARDS).

 reference(Exception) Intdivzero

 Initial value = sysxcp

 This reference controls processing of the exceptional condition

 recognized when integer division by zero is attempted.

 reference(Exception) Intovfl

 Initial value = sysxcp

 This reference controls processing of the exceptional condition

 recognized when an operation resulting in integer overflow is

 attempted.

 long real Longepsilon

 Initial value = 2.22044604925031’-15L

 This variable contains the largest positive long real number e

 provided by the implementation such that: 1L + e = 1L

 bits Lowercase

 The initial value of this variable is a pointer to a 256-byte

 translate table. Lowercase may be used directly as the second

 argument to the Translate predeclared procedure. It will cause all

 upper case alphabetic characters to be converted to their lower

 case equivalents leaving all other characters unchanged.

 Predeclared Variables 443

 MTS 16: ALGOL W in MTS

 September 1980

 integer Maxinteger

 Initial value = 2147483647

 This variable contains the maximum positive integer which may be

 represented on the computer. See Appendix J for a discussion of

 number representation.

 long real Maxreal

 Initial value = 7.23700557733225’+75L

 This variable contains the largest positive long real number which

 may be represented on the computer. See Appendix J for a

 discussion of number representation.

 reference(Exception) Ovfl

 Initial value = sysxcp

 This reference controls processing of the exceptional condition

 recognized when an operation resulting in floating point exponent

 overflow is attempted.

 long real Pi

 Initial value = 3.14159265358979L

 The ratio of the circumference to diameter of a circle.

 bits Print

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 PRINT stream (MTS SPRINT).

 bits Punch

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 PUNCH stream (MTS SPUNCH).

 long complex R_Cmplx

 Initial value = 0L+0IL

 For complex or long complex functions accessed via the Call or

 Rcall predeclared procedures, the result will be found in this

 variable on return. The long real part of this variable shares its

 storage location with R_Float.

 integer R_Code

 Initial value = 0

 External O/S Type I subroutines frequently leave an indication of

 success or failure in machine general register fifteen. This

 value, called a return code, will be found in R_Code on return.

 This applies to subroutines accessed via the predeclared procedures

 444 Predeclared Variables

 MTS 16: ALGOL W in MTS

 September 1980

 Call or Rcall, or the obsolete FORTRAN linkage. R_Code is also

 used to supply a return code to a routine that has called an Algol

 W procedure using th O/S Type I calling convention. Algol W

 automatically places the value of R_Code in general register

 fifteen before returning to such a routine.

 integer R_D

 Initial value = 0

 This integer supplies the decimal digit field width used for real,

 long real, complex, and long complex output where no format string

 is being obeyed (for example using Write). The value of R_D is

 only effective for values of R_Format which are "F" or "A".

 string(1) R_Expchar

 Initial value = "’"

 This string specifies the exponent separator character used when

 real, long real, complex, or long complex values are output in

 explicit exponent form (for example 5.7’+05).

 long real R_Float

 Initial value = 0L

 For real or long real functions accessed via the Call or Rcall

 predeclared procedures, the result will be found in this variable

 on return. This variable shares its storage location with the long

 real part of R_Cmplx.

 string(1) R_Format

 Initial value = "G"

 This string specifies the format to be used in the output of real,

 long real, complex, or long complex values where no format string

 is being obeyed (for example using Write). Legal values are:

 "A" as for "F"

 "D" as for "E"

 "E" explicit exponent form: 5.935’+02

 "F" fixed decimal point form: 593.5

 "G" general form: "F" if possible otherwise "E"

 "S" as for "E"

 Lower case may be supplied in place of the upper case values shown.

 All other values are treated as "G".

 integer R_Sig

 Initial value = 3

 For R_Format value "G", this integer specifies the minimum number

 of significant digits which may be printed if the output is in "F"

 form. If less than this would be printed, the number is output in

 "E" explicit exponent form.

 Predeclared Variables 445

 MTS 16: ALGOL W in MTS

 September 1980

 integer R_W

 Initial value = 14

 This integer supplies the field width used in real, long real,

 complex, and long complex output where no format string is being

 obeyed (for example using Write). If R_W has too small a value to

 print the number, it will be overridden.

 bits Rdr

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 basic input stream. This is initially INPUT (MTS SCARDS) but may

 be changed by a call of the Reader predeclared procedure.

 integer R0

 Initial value = 0

 For integer or logical functions accessed via the Call or Rcall

 predeclared procedures, the value will be found in this variable on

 return. Additionally, Rcall will load general register zero from

 R0 before calling the subroutine. This variable shares its storage

 location with R01(0|4).

 string(8) R01

 Initial value = 8 bytes, all set to: code(0)

 This variable allows the predeclared variables R0 and R1 to be

 accessed as strings. R01(0|4) has the same storage location as R0,

 and R01(4|4) shares the same location as as R1.

 integer R1

 Initial value = 0

 For subroutines which set machine general register one and which

 are accessed via the Call or Rcall predeclared procedures, the

 value will be found in this variable on return. Additionally,

 Rcall will load general register one from R1 before calling the

 subroutine. This variable shares its storage location with

 R01(4|4).

 integer S_W

 Initial value = 2

 This integer supplies the number of spaces to be appended when

 values of all simple types other than string are output where no

 format string is being obeyed (for example using Write).

 446 Predeclared Variables

 MTS 16: ALGOL W in MTS

 September 1980

 integer Syscode

 Initial value = 0

 Where Algol W calls system subroutines in the course of obeying a

 predeclared function call, in certain cases the return code for

 such a subroutine is passed back in this variable. See the main

 manual for details.

 integer Sysindex

 Initial value = 0

 Whenever Algol W reads a new physical input record or writes a new

 physical output record, the value of this variable is updated to

 reflect the record index (MTS line number times 1000) used in the

 operation.

 string(256) Sysparm

 Initial value = " " or "<parameter-string>" This variable is __

 provided to allow a single record of input data to be supplied to

 an Algol W program as it is invoked. See the description under

 "Run Time Parameters" in the section "Algol W Programmer’s Guide".

 See also the description of the DATAPARM parameter in the same

 section.

 reference(Exception) Unfl

 Initial value = null

 This reference controls processing of the exceptional condition

 recognized when an operation resulting in floating point exponent

 underflow is attempted. Note the initial value; by default such

 conditions are ignored and will return a value of zero.

 bits Uppercase

 The initial value of this variable is a pointer to a 256-byte

 translate table. Uppercase may be used directly as the second

 argument to the Translate predeclared procedure. It will cause all

 lower case alphabetic characters to be converted to their upper

 case equivalents leaving all other characters unchanged.

 bits User

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 USER stream (MTS GUSER).

 Predeclared Variables 447

 MTS 16: ALGOL W in MTS

 September 1980

 logical Write_Cc

 Initial value = true or <CC/NOCC-setting> __

 This value of this variable controls the automatic generation of

 carriage control characters by the Write, Writeon and Writecard

 predeclared procedures. If ’true’ such characters will be generat-

 ed; this variable can be assigned within the program or by issuing

 the run-time parameters CC or NOCC.

 bits Wtr

 The initial value of this variable is such that the Algol W

 input/output routines recognize it in context as a reference to the

 basic output stream. This is initially PRINT (MTS SPRINT) but may

 be changed by a call of the Writer predeclared procedure.

 integer Xcpaction

 The third field of the predeclared exception record. This speci-

 fies the action to be taken to recover from an exceptional

 condition when program execution is to be resumed. Values other

 than zero, one or two are treated as zero.

 integer Xcplimit

 The second field of the predeclared exception record. This

 specifies the number of exceptions to be tolerated before a fatal

 run error condition is recognized and program execution stopped.

 It is decremented by one each time an exception is processed and

 program execution is resumed.

 logical Xcpmark

 The fourth field of the predeclared exception record. This

 specifies whether an error message is to be printed if an exception

 occurs. If program execution will not resume (fatal condition,

 Xcplimit < 1) an error message is always printed.

 string(64) Xcpmsg

 The fifth field of the predeclared exception record. If assigned

 and non-blank, this string is printed as part of the system error

 message when an exception is recognized. Printing or suppression

 of such messages is under the control of Xcpmark.

 logical Xcpnoted

 The first field of the predeclared exception record. When an

 exceptional condition is recognized, this field is set to ’true’.

 448 Predeclared Variables

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX H: USER ORIENTED ALGOL W SYNTAX ___

 The syntax given in this appendix is not complete. It is designed to

 aid the user already familiar with Algol W in determining the format of

 Algol W constructs. It is assumed that the user knows which variable

 and expression types are legal substitutes for <variable> and <expres-

 sion>. For the complete Algol W syntax, see Appendix I.

 <program> ::= <statement> . (notice the period)

 <statement> ::= <simple-statement>

 | <conditional-statement>

 | <iterative-statement>

 <simple-statement> ::= <assignment>

 | <block>

 | <empty-statement>

 | <assert-statement>

 | <procedure-statement>

 | <predeclared-procedure-statement>

 | <goto-statement>

 <conditional-statement> ::= <if-statement>

 | <case-statement>

 <iterative-statement> ::= <while-statement>

 | <for-statement>

 <assignment> ::= <variable> := [<variable> :=]*

 <expression>

 <block> ::= begin [<declaration> ;]* <statement>

 [; <statement>]* end

 <empty-statement> ::= (nothing)

 <assert-statement> ::= assert <expression>

 <procedure-statement> ::= <identifier> [(<expression>

 [, <expression>]*)]

 <identifier> ::= <letter>

 | <identifier> <letter>

 | <identifier> <digit>

 | <identifier> _

 User Oriented Algol W Syntax 449

 MTS 16: ALGOL W in MTS

 September 1980

 <letter> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|

 T|U|V|W|X|Y|Z|

 a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|

 t|u|v|w|x|y|z

 Note: Each lowercase alphabetic character is taken as the exact

 equivalent of the corresponding uppercase character.

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <predeclared-procedure-statement> ::=

 <predeclared-procedure-identifier> (

 <expression> [, <expression>]*)

 Note: The exact behavior of a particular predeclared procedure

 depends on the implementation, not the grammar. See the relevant

 section of the manual.

 <predeclared-procedure-identifier> ::=

 Read | Readon | Readcard

 | Write | Writeon | Writecard

 | Get | Geton | Put | Puton

 | Getstring | Putstring | Getcard | Putcard

 | Xgetcard | Xputcard | Xdelete | Reader

 | Writer | Iocontrol | Newline | Release

 | Protect | Rewind | Empty

 | Flush | Attntrap | Assign

 | Qualify | Control | Sense | Trace

 | Call | Rcall | Move | Fetch | Store

 | Locate | Translate | Cmd | Stop

 <variable> ::= <simple-variable>

 | <subscripted-variable>

 | <field-designator>

 | <substring-designator>

 <simple-variable> ::= <identifier>

 <subscripted-variable> ::= <identifier> (<expression>

 [, <expression>]*)

 <field-designator> ::= <identifier> (<variable>)

 <substring-designator> ::=

 <identifier> (<expression> | <constant>)

 Note: In the previous expression the "|" stands for itself. Also

 the double slash symbol "//" may be used as an alternative to the

 bar.

 450 User Oriented Algol W Syntax

 MTS 16: ALGOL W in MTS

 September 1980

 <expression> ::= <operand> [<operator> <operand>]*

 | <if-expression>

 | <case-expression>

 <operand> ::= [<unary-operator>]* <term>

 <term> ::= <variable>

 | <constant>

 | <function-call>

 | <block-expression>

 | (<expression>)

 <operator> ::= or | and

 | < | <= | > | >= | = | ¬=

 | + | - | * | / | div | rem

 | ** | shl | shr

 <unary-operator> ::= ¬ | + | -

 | abs | long | short

 Note: The reserved word ’not’ is everywhere equivalent to the not

 symbol, ¬. The precedence of operators (highest to lowest) is:

 long short abs

 ** shl shr

 * / div rem

 + -

 < <= > >= = ¬=

 ¬

 and

 or

 <function-call> ::= <identifier> [(<expression>

 [, <expression>]*)]

 <predeclared-function-call> ::=

 <predeclared-function-identifier> (

 <expression>)

 <predeclared-function-identifier> ::=

 External | Link | Odd | Bitstring | Number

 | Decode | Code | Truncate | Round | Entier

 | Exponent | Roundtoreal | Realpart

 | Imagpart | Longrealpart | Longimagpart

 | Imag | Longimag | Sqrt | Exp | Ln | Log

 | Sin | Cos | Arctan | Tan | Cot | Arcsin

 | Arccos | Sinh | Cosh | Tanh | Erf | Erfc

 | Gamma | Lngamma | Longsqrt | Longexp

 | Longln | Longlog | Longsin | Longcos

 | Longarctan | Longtan | Longcot | Longarcsin

 | Longarccos | Longsinh | Longcosh | Longtanh

 | Longerf | Longerfc | Longgamma

 | Longlngamma | Cxsin | Cxcos | Cxsqrt | Cxln

 User Oriented Algol W Syntax 451

 MTS 16: ALGOL W in MTS

 September 1980

 | Cxexp | Longcxsin | Longcxcos | Longcxsqrt

 | Longcxln | Longcxexp | Intbase10

 | Intbase16 | Base10 | Base16 | Longbase10

 | Longbase16 | Date | Time | Halfword

 | Fullword

 <block-expression> ::= begin [<declaration> ;]*

 [<statement> ;]* <expression> end

 <if-statement> ::= if <expression> then <statement>

 | if <expression> then <simple-statement>

 else <statement>

 <if-expression> ::= if <expression> then <expression>

 else <expression>

 <case-statement> ::= case <expression> of begin <statement>

 [; <statement>]* end

 <case-expression> ::= case <expression> of (<expression>

 [, <expression>]*)

 <while-statement> ::= while <expression> do <statement>

 <for-statement> ::= for <identifier> := <expression>

 [step <expression>] until <expression>

 do <statement>

 | for <identifier> := <expression>

 [, <expression>]* do <statement>

 <declaration> ::= <simple-variable-declaration>

 | <array-declaration>

 | <procedure-declaration>

 | <record-class-declaration>

 <simple-variable-declaration> ::=

 <type> <identifier> [, <identifier>]*

 <type> ::= integer

 | real

 | long real

 | complex

 | long complex

 | logical

 | bits [(32)]

 | string [(<integer-constant>)]

 | reference (<identifier> [,

 <identifier>]*)

 <record-class-declaration> ::=

 record <identifier>

 (<simple-variable-declaration>

 [; <simple-variable-declaration>]*)

 452 User Oriented Algol W Syntax

 MTS 16: ALGOL W in MTS

 September 1980

 <array-declaration> ::= <type> array <identifier>

 [, <identifier>]* <bound pairs>

 <bound-pairs> ::= (<expression> :: <expression>

 [, <expression> :: <expression>]*)

 <procedure-declaration> ::= procedure <identifier>

 [<formal-parameter-list>] ;

 <statement>

 | <type> procedure <identifier>

 [<formal-parameter-list>];

 <expression>

 <formal-parameter-list> ::= (<parameter-declaration>

 [; <parameter-declaration>]*)

 <parameter-declaration> ::= <type> [<access>] <identifier>

 [, <identifier>]*

 | <type> array <identifier>

 [, <identifier>]* (* [, *]*)

 <access> ::= value

 | result

 | value result

 User Oriented Algol W Syntax 453

 MTS 16: ALGOL W in MTS

 September 1980

 454 User Oriented Algol W Syntax

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX I: COMPLETE ALGOL W SYNTAX ____________________________________

 The sets VT (the set of all Algol W terminal symbols), VN (the set of

 Algol W nonterminal symbols), and P (the set of all productions of Algol

 W) completely describe the language Algol W.

 The sets VT and VN are defined through enumeration of their members

 below. The productions P are given throughout the remaining subsec-

 tions. To provide explanations for the meaning of Algol W programs,

 lowercase letter sequences used as nonterminal symbols have been chosen

 to be English words describing approximately the nature of the syntactic

 entity or construct. Where words which have appeared in this manner are

 used elsewhere in the text, they refer to the corresponding syntactic

 definition. As a notational shorthand, along with these letter

 sequences the symbol T or Tn, where "n" is a digit, may occur. This

 symbol must be replaced by any one of a finite set of English words (or

 word pairs) given in the following table:

 integer logical

 real bit

 long real string

 complex reference

 long complex

 If specifically stated, the replacement may be from a subset of the

 above. For example, the production

 <T-expression-1> ::= <T-expression-2>

 corresponds to

 <integer-expression-1> ::= <integer-expression-2>

 <real-expression-1> ::= <real-expression-2>

 <long-real-expression-1> ::= <long-real-expression-2>

 <complex-expression-1> ::= <complex-expression-2>

 <long-complex-expression-1> ::= <long-complex-expression-2>

 The production

 <T4-expression-8> ::= long <T5-expression-8>

 corresponds to

 <long-real-expression-8> ::= long <real-expression-8>

 <long-real-expression-8> ::= long <integer-expression-8>

 <long-complex-expression-8> ::= long <complex-expression-8>

 Complete Algol W syntax 455

 MTS 16: ALGOL W in MTS

 September 1980

 The symbol vertical bar "|" is an Algol W terminal symbol, but also a

 symbol of the metalanguage. To distinguish between the two, the Algol W

 vertical bar will be designated by <bar>.

 The basic symbols are:

 A B C D E F G H I J K L M

 N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m

 n o p q r s t u v w x y z

 0 1 2 3 4 5 6 7 8 9

 true false " null # ’ <bar> //

 integer real complex logical bits string

 reference array procedure record

 , ; : . () begin end if then else

 case of + - * / ** div rem shr shl is

 abs long short and or ¬ not _ = ¬= not=

 < <= > >= ::

 := goto go to for step until do while

 comment % value result assert algol fortran

 The symbol <empty> also is considered an element of the Algol W

 terminal symbol set, but it does not represent a physical symbol.

 Note that the lower case letters are treated as if the upper case

 equivalent had been entered.

 The following symbols are equivalent:

 <bar> //

 ¬ not

 ¬= not=

 In the descriptions which follow, only the first symbol of these pairs

 appears. It should be clearly understood that everywhere that the first

 symbol of one these pairs appears, it may always be replaced by the

 alternative symbol shown. The extra symbols were added because of the

 difficulty or confusion which can arise when entering "|" or "¬" from

 certain kinds of ASCII conversational terminals.

 An index to the syntactic entities follows:

 456 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 <actual-parameter> 5.3 <procedure-identifier> 1

 <actual-parameter-list> 5.3 <procedure-statement> 5.3

 <assert-statement> 5.8 <program> 5

 <bar> -- <proper-procedure-body> 3.3

 <block-body> 5.1 <proper-procedure-declaration> 3.3

 <block-head> 5.1 <record-class-declaration> 3.4

 <block> 5.1 <record-class-identifier> 1

 <bound-pair> 3.2 <record-class-identifier-list> 3.1

 <bound-pair-list> 3.2 <record-designator> 4.7

 <case-clause> 4.8 <relation> 4.4

 <case-statement> 5.6 <relational-operator> 4.4

 <character> 2.4 <scale-factor> 2.1

 <conditional-T-expression> 4.8 <sign> 2.1

 <control-identifier> 1 <simple-statement> 5

 <declaration> 3 <simple-T-variable> 4.1

 <digit> 1 <simple-T-variable-declaration> 3.1

 <dimension-specification> 3.3 <statement> 5

 <empty> -- <statement-list> 5.6

 <equality-operator> 4.4 <string> 2.4

 <expression-list> 4.7 <subarray-designator-list> 5.3

 <external-reference> 3.3 <subscript> 4.1

 <field-list> 3.4 <subscript-list> 4.1

 <for-clause> 5.7 <substring-designator> 4.6

 <for-list> 5.7 <T-array-declaration> 3.2

 <formal-array-parameter> 3.3 <T-array-designator> 4.1

 <formal-parameter-list> 3.3 <T-array-identifier> 1

 <formal-parameter-segment> 3.3 <T-assignment-statement> 5.2

 <formal-type> 3.3 <T-block-expression> 4

 <goto-statement> 5.4 <T-constant> 2.1-2.5

 <hex-digit> 2.3 <T-expression> 4

 <identifier> 1 <T-expression-i> 4-4.7

 <identifier-list> 1 <T-expression-list> 4.8

 <if-clause> 4.8 <T-field-designator> 4.1

 <if-statement> 5.5 <T-field-identifier> 1

 <imaginary-number> 2.1 <T-function-designator> 4.2

 <increment> 5.7 <T-function-identifier> 1

 <initial-value> 5.7 <T-function-procedure-body> 3.3

 <input-parameter-list> 5.9 <T-function-procedure-

 <iterative-statement> 5.7 declaration> 3.3

 <label-definition> 5.1 <T-left-part> 5.2

 <label-identifier> 1 <T-subarray-designator> 5.3

 <letter> 1 <T-type> 3.1

 <limit> 5.7 <T-variable> 4.1

 <lower-bound> 3.2 <T-variable-identifier> 1

 <null-reference> 2.5 <transput-parameter-list> 5.9

 <open-string> 2.4 <unscaled-real> 2.1

 <predeclared-procedure- <upper-bound> 3.2

 statement> 5.9 <while-clause> 5.7

 <procedure-declaration> 3.3

 <procedure-heading> 3.3

 Complete Algol W syntax 457

 MTS 16: ALGOL W in MTS

 September 1980

 1 IDENTIFIERS ___________

 <identifier> ::= <letter> | <identifier> <letter> |

 <identifier> <digit> | <identifier> _

 <T-variable-identifier> ::= <identifier>

 <T-array-identifier> ::= <identifier>

 <procedure-identifier> ::= <identifier>

 <T-function-identifier> ::= <identifier>

 <record-class-identifier> ::= <identifier>

 <T-field-identifier> ::= <identifier>

 <label-identifier> ::= <identifier>

 <control-identifier> ::= <identifier>

 <letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M |

 N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

 a | b | c | d | e | f | g | h | i | j | k | l | m |

 n | o | p | q | r | s | t | u | v | w | x | y | z

 <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 <identifier-list> ::= <identifier> |

 <identifier list> , <identifier>

 2 VALUES ______

 2.1 Numbers _______

 <long-complex-constant> ::= <complex-constant>L

 <complex-constant> ::= <imaginary-constant>

 <imaginary-constant> ::= <real-constant>I |

 <integer-constant>I

 <long-real-constant> ::= <real-constant>L |

 <integer-constant>L

 <real-constant> ::= <unscaled-real> |

 <unscaled-real><scale-factor> |

 <integer-constant><scale-factor> |

 <scale-factor>

 <unscaled-real> ::= <integer-constant>.<integer-constant> |

 .<integer-constant> | <integer-constant>.

 <scale-factor> ::= ’<integer-constant> |

 ’<sign><integer-constant>

 <integer-constant> ::= <digit> | <integer-constant><digit>

 <sign> ::= + | -

 2.2 Logical Values ______________

 <logical-constant> ::= true | false

 458 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 2.3 Bits Sequences ______________

 <bits-constant> ::= # <hex-digit> |

 <bits-constant><hex-digit>

 <hex-digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 | A | B | C | D | E | F

 | a | b | c | d | e | f

 Note that the <hex-digits> 0 | ... | F correspond to the

 decimal numbers 0 | ... | 15 .

 2.4 Strings _______

 <string-constant> ::= <string> | <string> <string>

 <string> ::= "<open-string>"

 <open-string> ::= <character> | <open-string><character>

 2.5 References __________

 <reference-constant> ::= null

 3 DECLARATIONS ____________

 <declaration> ::= <simple-T-variable-declaration> |

 <T-array-declaration> | <procedure-declaration> |

 <record-class-declaration>

 3.1 Simple Variable Declarations ____________________________

 <simple-T-variable-declaration> ::= <T-type><identifier-list>

 <integer-type> ::= integer

 <real-type> ::= real

 <long-real-type> ::= long real

 <complex-type> ::= complex

 <long-complex-type> ::= long complex

 <logical-type> ::= logical

 <bits-type> ::= bits | bits (32)

 <string-type> ::= string | string (<integer-constant>)

 <reference-type> ::=

 reference (<record-class-identifier-list>)

 <record-class-identifier-list> ::= <record-class-identifier>|

 <record-class-identifier-list>,<record-class-identifier>

 Complete Algol W syntax 459

 MTS 16: ALGOL W in MTS

 September 1980

 3.2 Array Declarations __________________

 <T-array-declaration> ::= <T-type> array <identifier-list>

 (<bound-pair-list>)

 <bound-pair-list> ::= <bound-pair> |

 <bound-pair-list>,<bound-pair>

 <bound-pair> ::= <lower-bound> :: <upper-bound>

 <lower-bound> ::= <integer-expression>

 <upper-bound> ::= <integer-expression>

 3.3 Procedure Declarations ______________________

 <procedure-declaration> ::= <proper-procedure-declaration> |

 <T-function-procedure-declaration>

 <proper-procedure-declaration> ::= procedure

 <procedure-heading>; <proper-procedure-body>

 <T0-function-procedure-declaration> ::=

 <T0-type> procedure <procedure-heading>;

 <T1-function-procedure-body>

 <proper-procedure-body> ::= <statement> |

 <external-reference>

 <T-function-procedure-body> ::= <T-expression> |

 <external-reference>

 <procedure-heading> ::= <identifier> |

 <identifier> (<formal-parameter-list>)

 <formal-parameter-list> ::= <formal-parameter-segment> |

 <formal-parameter-list>;<formal-parameter-segment>

 <formal-parameter-segment> ::= <formal-array-parameter> |

 <formal-type><identifier-list>

 <formal-type> ::= <T-type> | <T-type> value |

 <T-type> result | <T-type> value result |

 <T-type> procedure | procedure

 <formal-array-parameter> ::= <T-type> array

 <identifier-list> (<dimension-specification>)

 <dimension-specification> ::= * |

 <dimension-specification> , *

 <external-reference> ::= fortran <string> | algol <string>

 3.4 Record Class Declarations _________________________

 <record-class-declaration> ::=

 record <identifier> (<field-list>)

 <field-list> ::= <simple-T-variable-declaration> |

 <field-list>; <simple-T-variable-declaration>

 460 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 4 EXPRESSIONS ___________

 Expressions are distinguished by a type and a precedence level, the

 former depending on the types of the operands and the latter resulting

 from the precedence hierarchy imposed upon operators in the syntactic

 rules which follow. The syntactic entities naming different kinds of

 expressions in these rules are chosen to illustrate their types and

 precedences, the word "expression" being prefixed by a type and,

 usually, postfixed by an integer indicating the precedence level.

 (Higher precedence is implied by increasing magnitude of this integer.)

 The operators and their precedence levels are:

 Level Operators _____ _________

 1 or

 2 and

 3 ¬

 4 < <= = ¬= >= > is

 5 + -

 6 * / div rem

 7 shl shr **

 8 long short abs

 When the types allow an operator at level "i" to be applied to operands,

 the resulting expression, which belongs to the syntactic class <T-

 expression-i>, has the hierarchical property given in the second column

 of the table below.

 Syntactic Entity Property ________________ ________

 <T-expression-1> disjunction

 <T-expression-2> conjunction

 <T-expression-3> negation

 <T-expression-4> relation

 <T-expression-5> sum

 <T-expression-6> term

 <T-expression-7> factor

 <T-expression-8> primary

 Throughout this part, the symbol T has to be replaced uniformly as

 described above, and the triplets T0, T1, T2 have to be uniformly

 replaced by exactly one of the words:

 logical

 bit

 string

 reference

 or (subject to specification to the contrary) in accordance with the

 following "triplet rules" (1) and (2):

 Complete Algol W syntax 461

 MTS 16: ALGOL W in MTS

 September 1980

 (1) Given the attributes (integer, real, or complex) of T1 and T2,

 the corresponding attribute of T0 is given in the following

 table:

 T2 | integer real complex

 ────────────┼────────────────────────────
 T1 integer | integer real complex

 real | real real complex

 complex | complex complex complex

 (2) T0 has the quality "long" if either both T1 and T2 have that

 quality, or if one has the quality "long" and the other is

 "integer".

 <T-expression> ::= <T-expression-1> |

 <conditional-T-expression>

 <T-expression-1> ::= <T-expression-2>

 <T-expression-2> ::= <T-expression-3>

 <T-expression-3> ::= <T-expression-4>

 <T-expression-4> ::= <T-expression-5>

 <T-expression-5> ::= <T-expression-6>

 <T-expression-6> ::= <T-expression-7>

 <T-expression-7> ::= <T-expression-8>

 <T-expression-8> ::= <T-variable> |

 <T-function-designator> | <T-constant> |

 (<T-expression>) | <T-block-expression>

 <T-block-expression> ::= <block body><T-expression> end

 4.1 Variables _________

 <simple-T-variable> ::= <T-variable-identifier> |

 <T-field-designator> | <T-array-designator>

 <T-variable> ::= <simple-T-variable>

 <string-variable> ::= <substring-designator>

 <T-field-designator> ::= <T-field-identifier>

 (<reference-expression>)

 <T-array-designator> ::= <T-array-identifier>

 (<subscript-list>)

 <subscript-list> ::= <subscript> |

 <subscript-list> , <subscript>

 <subscript> ::= <integer-expression>

 4.2 Function Designators ____________________

 <T-function-designator> ::= <T-function-identifier> |

 <T-function-identifier> (<actual-parameter-list>)

 462 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 4.3 Arithmetic Expressions ______________________

 <T3-expression-5> ::= + <T3-expression-6> |

 - <T3-expression-6>

 <T0-expression-5> ::= <T1-expression-5> + <T2-expression-6> |

 <T1-expression-5> - <T2-expression-6>

 <T0-expression-6> ::= <T1-expression-6> * <T2-expression-7> |

 <T1-expression-6> / <T2-expression-7>

 <integer-expression-6> ::=

 <integer-expression-6> div <integer-expression-7> |

 <integer-expression-6> rem <integer-expression-7>

 <T4-expression-7> ::=

 <T5-expression-7> ** <integer-expression-8>

 <T4-expression-8> ::= abs <T5-expression-8> |

 long <T5-expression-8> | short <T5-expression-8>

 <integer-expression-8> ::= <control-identifier>

 4.4 Logical Expressions ___________________

 In the following rules for <relation> the symbols T6 and T7 must

 either both be replaced by any one of the following words:

 logical

 bit

 string

 reference

 or individually replaced by any of the words:

 complex

 long-complex

 real

 long-real

 integer

 and the symbols T8 or T9 must be simultaneously replaced by string or

 must be replaced by any of real, long-real, or integer.

 <logical-expression-1> ::=

 <logical-expression-1> or <logical-expression-2>

 <logical-expression-2> ::=

 <logical-expression-2> and <logical-expression-3>

 <logical-expression-3> ::= ¬ <logical-expression-4>

 <logical-expression-4> ::= <relation> | <logical-variable>

 <relation> ::=

 <T6-expression-5><equality-operator><T7-expression-5> |

 <T8-expression-5><inequality-operator><T9-expression-5> |

 <reference-expression-5> is <record-class-identifier>

 <equality-operator> ::= = | ¬=

 <inequality-operator> ::= < | <= | >= | >

 Complete Algol W syntax 463

 MTS 16: ALGOL W in MTS

 September 1980

 4.5 Bits Expressions ________________

 <bits-expression-1> ::=

 <bits-expression-1> or <bits-expression-2>

 <bits-expression-2> ::=

 <bits-expression-2> and <bits-expression-3>

 <bits-expression-3> ::= ¬ <bits-expression-4>

 <bits-expression-7> ::=

 <bits-expression-7> shl <integer-expression-8> |

 <bits-expression-7> shr <integer-expression-8>

 4.6 String Expressions __________________

 <substring-designator> ::= <string-variable>

 (<integer-expression><bar><integer-constant>)

 4.7 Reference Expressions _____________________

 <reference-expression-8> ::= <record-designator>

 <record-designator> ::= <record-class-identifier> |

 <record-class-identifier> (<expression-list>)

 <expression-list> ::= <empty> | <T-expression> |

 <expression-list>, |

 <expression-list> , <T-expression>

 4.8 Conditional Expressions _______________________

 <conditional-T-expression> ::=

 <case-clause> (<T-expression-list>)

 <conditional-T0-expression> ::=

 <if-clause> <T1-expression> else <T2-expression>

 <T-expression-list> ::= <T-expression>

 <T0-expression-list> ::=

 <T1-expression-list> , <T2-expression>

 <if-clause> ::= if <logical-expression> then

 <case-clause> ::= case <integer-expression> of

 464 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 5 STATEMENTS __________

 <program> ::= <statement>. |

 <proper-procedure-declaration>. |

 <T-function-procedure-declaration>.

 <statement> ::= <simple-statement> | <iterative-statement> |

 <if-statement> | <case-statement>

 <simple-statement> ::= <block> | <T-assignment-statement> |

 <procedure-statement> | <goto-statement> |

 <predeclared-procedure-statement> |

 <assert-statement> | <empty>

 5.1 Blocks ______

 <block> ::= <block-body> <statement> end

 <block-body> ::= <block-head> | <block-body> <statement> ; |

 <block-body> <label-definition>

 <block-head> ::= begin | <block-head> <declaration>

 <label-definition> ::= <identifier> :

 5.2 Assignment Statements _____________________

 In the following rules the symbols T0 and T1 must be replaced by

 words which may be substituted for T as indicated at the beginning of

 this appendix, subject to the restriction that the type T1 must be

 assignment compatible with the type T0.

 <T0-assignment-statement> ::= <T0-left-part><T1-expression> |

 <T0-left-part><T1-assignment-statement>

 <T-left-part> ::= <T-variable> :=

 5.3 Procedure Statements ____________________

 <procedure-statement> ::= <procedure-identifier> |

 <procedure-identifier> (<actual-parameter-list>)

 <actual-parameter-list> ::= <actual-parameter> |

 <actual-parameter-list> , <actual-parameter>

 <actual-parameter> ::= <T-expression> | <statement> |

 <T-subarray-designator> | <procedure-identifier> |

 <T-function-identifier>

 <T-subarray-designator> ::= <T-array-identifier> |

 <T-array-identifier>(<subarray-designator-list>)

 <subarray-designator-list> ::= <subscript> | * |

 <subarray-designator-list>,<subscript> |

 <subarray-designator-list>,*

 Complete Algol W syntax 465

 MTS 16: ALGOL W in MTS

 September 1980

 5.4 Goto Statements _______________

 <goto-statement> ::= goto <label-identifier> |

 go to <label-identifier>

 5.5 If Statements _____________

 <if-statement> ::= <if-clause><statement> |

 <if-clause><simple-statement> else <statement>

 <if-clause> := if <logical-expression> then

 5.6 Case Statements _______________

 <case-statement> ::= <case-clause> begin <statement-list> end

 <statement-list> ::= <statement> |

 <statement-list>;<statement>

 <case-clause> ::= case <integer-expression> of

 5.7 Iterative Statements ____________________

 <iterative-statement> := <for-clause><statement> |

 <while-clause><statement>

 <for-clause> ::= for <identifier> := <initial-value>

 step <increment> until <limit> do |

 for <identifier> := <initial-value> until <limit> do |

 for <identifier> := <for-list> do

 <for-list> ::= <integer-expression> |

 <for-list> , <integer-expression>

 <initial-value> ::= <integer-expression>

 <increment> ::= <integer-expression>

 <limit> ::= <integer-expression>

 <while-clause> ::= while <logical-expression> do

 5.8 Assert Statements _________________

 <assert statement> ::= assert <logical expression>

 466 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 5.9 Predeclared Procedures ______________________

 <predeclared-procedure-statement> ::=

 <predeclared-procedure-identifier>

 (<predeclared-procedure-parameter-list)

 <predeclared-procedure-parameter-list> ::=

 <input-parameter-list>) | <transput-parameter-list>

 <input-parameter-list> ::= <T-variable> |

 <simple-statement> |

 <input-parameter-list> , <T-variable> |

 <input-parameter-list> , <simple-statement>

 <transput-parameter-list> ::= <T-expression> |

 <simple-statement> |

 <transput-parameter-list> , <T-expression> |

 <transput-parameter-list> , <simple-statement>

 Note: The exact form of a predeclared procedure statement depends

 on the implementation of a particular predeclared procedure. See

 the main text description for the required procedure.

 Complete Algol W syntax 467

 MTS 16: ALGOL W in MTS

 September 1980

 468 Complete Algol W syntax

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX J: INTERNAL REPRESENTATION OF NUMERICAL DATA __

 On System/370 type computers (e.g. Amdahl 470 computers), the

 following units of storage are used:

 (1) the bit; a single 0 or 1

 (2) the byte; a group of eight consecutive bits

 (3) the word; a group of four consecutive bytes; that is 32

 consecutive bits

 (4) the doubleword; a group of 2 consecutive words; that is eight

 bytes or 64 bits.

 In practice the byte is the smallest unit of addressable data. It is

 the smallest unit of storage whose position in main storage may be

 specified directly.

 For number representation in Algol W words and doublewords are the

 main units of interest.

 INTEGERS ________

 Integers are stored in words. Of the 32 bits of a word, the leading

 one is reserved for the sign (0 for + and 1 for -, leaving 31 bits to

 represent the magnitude. A positive or zero valued integer is stored in

 a binary (base 2) representation. Thus:

 21

 10

 (the subscript means base 10) is stored as:

 0000 0000 0000 0000 0000 0000 0000 0001 0101

 |

 sign bit

 To confirm this, note that:

 0x2³⁰ + ... + 0x2⁵ + 1x2⁴ + 0x2³ + 1x2² + 0x2¹ + 1x2⁰

 gives the decimal value 21.

 Internal Representation of Numerical Data 469

 MTS 16: ALGOL W in MTS

 September 1980

 The largest integer that can be stored in a word is:

 2³⁰ + 2²⁹ + ... + 2¹ + 2⁰ = 2³¹ - 1

 which is:

 2147483647

 10

 Any attempt to create or store an integer larger than this will produce

 erroneous results, and the user will usually, but not always, be warned

 of this error (see below).

 To save space in writing words on paper, each group of four bits in a

 word is frequently converted to a single base 16 (hexadecimal) digit,

 according to the following code:

 base 2 base 16 | base 2 base 16

 ───────────────────────┼──────────────────────────
 0000 0 | 1000 8

 0001 1 | 1001 9

 0010 2 | 1010 A

 0011 3 | 1011 B

 0100 4 | 1100 C

 0101 5 | 1101 D

 0110 6 | 1110 E

 0111 7 | 1111 F

 Thus the letters A, B, C, D, E and F are used as base 16 representations

 of the decimal numbers 10, 11, 12, 13, 14 and 15. Nevertheless,

 integers are stored as base 2 numbers.

 Using hexadecimal notation, the decimal number 21 is written:

 00000015

 16

 Note that:

 15 and 21

 16 10

 are the same integer number in different representations.

 Negative integer values are stored in what is called two’s complement

 form. For example, the value -1 is stored as:

 1111 1111 1111 1111 1111 1111 1111 1111 = FFFFFFFF

 16

 Similarly, the value -21 is stored as:

 470 Internal Representation of Numerical Data

 MTS 16: ALGOL W in MTS

 September 1980

 1111 1111 1111 1111 1111 1111 1110 1011 = FFFFFFEB

 16

 The representation for -21 is obtained from that for +21 by changing

 every 0 to 1 and every 1 to 0, and then adding +1 in base 2 arithmetic

 to the result. Similarly for any other negative integer. Note that

 every negative integer has 1 as its sign bit. The largest negative

 integer value which may be stored in a word is:

 -2³¹ = -2147483648
 10

 and it is represented by:

 80000000

 16

 Another way to think of the representation of negative numbers is to

 consider a 32-place binary accumulating register. If one starts with

 all zeros in this register, the representation of -1 can be obtained by

 subtracting 1. The process requires a "borrow" to propogate to the left

 all the way across the register, leaving all ones. Continued subtrac-

 tion will give the representation for -2, -3, and so on.

 In an accumulator of this kind it can also be seen what happens when

 a positive number greater than 2147483647 is created. For example, if 1

 is added to this number, the resulting carry will go all the way into

 the sign bit. This leaves a sign bit of 1, with all other bits zero --

 which is the representation of -2147483648, the largest negative

 integer. Consequently positive integers that overflow in this way may

 be sensed as negative by the computer.

 The mechanisms of Algol W for detecting integer overflow of this kind

 can be used to detect additions, subtractions or multiplications that

 produce an integer, n, outside the range:

 -2³¹ <= n <= 2³¹ - 1

 Attempts to divide an integer by zero will yield an error message and

 meaningless values for quotient and remainder.

 If a user suspects that integers in a program are getting anywhere

 near the limit of representation, then conversion to double precision

 floating point by assignment to a long real variable should be

 considered. Conversion to single precision floating point numbers may

 lose some precision.

 The most important thing for a scientific user to remember is that

 integers in the allowed range are stored without approximation. Moreov-

 er, operations on integers (addition, subtraction and multiplication)

 are done without any error, while all intermediate and final results

 stay within the allowed range.

 Internal Representation of Numerical Data 471

 MTS 16: ALGOL W in MTS

 September 1980

 It is perhaps easier to remember the safe range:

 -2x10⁹ < n < 2x10⁹

 which is obtained from the useful approximation that:

 2¹⁰ = 10³

 The operations of division without remainder (called Div in Algol W)

 and taking the remainder on division (called Rem in Algol W) always give

 integer results. If the divisor is zero, an error message is given.

 In Algol W two operations on integers give results that are not

 integer. They are / (divide) and ** (power).

 FLOATING POINT NUMBERS ______________________

 Numbers in many scientific computations will grow in magnitude well

 beyond the range of integers described above. To provide for this,

 System/370, Amdahl 470 V/8, and most scientific computers have a second

 way to represent numbers. This is the so-called floating point

 representation. The significance of the name "floating point" is that

 the radix point -- for example, the decimal point in base 10 numbers --

 is permitted to float to the right or left, thus permitting scaling of

 numbers by various powers of the radix.

 Although a decimal point that has floated off to the left will

 produce a number like 0.001345, the numbers are actually represented in

 a form closer to what is often called scientific notation, here:

 1.345x10⁻³

 In System/370 type machines, floating point numbers are always

 represented in base 16 notation; that is the radix or number base is 16.

 This permits the writing of numbers in abbreviated form (as was done

 with integers earlier). More important, the use of base 16 conforms

 with hardware arithmetic processes in which shifting is done four bits

 at a time to speed up the operations. This increase in speed is

 achieved at a slight cost in precision, as is learned from detailed

 error analyses which would be out of place here.

 Consider first the floating point representation of numbers by a

 single word of 32 bits. This is the so called single precision or short

 real number, the number of type real in Algol W. The 32 bits of a word

 are numbered from 0 to 31, from left to right, to aid in their

 identification.

 In floating point representation the left hand eight bits (bits 0 to

 7, equivalent to two hexadecimal digits) are devoted to the sign of the

 number and the exponent of 16 associated with the number. The right

 472 Internal Representation of Numerical Data

 MTS 16: ALGOL W in MTS

 September 1980

 hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)

 represent six significant hexadecimal digits (the significand) of the

 number.

 As with integers, the sign of the number is denoted by bit 0, with 0

 representing + and 1 representing -.

 Bits 1 to 7 give the binary (base 2) representation of a non-negative

 integer, e, in the range:

 0 to 127

 10 10

 inclusive. This integer is called the biased exponent, for reasons now

 to be explained. If this integer were taken directly as the exponent,

 there could be no negative exponents, and therefore no way of represent-

 ing such numbers as:

 16⁻²⁵

 It is desirable to have an exponent range which is approximately

 symmetric about zero. In the computer the true exponent of a floating

 point number is obtained by subtracting decimal 64 from the biased

 exponent represented by bits 1 to 7. As a result, the actual exponents

 range from decimal -64 to +63.

 The 24 bits 8 to 31 of a number are regarded as six hexadecimal

 digits with a hexadecimal point at the left hand end (that is before the

 digits). If the floating point number zero is being represented, all

 the hexadecimal digits are zero, as are all the other bits. Otherwise,

 at least one of the hexadecimal digits must be non-zero.

 A floating point number is said to be normalized if the left most

 hexadecimal digit (the most significant digit) is non zero. In ordinary

 circumstances the computer’s floating point numbers are normalized, and

 other forms will not be considered here.

 Consider now the floating point representations of some sample

 numbers. As was previously stated, the number zero is represented by 32

 zero bits, that is eight hexadecimal zero digits. Thus zero is

 represented by the same words in floating point or integer form. No

 other number has this property.

 The number 1.0 is represented by:

 sign bit

 |

 0 100 0001 0001 0000 0000 0000 0000 0000

 --------- ----------------------------------

 biased significand

 exponent

 Internal Representation of Numerical Data 473

 MTS 16: ALGOL W in MTS

 September 1980

 To check this, note that the sign bit is zero representing plus. The

 biased exponent is:

 1000001 or 65

 2 10

 Subtracting decimal 64 yields 1 as the true exponent. The hexadecimal

 significand is:

 100000

 16

 Putting a hexadecimal point at the left end gives the hexadecimal

 fraction .100000, which equals 1/16 (one sixteenth). Thus the above

 word represents:

 + (1/16) x 16¹ or 1.0
 10

 To save writing, the above word is usually written in the hexadecimal

 form 41100000 . While some numbers can be recognized in this form,

 there is in general no easy way to convert such a hexadecimal word into

 a real number. The number must be examined, and the six right most

 hexadecimal digits are prefixed by a hexadecimal point. If the

 remaining two left most digits are less than hexadecimal 80, then the

 number is positive and the true exponent is obtained by subtracting

 hexadecimal 40 (= decimal 64). If this two digit number is hexadecimal

 80 or greater, then the number is negative and the true exponent is

 obtained by subtracting hexadecimal C0 (80 + 40, or decimal 192). In

 dealing with such numbers some facility with hexadecimal arithmetic is

 required.

 In this presentation the radix point has been considered to be at the

 left of the six significant hexadecimal digits, with the exponent biased

 high by decimal 64. As an alternative, the radix point may be placed

 just to the right of the most significant digit of the significand, and

 the exponent may now be regarded as high by decimal 65. This brings the

 significand closer to the usual scientific notation but requires a

 trickier conversion to get the true exponent. The fact that either

 interpretation (and many others) are possible shows that really the

 radix point is just in the eye of the beholder, and not in the machine.

 Here are some examples of floating point numbers, together with the

 computer’s hexadecimal versions:

 474 Internal Representation of Numerical Data

 MTS 16: ALGOL W in MTS

 September 1980

 Decimal | machine

 number | floating point

 ──────────────┼───────────────────
 0.0 | 00000000

 1.0 | 41100000

 0.0625 | 40100000

 16.0 | 42100000

 256.0 | 43100000

 -1.0 | C1100000

 -16.0 | C2100000

 3.5 | 41380000

 The largest floating point number is 7FFFFFFF, representing:

 3F -6 63 75

 .FFFFFF x 16 or (1 - 16) x 16 or about 7.23 x 10

 (Here 10 and sixteen denote decimal numbers.)

 The smallest positive normalized floating point number is 00100000,

 representing:

 (1/16) x 16⁻⁶⁴ or about 5.40 x 10⁻⁷⁹

 The negatives of these two numbers can also be represented (merely by

 setting the sign bit), and they are the extremes of representable

 negative numbers.

 Very few numbers can be exactly represented with six significant

 decimal digits. For example, one third is .333333 decimal only

 approximately. In the same way very few numbers can be exactly

 represented with six significant hexadecimal digits. For example, one

 third is .555555 hexadecimal only approximately. Moreover, some numbers

 that are exactly representable in decimal are only approximately

 representable in hexadecimal. For example, one tenth is .100000 decimal

 exactly, but .19999A hexadecimal only approximately.

 Thus round-off error enters into the representation of most floating

 point numbers on computers, and the round off differs from that with

 decimal numbers. This can easily give rise to unexpected results. For

 example, if the above number .19999A hexadecimal (decimal .1) is

 multiplied by the integer decimal 100 (64 in hexadecimal), the result is

 not A.00000 hexadecimal (the expected 10.0 decimal), but instead A.00003

 hexadecimal, as a cumulative effect of the slightly high approximation

 to .1 decimal. The value A.00003 hexadecimal rounds to 10.00002 on

 conversion to decimal.

 The precision of a single precision hexadecimal number is roughly

 1.0’-7 in Algol W notation. This can be thought of a being crudely

 equivalent to seven significant decimal digits.

 Not only do errors appear in the representation of numbers inside

 computers, but they arise from arithmetic operations performed on

 Internal Representation of Numerical Data 475

 MTS 16: ALGOL W in MTS

 September 1980

 numbers. For example, the product of two floating point numbers may

 have up to 12 significant hexadecimal digits. When the product is

 stored as a single precision floating point number, it must be rounded

 to six hexadecimal digits. This introduces an error, even though the

 factors may have been exact.

 When an Algol W program assigns decimal numbers or integer values to

 variables of type real, these are immediately converted to hexadecimal

 floating point numbers, with (usually) a round off error. When a

 program outputs numbers from the computer in Algol W, they are converted

 to decimal. Both conversions are done as well as possible, but

 introduce changes in the numbers that a programmer should be aware of.

 Of course, all intermediate operations introduce further round off and

 possible errors. It is unthinkable to do the analysis necessary to

 counteract these errors and get the true answer to the problem. If

 answers entirely uncontaminated by round off are required, integer

 arithmetic must be used with the requisite guards against overflow.

 Fortunately most users can accept an indeterminate amount of round

 off in their numbers, provided that they have some assurance that round

 off is not growing out of control. It is the business of numerical

 analysts to provide algorithms whose round off properties are reasonably

 under control, and such work produces standard libraries of procedures

 such as the NAAS subroutine library.

 DOUBLE PRECISION ________________

 The precision of single precision floating point numbers is not

 adequate for most scientific and engineering purposes. This is because

 a considerable number of computations require still more precision at

 intermediate stages, just in order to retain normal accuracy at the end.

 As a result, System/370 type computers provide an easy mechanism for

 getting a great deal more precision. For this purpose a doubleword of

 64 bits is used to store a floating point number of so called double

 precision or long precision.

 In this representation, the sign and biased exponent are found in the

 first byte of the doubleword, with precisely the same interpretation as

 with single precision floating point numbers. The second word of the

 doubleword consists of eight hexadecimal digits immediately following

 the six found in the first word. There is no sign or exponent in the

 second word. Thus a doubleword represents a signed floating hexadecimal

 number with 14 significant hexadecimal digits. As before, non zero

 numbers are normalized so that the most significant (left most) digit of

 the 14 is non zero.

 Examples:

 476 Internal Representation of Numerical Data

 MTS 16: ALGOL W in MTS

 September 1980

 1.0L = 41 100000 00000000

 0.1L = 40 199999 9999999A

 long significand

 There is a full set of arithmetic operations for both single and

 double precision operations. Single precision arithmetic operations

 take slightly more CPU time than that for double precision operations.

 For modest problems the extra time is completely dwarfed by the time

 lost to system operations, and the use of double precision is strongly

 recommended for all scientific computation. The only disadvantage of

 using long precision is the doubling of storage needed. If arrays with

 tens of thousands of elements exist, the extra storage may be costly,

 though with modern machines this is not so important as it used to be.

 Since:

 16⁻¹⁴ is about 10⁻¹⁷

 the double precision numbers are crudely equivalent in precision to 17

 significant decimal digits.

 For a machine with the speed of System/370 or Amdahl 470 machines, a

 number precision of six hexadecimal digits (roughly seven decimals) is

 considered very low, while a precision of 14 hexadecimal digits (roughly

 17 decimals) is much more useful.

 The floating point arithmetic hardware of System/370 type machines

 provides the possibility of detecting when numbers have gone outside the

 exponent range stated above. It may be thought that a range from

 roughly decimal exponent -79 to +75 should cover all reasonable

 computations. While exponent overflow and exponent overflow are not

 very common, they can be the cause of elusive errors. The evaluation of

 a determinant is a common computation, and for a matrix of order 40 is

 quite rapidly done. If the matrix elements are of the quite reasonable

 magnitude 1.0’-3, then the magnitude of the determinant will be no

 larger than roughly 1.0’-90 (and probably much smaller), well below the

 range of representable floating point numbers. Such problems are a

 frequent source of exponent underflow.

 The mechanisms within Algol W for detecting exponent overflow and

 underflow are discussed elsewhere in this manual. Even without these,

 floating point numbers behave well for numbers that are at least 1.0’66

 times as large as the largest integer in the system. Hence use of

 floating point numbers solves most of the problems raised by integer

 overflow. This also permits the use of a large set of rational numbers,

 which do not even enter the integer system.

 Internal Representation of Numerical Data 477

 MTS 16: ALGOL W in MTS

 September 1980

 ALGOL W REAL AND LONG REAL __________________________

 Information on how to represent real variables and numbers to take

 advantage of both single and double precision will be found in the

 section "Values and Types."

 The purpose of this section is to bring this information into rapport

 with the hardware representation of numbers. If a variable X is

 declared real, one word is set aside for its values, and it will be

 stored in single precision form. If a variable Xx is declared to be

 long real, a doubleword is set aside to hold its values, and it will be

 stored in double precision form.

 If the number is written in one of the decimal floating point forms

 either without a trailing "L" or without specifying LONG as a compila-

 tion parameter, then it will be truncated to single precision, no matter

 how many digits are set down. Thus 3.1415926535897932 will be immedi-

 ately truncated to single precision in the program, and all the

 superfluous digits are lost at once. The assignment:

 Xx := 3.1415926535897932

 will result in the doubleword Xx receiving an approximation to that

 value in the more significant word, and all zeros in the less

 significant word. Thus a precision of only approximately seven decimals

 is obtained for the pain of writing 17, and this may well contaminate

 all the rest of the computation.

 If Xx is required to be precise to approximately the full double

 precision, one must either code the statement in the form:

 Xx := 3.1415926535897932L

 or give the compilation parameter LONG. This parameter causes all real

 quantities in the program to be automatically treated as if they had

 been specified as long real. This applies to all declarations,

 numerical constants, and predeclared variables and functions. If this

 parameter is used, for safety it should be kept with the program source

 on a /COMPILE control record.

 With the declaration ’real X’, and no LONG parameter specified, the

 statement:

 X := 3.1415926535897932L

 will result in X having a single precision approximation to the number,

 as the long representation is truncated on assignment to X.

 When integer numbers are assigned to a variable declared as long

 real, the full accuracy of the number is retained, as the integer is

 floated to the long representation on assignment. The assignment:

 478 Internal Representation of Numerical Data

 MTS 16: ALGOL W in MTS

 September 1980

 Xx := 2147483647

 will not lose accuracy even though no trailing "L" has been given,

 because the constant on the right hand side is an integer, and all

 integers possible on the machine may be represented exactly in double

 precision floating point form.

 The previous information refers to numbers written within Algol W

 source programs. When floating point values are read in to variables

 using one of the predeclared procedures provided for that purpose, the

 conversion is always done to double precision accuracy. No trailing "L"

 is required, and its presence is flagged as illegal. If the destination

 variable is of single precision, then the double precision number

 converted from the character stream input is then truncated to single

 precision.

 Certain aspects of the above may have unexpected effects when

 combined with the rules governing evaluation of arithmetic expressions.

 Assume the following declarations:

 real X, Y, Z;

 long real Xx, Yy, Zz;

 integer I, J, K;

 Then X*Y, I**J, and I*X are all long real. The assignment statement:

 Xx := X := Y*Z

 will result in Xx having a single precision truncated version of Y*Z in

 the more significant word, and zeros in the less significant word.

 Moreover, I*I is integer, but I**2 is long real.

 If a programmer understands the language Algol W and the preceding

 pages on number representation, then the effects of mathematical

 algorithms should be understandable. A certain caution regarding the

 effect of a computer on numbers entrusted to it is never out of place.

 Internal Representation of Numerical Data 479

 MTS 16: ALGOL W in MTS

 September 1980

 480 Internal Representation of Numerical Data

 MTS 16: ALGOL W in MTS

 September 1980

 APPENDIX K: SUBROUTINE CALLING CONVENTIONS ___

 Some knowledge of System/370 assembly language is required before

 attempting to read this appendix.

 INTRODUCTION ____________

 A calling convention is a very rigid specification of the sequence of

 instructions to be used by a program to transfer control to another

 program (usually referred to as a subroutine). It is very desirable,

 although not always practical, to have only one set of conventions to be

 used by all programs no matter what language they are written in, so

 that FORTRAN programs may call assembly language programs and so forth.

 In MTS, the O/S Type I calling conventions have been adopted as the

 standard. A complete specification of these standards can be found in

 the IBM publication, "OS/360 System Supervisor Services and Macro

 Instructions", form number GC28-6646. This description will attempt to

 bring out the pertinent details of these calling conventions.

 Throughout this discussion we will refer to the terms calling _______

 program, called program, save area, and calling sequence. The calling _______ ______________ _________ ________________ _______

 program is the program which is in control and wants to call another _______

 program (subroutine). The called program is the program (subroutine) ______________

 which the calling program wants to call. The save area is an area _________

 belonging to the calling program which the called program uses to save

 and later restore general-purpose registers. The save area has a very

 rigid format and is discussed in more detail later on. A calling _______

 sequence is the actual sequence of machine instructions which perform ________

 the tasks as specified by the calling conventions.

 The facilities that must be provided by the calling conventions are:

 (1) Establish addressability and transfer to the entry point.

 (2) Pass parameters on to the called program.

 (3) Pass results back to the calling program.

 (4) Save and restore general-purpose and floating-point registers.

 (5) Reestablish addressability and return to the calling program.

 (6) Pass a return code (error indication) back to the calling

 program so it knows how things went.

 Subroutine Calling Conventions 481

 MTS 16: ALGOL W in MTS

 September 1980

 The remainder of this description will describe the O/S Type I

 calling conventions to show how they are used and how the facilities

 listed above are provided for.

 REGISTER AND STORAGE VARIANTS OF CALLS ______________________________________

 The O/S Type I calling conventions actually consist of two very

 similar sets, referred to as S-type and R-type. The two differ only in

 the way parameters and results are passed between the calling and called _______ ______

 programs. The R refers to register and the S to storage. _ ________ _ _______

 The R-type calling conventions utilize the general-purpose registers

 0 and 1 for passing parameters and results. This allows only two

 parameters or results. The required calling sequence cannot be generat-

 ed in many higher-level languages. Its advantages are that calling

 sequences are shorter and take less time to set up. These are very

 popular in lower-level system subroutines such as GETSPACE or GETFD.

 Algol W users needing to call subroutines that utilize R-type calling

 conventions can use the Rcall predeclared procedure described in this

 volume.

 The S-type calling conventions require a pointer in register one to a

 vector of address constants called a parameter list. Since this list

 can be of any required length, several parameters can be passed using

 S-type calling convention. These conventions are used by system

 subroutines such as SCARDS or LOAD and are generated by all function or

 subprogram references in FORTRAN. Results can be passed back by giving

 variables in the parameter list new values or via register 0. Algol W

 users needing to call S-type subroutines can use the Call predeclared

 procedure described in this volume.

 PARAMETER LISTS _______________

 As stated above, a parameter list is a vector of address constants.

 The parameter list must be on a fullword boundary and the entries are

 each four bytes long. The address of the first parameter is the first

 word of the list, the address of the second parameter the second word of

 the list, and so on. For example, the parameter list for the Algol W

 statement:

 Call("QQSV", X, Y, Z);

 might be written in assembly code as:

 PAR DC A(X) address of X

 DC A(Y) address of Y

 DC A(Z) address of Z

 482 Subroutine Calling Conventions

 MTS 16: ALGOL W in MTS

 September 1980

 Now this works well enough when the parameter list for the subroutine is

 of fixed length, but there is not enough information yet to allow a

 subroutine to determine the length of the parameter list and hence

 accept variable-length lists. For this reason there are two types of

 parameter lists, fixed-length as described above, and an extended form ____________

 called a variable-length parameter list which is described next. _______________

 Since a standard System/370 type computer uses 24-bit storage

 addresses, the left-most byte of an address constant is usually zero.

 In a variable-length parameter list, bit zero of the left-most byte of

 the last parameter address constant is set to 1 to show that it is the ____

 last item in the list. The example above then would be written as:

 PAR DC A(X) address of X

 DC A(Y) address of Y

 DC XL1’80’ turn on bit zero

 DC AL3(Z) address of Z

 if it generated a variable-length parameter list, as Algol W does. work

 with a variable-length parameter list, provided that it is at least as

 long as the fixed-length list the program is expecting.Such a routine

 extracts only the address part when it uses the parameters.

 REGISTER ASSIGNMENTS ____________________

 Of the sixteen general-purpose registers, five are assigned for use

 in the calling conventions. The use of the general registers differs

 slightly depending upon whether an R- or S-type call is being made.

 Table 1 specifies exactly what each register is used for during a call.

 Notice that it is the called program’s responsibility to save and

 restore registers 2-12 in the save area provided by the calling program.

 There are two reasons for this. First, only the called program knows

 how many of the registers from 2-12 it is going to use. Since a

 register need be saved and restored only if it is actually going to be

 changed, the called program may be able to save some time by saving and

 restoring only those registers which it will use. Secondly, the called

 program requires addressability over the area in which it will save

 registers upon entry, since any attempt to acquire the address of a save

 area would destroy some of the registers which are to be saved.

 Furthermore, the save area should not be a part of the called program

 since that would prevent it from being reentrant (shareable). This

 means the calling program should provide the save area in which

 registers are saved and restored. And so we have the called program

 saving and restoring registers 2-12 in a save area provided by the

 calling program.

 The calling conventions are quite different with floating-point

 registers. Since a large percentage of programs do not leave items in

 floating-point registers across subroutine calls it seems rather waste-

 Subroutine Calling Conventions 483

 MTS 16: ALGOL W in MTS

 September 1980

 ful to always save and restore the floating-point registers. So the

 convention has been established that the calling program must save and _______

 restore those floating-point registers that contain items which are

 wanted. Also, programs that return a single floating-point result quite

 frequently do so via floating-point register zero.

 Table 1: General-Purpose Register Conventions ___

 Register | Contents

 Number |

 ─────────┼──
 0 | Parameter to be passed in R-type sequences.

 |

 | Result to be passed back in R- and S-type

 | sequences.

 ─────────┼──
 1 | Parameter to be passed in R-type sequences.

 |

 | Address of a parameter list in S-type sequences.

 ─────────┼──
 2-12 | Not used as a part of the calling sequence. Must

 | be saved and restored by the called program. The

 | save area is used for this.

 ─────────┼──
 13 | The address of the save area provided by the

 | calling program to be used by the called program.

 ─────────┼──
 14 | Address of the location in the calling program to

 | which control should be returned after execution of

 | the called program.

 ─────────┼──
 15 | Address of the entry point in the called program at

 | the time of the call.

 |

 | A return code at the time of the return that

 | indicates to the calling program whether or not an

 | exceptional condition occurred during processing of

 | the called program. The return code should be zero

 | for a normal return or a multiple of four for

 | various exceptional conditions.

 RETURNING RESULTS _________________

 There are in the calling conventions four ways in which a subroutine

 can return a result. These are:

 (1) Value of result in general-purpose register zero.

 (2) Value of result in general-purpose register one.

 484 Subroutine Calling Conventions

 MTS 16: ALGOL W in MTS

 September 1980

 (3) Value of a result in floating-point registers (usually F/P

 register zero).

 (4) Value of a parameter from the parameter list changed.

 The particular method used depends upon whether the R- or S-type

 convention is used and whether the called program is intended to be a

 function (in FORTRAN arithmetic statements).

 The first three methods are used by R-type calling conventions for

 all returned results. The contents of each of the registers depends

 upon the particular called program and are described in the subroutine

 description for each subroutine using the R-type calling conventions.

 The first, third, and fourth methods are used by S-type calling

 conventions for all returned results. The first and third methods are

 used by function subprograms whose calls can be embedded in FORTRAN

 statements. The choice of general register 0 or floating-point register

 0 depends upon whether the result returned is integer or floating point

 mode, respectively. Examples of subroutines which return results in

 this manner are the FORTRAN IV Library Subprograms, such as EXP, ALOG,

 or SIN. The fourth method can be used by a subprogram. An example

 would be a subprogram called from Algol W by:

 Call("MATADD", A(1,1), B(1,1), C(1,1), M, N);

 which might add the MxN matrices A and B together and store the result

 in C.

 SAVE AREA FORMAT ________________

 The save area is an area belonging to the calling program which the _______

 called program uses to save and later restore general-purpose registers. ______

 The address of the save area is passed to the called program by the

 calling program via general-purpose register 13. The save area has a

 very rigid format and is described in Table 2.

 There are two things to be noted about the save area format, namely,

 who sets what parts of the save area and how these areas might be set

 up. The calling program is responsible for setting up the second word _______

 of the save area. This is to contain the address of the save area which

 was provided when the calling program was called. Although this is _______

 technically set up by the calling program as a part of the call, most

 programs set up the save area they will provide to subroutines they call

 once and leave its address in general register 13. This process then

 does not need to be repeated for each call. The called program is ______

 responsible for setting up the third through eighteenth words of the

 save area. The called program usually saves the general registers which

 it will use as a part of its initialization procedure and restores the

 registers as a part of the return procedure. Notice that the save area

 Subroutine Calling Conventions 485

 MTS 16: ALGOL W in MTS

 September 1980

 format is amenable to use of the store multiple and load multiple

 instructions for saving and restoring blocks of registers. All of this

 will be made clearer in the examples at the end of this section.

 Some MTS system subroutines (notably GETSPACE, FREESPAC, and a few

 others) do not require that a save area be provided for them. For these

 subroutines general register 13 need not be set up before a call; its

 contents are preserved by the called subroutine. The subroutines which

 need no save area are clearly marked as such in the MTS subroutine

 descriptions. Note that it is all right to provide a save area to one

 of these subroutines; it will simply be ignored.

 Table 2: Save Area Format _________________________

 Word | Displacement | Contents

 ─────┼──────────────┼───
 1 | 0 | Used by FORTRAN, PL/1, and other beasties

 | | for many devious purposes. Don’t touch!

 ─────┼──────────────┼───
 2 | 4 | Address of the save area used by the calling

 | | program. Forms a backward chain of save

 | | areas. Stored by calling program.

 ─────┼──────────────┼───
 3 | 8 | Address of the save area provided by the

 | | called program for programs it calls. Forms

 | | a forward chain of save areas.

 ─────┼──────────────┼───
 4 | 12 | Return address. Contents of register 14 at

 | | time of call.

 ─────┼──────────────┼───
 5 | 16 | Entry point address. Contents of register

 | | 15 at time of call.

 ─────┼──────────────┼───
 6 | 20 | Register 0 contents.

 7 | 24 | Register 1 contents.

 8 | 28 | Register 2 contents.

 9 | 32 | Register 3 contents.

 10 | 36 | Register 4 contents.

 11 | 40 | Register 5 contents.

 12 | 44 | Register 6 contents.

 13 | 48 | Register 7 contents.

 14 | 52 | Register 8 contents.

 15 | 56 | Register 9 contents.

 16 | 60 | Register 10 contents.

 17 | 64 | Register 11 contents.

 18 | 68 | Register 12 contents.

 CALLING PROGRAM RESPONSIBILITIES AND CONSIDERATIONS ___

 The calling program is responsible for the following:

 486 Subroutine Calling Conventions

 MTS 16: ALGOL W in MTS

 September 1980

 (1) Loading register 13 with the address of the save area and

 setting up the second word of the save area.

 (2) Loading register 14 with the return address.

 (3) Loading register 15 with the entry point address.

 (4) Loading registers 0 and 1 with the parameters in an R-type call

 or loading register 1 with the address of the parameter list in

 an S-type call.

 (5) Saving floating-point registers, if necessary.

 (6) Transferring to the entry point of the subroutine.

 (7) Restoring floating-point registers, if necessary.

 (8) Testing the return code in register 15, if desired.

 After the return from a subroutine, the status of the program will be

 as follows:

 (1) In general, the contents of the floating-point registers will be

 unpredictable unless saved and restored by the calling program.

 (2) The contents of general registers 2 through 14 will be restored

 to their contents at the time the called program was entered.

 (3) The program mask will be unchanged.

 (4) The contents of general registers 0, 1, and 15 may be changed.

 (5) The condition code may be changed.

 Note that general registers 0 and 1 and floating-point register 0 may

 contain results in the case of R-type subroutine calls or a function

 subprogram. General register 15 will normally contain a return code,

 indicating whether or not an exceptional condition occurred during

 processing of the called program.

 CALLED PROGRAM RESPONSIBILITIES AND CONSIDERATIONS __

 The called program is responsible for the following:

 (1) Saving the contents of general registers 2 through 12 and 14 in

 the save area provided by the calling program. These registers

 need be saved only if the called program modifies these

 registers.

 Subroutine Calling Conventions 487

 MTS 16: ALGOL W in MTS

 September 1980

 (2) Setting up the third word of the save area with the address of

 the save area which will be provided to subroutines it will

 call.

 (3) Restoring the contents of general registers 2 through 14 before

 returning to the calling program.

 (4) Restoring the program mask if changed.

 (5) Loading general registers 0 and 1 or floating-point register 0

 with the result in the case of R-type subroutine calls or a

 function subprogram.

 (6) Loading general register 15 with the return code.

 (7) Transferring to the return location.

 EXAMPLE CALLING SEQUENCES _________________________

 This section will describe and give the assembly language statements

 for the typical machine instructions necessary to implement the calling

 conventions.

 A typical entry point might consist of the following statements:

 USING SUBRA,R12 12 will be a base register

 SUBRA STM R14,R12,12(R13) save registers

 LR R12,R15 set up 12 as the base register

 LA R15,SAVE save area provided for others

 ST R15,8(0,R13) set up forward pointer

 ST R13,4(0,R15) set up backward pointer

 LR R13,R15 set up for any calls we issue

 LR R11,R1 get parameter pointer into a

 * non-volatile register

 .

 .

 .

 SAVE DS 18F save area we provide for others

 Inside a subroutine that began with the entry sequence given above,

 the value of the second parameter in the parameter list could be put

 into general-purpose register zero with the following sequence:

 .

 .

 L R3,4(0,R11) pick up second address from par list

 L R0,0(0,R3) pick up value of parameter

 .

 .

 488 Subroutine Calling Conventions

 MTS 16: ALGOL W in MTS

 September 1980

 Inside a subroutine that began with the entry sequence given above,

 another subroutine, SUBRB, could be called using the following sequence.

 Remember that register 13 already points to the correct save area:

 .

 .

 LA R1,PARLIST set up parameter list address

 L R15,=V(SUBRB) set up entry point address

 BALR R14,R15 set up return address and branch to

 * the subroutine

 B *+4(R15) test return code via a transfer table

 B AOK return code zero

 B BAD1 return code four

 B BAD2 return code eight

 .

 .

 AOK ... normal return to here

 .

 .

 PARLIST DC A(PAR1) first parameter address

 DC A(PAR2) second parameter address

 DC A(PAR3) third parameter address

 .

 Finally, a subroutine that began with the entry sequence given above

 could return to the program that called it with the following sequence:

 LE FR0,RESULT floating point result to FPR 0

 L R13,4(0,R13) use back pointer to get save area

 LM R14,R12,12(R13) restore registers

 SR R15,R15 zero return code -- no errors

 BR R14 return to that which called us

 .

 .

 It should be pointed out that although the above sequences are

 typical of the instructions used to implement the calling conventions,

 many variations are possible.

 MACROS FOR CALLING SEQUENCES ____________________________

 There are macro definitions in the MTS macro library *SYSMAC which

 can be used to help generate calling sequences. The most useful of

 these macros are ENTER, CALL, and EXIT. For details, see the macro

 descriptions in MTS Volume 14, 360/370 Assemblers in MTS. _________________________

 The example given above is repeated below using the REQU, ENTER,

 CALL, and EXIT macros. The full outline of the assembler program is

 shown here. This is the way an assembly language subroutine is set up

 to be accessed from Algol W via a Call statement.

 Subroutine Calling Conventions 489

 MTS 16: ALGOL W in MTS

 September 1980

 SUBRA CSECT

 REQU TYPE=DEC

 ENTER R12,SA=SAVE

 LA R11,R1 protect parameter list address

 .

 .

 L R3,4(R11) load address of parameter from list

 L R0,0(R3) load parameter using address

 .

 .

 CALL SUBRB,(PAR1,PAR2,PAR3)

 B *+4(15)

 B AOK return code zero

 B BAD1 return code four

 B BAD2 return code eight

 .

 .

 AOK ... normal return to here

 .

 .

 LE FR0,RESULT load result

 EXIT

 LTORG

 SAVE DS 18F standard save area

 RESULT DS E space for result

 . (other storage required)

 .

 END

 The CALL macro generates its own parameter list, hence the parameter

 list specified by PARLIST in the original example need not appear in the

 macro example. In Algol W, this subroutine might be called by a

 sequence such as the following:

 integer Jjj, Qqsv;

 .

 .

 Qqsv := 1234;

 Call("SUBRA", Jjj, Qqsv);

 After the two load instructions have recovered the second parameter

 value, general register zero will contain 1234 in binary two’s comple-

 ment representation.

 490 Subroutine Calling Conventions

 MTS 16: ALGOL W in MTS

 September 1980

 ALGOL W AND SUBROUTINE CALLING CONVENTIONS __

 Internal Calling Conventions ____________________________

 Within Algol W, a set of calling conventions are defined which allow

 Algol W procedures to call each other. These calling conventions are

 not the O/S Type I variety. Algol W needs facilities which are outside ___

 the scope of these conventions, such as passing name parameters or

 partial arrays. When the language was designed a set of conventions

 were agreed upon which are particularly suited to Algol W.

 Algol W also allows precompiled procedures to be called via the

 calling conventions. This entails a small amount of overhead needed to

 establish the Algol W environment

 Fortunately most actions which cannot be performed adequately by

 Algol W can be achieved by writing a subroutine in assembly language or

 FORTRAN, and calling it from Algol W via the predeclared procedures Call

 or Rcall.

 The Call Predeclared Procedure ______________________________

 In Algol W, the Call predeclared procedure implements the full O/S

 Type I, S-type linkage. Certain additional points are worthy of note:

 (1) Parameter lists built by an Algol W Call statement are always of

 the variable length form, with bit zero set to one on the last

 parameter address. Since a subroutine must inspect this bit to

 take action on it, this behavior does not in any way affect the

 call of a subroutine expecting a fixed length parameter list.

 It does however allow an Algol W programmer to take advantage of

 this facility when calling subroutines which do specify that

 parameter lists may be incomplete. Where MTS system subroutines

 accept variable length parameter lists this is always clearly

 specified in MTS Volume 3, System Subroutine Descriptions. ______________________________

 (2) When a subroutine is called with no parameters given, general

 register zero will contain zero on entry to the subroutine.

 This is an extension of the variable length convention followed

 by both FORTRAN and Algol W.

 (3) While the O/S Type I calling convention specifies that the

 program mask should be restored on exit to the pattern on entry,

 in practice most subroutine authors tend to assume that all four

 mask bits will be zero on entry. By default, Algol W will have

 the fixed point (integer) overflow bit set, and reference

 assignments to the predeclared Exception references may cause

 other bits to become set.

 Subroutine Calling Conventions 491

 MTS 16: ALGOL W in MTS

 September 1980

 To avoid unexpected behavior when calling such subroutines,

 Algol W takes care of its own saving and restoring of the

 program mask when a subroutine is called. The program mask bits

 are all zeroed before the call.

 Note that this means that integer overflow cannot be detected

 when calling a FORTRAN subroutine. FORTRAN (sub-)programs never

 trap this exception, whereas Algol W would report an error by

 default.

 (4) The Algol W system is aware that control has passed to an

 external subroutine. This knowledge is only used by the error

 processor if a program interrupt occurs during execution of the

 called routine. A register dump is produced, and Algol W tries

 to report the source program coordinate of the Call statement

 which transferred control.

 The Rcall Predeclared Procedure _______________________________

 Rcall also obeys the O/S Type I calling convention. In its case, of

 course, no parameter list is set up. The values in general registers

 zero and one on entry to the subroutine will be those contained in the

 predeclared integer variables R0 and R1 at the time of the call.

 The comments in the previous sub-section on saving and restoring the

 program mask also apply to Rcall. The program mask bits will always be

 zero on entry to the subroutine.

 Call and Rcall - Returned Values ________________________________

 As explained in the sections of the main manual describing these

 routines, function values and the return code can be retrieved on return

 by inspecting the relevant predeclared variables.

 The following correspondence applies between registers on return and

 the Algol W predeclared variable names:

 Register | Predeclared variable

 ─────────┼──
 GR0 | R0, R01(0|4)

 GR1 | R1, R01(4|4)

 GR15 | R_Code

 FR0 | R_Float, Longrealpart(R_Cmplx)

 FR2 | Longimagpart(R_Cmplx)

 The instructions which save these registers are in a small routine in

 Algol W system coding reached by a BAL instruction in the user program

 code. This is to reduce the amount of code generated for each Call or

 Rcall statement.

 492 Subroutine Calling Conventions

 MTS 16: ALGOL W in MTS

 September 1980

 INDEX _____

 A-format, 235, 243 147, 419

 A_Count, 129, 441 assignment, 71

 abs, 41, 419 bits, 69

 absent record, Xgetcard, 220 bound pair, 67

 access, record field, 145 complex, 67

 addition, 43, 47, 418 declaration, 67, 460

 addressing exception, 414 dynamic allocation, 71

 algol, 419 integer, 67

 linkage, 258 logical, 67

 Algol W, long complex, 67

 *ALGOLW, 322 long real, 67

 compile load and go, 323 parameter to Call, 269

 compiler, 365 post mortem dump, 376

 control record, 331, 334 real, 67

 in MTS, 321 reference, 69

 input format, 368 string, 68

 notation, 13 subcript, 70

 output, 369 ARRAYDUMP,

 producing an object deck, 326 compiler parameter, 358

 programmer’s guide, 321 run time parameter, 364

 restrictions, 367 ASA, Qualify keyword, 209

 source listing, 370 assembler, subroutine, 265

 symbol, 13 assert, 128, 419

 symbol representation, 366 statement, 128, 466

 system, 365 Assign, 203, 423

 terminology, 13 assignment, 44, 49, 124, 418

 Algol W environment, array, 71

 explicitly deallocating, 262 bits, 96

 explicitly initializing, 260 compatibility, 48, 62, 63, 125

 ALIST, compiler parameter, 359 logical, 82

 ALLTIMES, Iocontrol keyword, 296 multiple, 45

 alphabetic, 25 statement, 45, 88, 96, 465

 alphabetic symbol, 417, 421 string, 88

 ALWBEG, 261 asterisk, 42, 47, 418

 ALWEND, 262 Attnmark, 308, 441

 ALWPGNT, Iocontrol keyword, 298 Attntrap, 308, 423

 and, 93, 419 automatic,

 Arccos, 53, 294, 431 carriage control, 195

 Arcsin, 53, 294, 431 indentation, 333, 346

 Arctan, 53, 294, 431 procedure line skip, 347

 arithmetic, AWXRCTBL, 374

 constant, 57 AWXSCnnn, 374

 expression, 41, 463 AWXSTART, 374

 array, 34, 67, 68, 69, 103, 106,

 Index 493

 MTS 16: ALGOL W in MTS

 September 1980

 B-format, 236, 243 carriage control, 195

 Base10, 91, 432 case, 63, 139, 419

 Base16, 91, 432 expression, 63, 464

 basic, statement, 139, 466

 input stream, 201, 202 CC, run time parameter, 363

 output stream, 201, 202 character,

 basic, input/output, 167, 190 carriage control, 195

 becomes, 44, 49, 124 encoding, 381

 begin, 65, 419 set, 417

 biased exponent, 473 CHECK, compiler parameter, 356

 bibliography, 379 clock functions, 283

 bits, 32, 38, 58, 69, 93, 173, Cmd, 424

 419, 469 CMD, control record, 335

 assignment, 96 Code, 91, 432

 constant, 93 codes,

 expression, 93, 94, 464 carriage control, 195

 function, 97 format, 232

 sequence, 459 colon, 417

 Bitstring, 97, 432 colon equals, 44, 49, 124, 418

 block, 121, 465 comma, 417

 expression, 65 command scanner, 302

 nesting level indicator, 371 comment, 20, 419

 bound pair, 67 control record, 335

 BRACKETS, Iocontrol keyword, 301 comparison, string, 87

 building a procedure library, 329 compatibility, assignment, 48, 62,

 byte, 469 64, 125

 compilation state, 332

 Call, 266, 423, 491 compile load and go, 323, 344

 array parameter, 269 using control records, 324

 function value, 272 COMPILE, control record, 324, 326,

 literal parameter, 267 335

 procedure call back, 263 compiler,

 return code, 271 cross reference, 373

 returned value, 492 diagnostic output, 372

 call back from an external rou- source listing, 370

 tine, 263 compiler parameter, 344

 call by, complete syntax, 455

 name, 110 complex, 31, 37, 57, 67, 169, 419

 result, 113 functions, 54

 value, 111 output, 177

 value result, 114 complex functions, 292, 293

 calling convention, 481 CONCATENATION, Sense keyword, 212

 Algol W, 491 conditional,

 example sequences, 488 expression, 60, 464

 MTS macros, 489 statement, 136

 parameter list, 482 constant, 57

 r-type, 482 arithmetic, 57

 register assignment, 483 bits, 58, 93

 responsibility, 487, 487 complex, 57

 returning results, 484 integer, 57

 s-type, 482 logical, 58

 save area, 485 long complex, 57

 Canreply, 281, 441 long real, 57

 494 Index

 MTS 16: ALGOL W in MTS

 September 1980

 real, 57 DATAPARM, run time parameter, 364

 reference, 58 Date, 285, 434

 string, 58, 368 DEBUG,

 Control, 210, 424 compiler parameter, 356

 control of Algol W, 331 run time parameter, 364

 control record, 334 decimal,

 /CMD, 335 division by zero ,

 /COMMENT, 335 exception, 414

 /COMPILE, 324, 326, 335 overflow exception, 414

 /COPY, 333, 337 DECK, compiler parameter, 326, 344

 /EDIT, 337 declaration, 37, 459

 /EJECT, 333, 338 array, 67, 460

 /EOF, 338 bits, 38, 93

 /EXECUTE, 324, 339 complex, 37

 /FLUSH, 339 function procedure, 107

 /GLOBAL, 340 integer, 37

 /INDENT, 333, 340 logical, 37, 77

 /LIST, 333, 341 long complex, 37

 /MESSAGE, 341 long real, 37

 /MONITOR, 341 multiple record class, 163

 /NOINDENT, 333, 342 procedure, 460

 /NOLIST, 333, 342 proper procedure, 99

 /SPACE, 333, 342 real, 37

 /STOP, 343 record class, 141, 460

 /TITLE, 333, 343 reference, 39, 142

 abbreviation, 331 simple variable, 459

 summary list, 331 string, 38, 85

 convention, Decode, 91, 434

 parameter passing, 110 default format, 184

 subroutine calling, 481 DEFAULT keyword, to Sense, 212

 COPY, control record, 333, 337 DELBRACKETS, Iocontrol keyword,

 Cos, 52, 293, 432 302

 Cosh, 53, 294, 433 digit, 25, 417, 421

 Cot, 52, 293, 433 garbage, 50

 creation of records, 142 dimension specification, 103

 cross reference listing, 373 DISPLAY, Iocontrol keyword, 297

 CTFIELDED, Qualify keyword, 209 div, 42, 48, 419

 CTRACE, compiler parameter, 359 division, 42, 47, 418

 CTRETURNS, Qualify keyword, 209 by zero, 287

 current, Divzero, 287, 414, 441

 Cxcos, 54, 293, 433 do, 131, 133, 419

 Cxexp, 54, 293, 433 dormant state, 333

 Cxln, 54, 434 double asterisk, 42, 47, 418

 Cxsin, 54, 293, 434 double colon, 418

 Cxsqrt, 54, 292, 434 double precision, internal repre-

 sentation, 476

 D-format, 237, 244 double slash, 417

 data, DOUBLESKIP, Iocontrol keyword, 192

 driven replication factor, 252 doubleword, 469

 exception, 414 dynamic allocation, 71, 203

 from files, 333

 input, 167 E-format, 237, 244

 internal representation, 469 EBCDIC, 381

 Index 495

 MTS 16: ALGOL W in MTS

 September 1980

 ECHO, compiler parameter, 350 division by zero, 287

 EDIT, control record, 337 end-of-file, 287, 291

 EJECT, exponent overflow, 287

 control record, 333, 338 exponent underflow, 287

 Iocontrol keyword, 192 integer division by zero, 287

 ELAPSED, Iocontrol keyword, 296 integer overflow, 287

 else, 60, 136, 419 predeclared function, 291

 Empty, 206, 424 predeclared function error, 287

 statement, 129 table of results, 290

 empty symbol, 421 EXECUTE,

 encoding, character, 381 compiler parameter, 344

 end, 65, 419 control record, 324, 339

 end-of-file, 287, 291 execute exception, 414

 Get, 225 execution state, 332

 Getcard, 218 Exp, 52, 293, 435

 Geton, 225 explicit exponent format, 183

 run time messages, 414 Exponent, 51, 435

 to Algol W, 343 exponent overflow, 287

 Endfile, 287, 441 exponent underflow, 287

 Entier, 51, 434 exponentiation, 42, 47, 418

 entry point, expression, 59, 461

 AWXRCTBL, 374 arithmetic, 41, 463

 AWXSCnnn, 374 bits, 93, 94, 464

 AWXSTART, 374 block, 65

 LCSYMBOL, 321 case, 63, 464

 EOF, control record, 338 conditional, 60, 464

 EPAGES, if, 60, 464

 compiler parameter, 355 logical, 80, 463

 run time parameter, 362 reference, 464

 Epsilon, 282, 442, 443 string, 85, 464

 equals, 77, 87 extended storage access, 309

 Erf, 54, 294, 435 External, 310, 435

 Erfc, 54, 294, 435 external linkage, 257

 Error, 200, 442 external subroutine, call back

 error messages, 383 from, 263

 compiler, 372

 loader, 400 F-format, 237, 245

 pass 1, 384 false, 419

 pass 2, 387 FDNAME, Sense keyword, 211

 pass 3, 396 Fetch, 316, 424

 run time, 375, 402 field,

 ETIME, assignment, 145

 compiler parameter, 354 designator, 145

 run time parameter, 361 FILE,

 example, compiler parameter, 334, 349

 Call, 273 run time parameter, 361

 command scanner, 302 Filemark, 442

 format directed output, 253 fixed decimal point format, 182

 predeclared function, 55 floating point,

 program, 21 conversion functions, 51

 Exception, 286, 288, 442 division by zero, 287, 414

 exceptional condition, 286 exponent overflow, 287, 414

 adjustment table, 290 exponent underflow, 287, 414

 496 Index

 MTS 16: ALGOL W in MTS

 September 1980

 internal representation, 472 linkage, 276

 Flush, 206, 424 subroutine, 265

 FLUSH, control record, 339 call back from, 263

 Fn_Value, 290, 291, 442 FRS, Iocontrol keyword, 298

 for, 133, 419 FULLPAGE, Iocontrol keyword, 192

 statement, 132, 466 FULLSLIST, compiler parameter, 345

 formal parameter, 102 Fullword, 311, 436

 array, 103 Function, 287, 291, 413, 443

 call by, function designator, 462

 name, 110 function procedure, 107, 107

 result, 113 function value, from Call, 272

 value, 111 function, predeclared, 431

 value result, 113

 partial array, 106 Gamma, 54, 294, 436

 procedure, 103 garbage digit, 50

 simple variable, 103 general format, 184

 format, GENERATE, compiler parameter, 358

 /, 235, 242 Get, 224, 231, 424

 A, 235, 243 Getcard, 218, 425

 assignment statement, 180, 187 Geton, 224, 231, 425

 B, 236, 243 Getstring, 227, 231, 425

 code, 232 GLOBAL, control record, 340

 D, 237, 244 goto, 125, 419

 default, 184 statement, 125, 466

 directed input, 234 greater than, 78, 87, 418

 directed output, 242 greater than or equals, 78, 87,

 example, 253 418

 E, 237, 244 GRS, Iocontrol keyword, 297

 explicit exponent, 183 GSCONTINUE, Iocontrol keyword, 299

 F, 237, 245 GSFIELDED, Iocontrol keyword, 298

 fixed decimal point, 182 GSORIGIN, Iocontrol keyword, 299

 general, 184 GSRETURNS, Iocontrol keyword, 299

 H, 238, 246 GUSER, 322

 I, 238, 247

 J, 238, 247 H-format, 238, 246

 L, 239, 248 Halfword, 311, 436

 literal string, 235, 242 hash mark, 417

 R factor, 252 hyperbolic functions, 53, 294

 slash, 235, 242

 specification, 180 I-format, 238, 247

 string, 231 I_W, 181, 186, 443

 construction, 233 IC, Qualify keyword, 209

 interpretation, 234 ID, compiler parameter, 358

 T, 240, 249 identifier, 25, 421, 458

 trailing blanks, 187 predeclared, 366

 variable, 180 if, 60, 61, 136, 420

 summary, 186 expression, 60, 464

 X, 240, 250 statement, 136, 466

 Z, 241, 250 Imag, 51, 436

 format string, 232 Imagpart, 51, 436

 fortran, 419 implementation, restrictions, 367

 Algol W equivalents of types, INDENT,

 278 compiler parameter, 346

 Index 497

 MTS 16: ALGOL W in MTS

 September 1980

 control record, 333, 340 Intovfl, 287, 414, 443

 INDEX, Sense keyword, 212 inverse trigonometric functions,

 indexed input/output, 219 53, 294

 Input, 200, 443 IOCBLOCK, Sense keyword, 214

 format directed, 234 Iocontrol, 188, 190, 295, 425

 length of string, 306 ALLTIMES, 296

 statement, 174 ALWPGNT, 298

 to compiler, 368 BRACKETS, 301

 input data, 167 command scanner example, 302

 bits, 173 DELBRACKETS, 302

 complex, 169 DISPLAY, 297

 integer, 168 DOUBLESKIP, 192

 logical, 171 EJECT, 192

 long complex, 169 ELAPSED, 296

 long real, 168 external interruptions, 297

 real, 168 FRS, 298

 reference, 173 FULLPAGE, 192

 string, 171 GRS, 297

 INPUT keyword, to Sense, 212 GSCONTINUE, 299

 input/output, 17, 167 GSFIELDED, 298

 basic stream, 201 GSORIGIN, 299

 complete record, 217 GSRETURNS, 299

 dynamic allocation, 203 library interruptions, 297

 format directed, 231 modification of string recogni-

 indexed, 219 tion, 300

 individual item, 224 NEXTCARD, 190

 internal conversion, 227 NOBRACKETS, 301

 multiple stream, 199 NODISPLAY, 297

 predefined stream, 199 NOPRIMES, 301

 sample program, 196 NOQUOTES, 300

 statement, 187 NORMAL, 192

 stream directed, 217 NOTIMES, 296

 stream name, 321 OVERPRINT, 193

 user defined stream, 199, 201 PRIMES, 301

 utility procedures, 205 PROBLEMCPU, 295

 Intbase10, 91, 436 PSW, 297

 Intbase16, 91, 436 QUOTES, 300

 Intdivzero, 287, 414, 443 RESETSCAN, 300

 integer, 27, 37, 57, 67, 168, 420 SPACE, 192

 division by zero, 287, 414 SUPERCPU, 295

 from real functions, 51 SYSPGNT, 298

 internal representation, 469 timing information, 295

 overflow, 287, 414 TOTALCPU, 295

 internal conversion input/output, TRIPLESKIP, 193

 227 is, 78, 163, 420

 internal representation, 469 iterative statement, 130, 466

 biased exponent, 473

 double precision, 476 J-format, 238, 247

 floating point, 472

 integer, 469 L-format, 239, 248

 long real, 476, 478 LCSYMBOL, 321

 real, 472, 478 left parenthesis, 45, 418

 significand, 473 less than, 78, 87, 418

 498 Index

 MTS 16: ALGOL W in MTS

 September 1980

 less than or equals, 78, 87, 418 Longcxsqrt, 54, 292, 434

 letter, 25, 417, 421 Longerf, 54, 294, 435

 LFDNAME, Sense keyword, 211 Longerfc, 54, 294, 435

 library, of procedures, 329 Longexp, 52, 293, 435

 LIBSEARCH, compiler parameter, Longgamma, 54, 294, 436

 351, 375 Longimag, 51, 436

 line number, 371 Longimagpart, 51, 436

 returned, 223 Longln, 52, 292, 437

 LINECNT, compiler parameter, 346 Longlngamma, 54, 294, 437

 Link, 263, 437 Longlog, 52, 292, 437

 linkage, Longrealpart, 51, 438

 external, 257 Longsin, 52, 293, 438

 O/S Type I, 265, 481 Longsinh, 53, 294, 438

 linked list, 148 Longsqrt, 52, 292, 439

 ordered insertion, 152 Longtan, 52, 293, 439

 record deletion, 152 Longtanh, 53, 294, 439

 record insertion, 148, 150, 152 Lowercase, 320, 443

 LIST, control record, 333, 341 LSTREAM, Sense keyword, 211

 literal string format, 235, 242

 literal, parameter to Call, 267 machine constants, 281

 Ln, 52, 292, 437 MAP, compiler parameter, 352

 Lngamma, 54, 294, 437 MAXINPUT,

 Locate, 312, 426 Qualify keyword, 208

 Log, 52, 292, 437 Sense keyword, 213

 logarithmic functions, 52, 292 Maxinteger, 282, 444

 logical, 32, 37, 58, 67, 77, 171, MAXOUTPUT,

 420 Qualify keyword, 208

 assignment, 82 Sense keyword, 213

 expression, 80, 463 Maxreal, 282, 444

 function, 84 MCC, Qualify keyword, 208

 relation, 77 MESSAGE, control record, 341

 value, 458 messages, error, 383

 long, 41, 48, 420 loader, 400

 long complex, 32, 37, 57, 67, 169 pass 1, 384

 functions, 54 pass 2, 387

 LONG parameter, to compiler, 329, pass 3, 396

 352 run time, 402

 long real, 30, 37, 57, 67, 168 minus, 42, 43, 47, 418

 conversion functions, 51 monitor,

 internal representation, 476, MONITOR, control record, 341

 478 Move, 314, 426

 Longarccos, 53, 294, 431 MTS,

 Longarcsin, 53, 294, 431 GUSER, 322

 Longarctan, 53, 294, 431 logical I/) unit number, 322

 Longbase10, 91, 432 SCARDS, 322

 Longbase16, 91, 432 SERCOM, 322

 Longcos, 52, 293, 432 SPRINT, 322

 Longcosh, 53, 294, 433 SPUNCH, 322

 Longcot, 52, 293, 433 multiple,

 Longcxcos, 54, 293, 433 assignment, 45

 Longcxexp, 54, 293, 433 input/output streams, 199

 Longcxln, 54, 434 record classes, 163

 Longcxsin, 54, 293, 434 multiplication, 42, 47, 418

 Index 499

 MTS 16: ALGOL W in MTS

 September 1980

 output,

 negation, 42 complex, 177

 nesting level indicator, 371 format directed, 242

 Newline, 193, 426 statement, 177

 NEXTCARD, Iocontrol keyword, 190 string, 178

 NOBRACKETS, Iocontrol keyword, 301 OUTPUT keyword, to Sense, 212

 NOCC, run time parameter, 363 OVERPRINT, Iocontrol keyword, 193

 NOCHECK, compiler parameter, 356 Ovfl, 287, 414, 444

 NODEBUG,

 compiler parameter, 356 PAGELIMIT, Qualify keyword, 209

 run time parameter, 364 PAGES,

 NODISPLAY, Iocontrol keyword, 297 compiler parameter, 355

 NOECHO, compiler parameter, 350 run time parameter, 362

 NOINDENT, parameter,

 compiler parameter, 346 array to Call, 269

 control record, 333, 342 call by ,

 NOLIST, control record, 333, 342 name, 110

 NOMAP, compiler parameter, 352 result, 113

 NONUMBER, compiler parameter, 347 value, 111

 NOPRIMES, Iocontrol keyword, 301 value result, 114

 NOPROMPT, compiler parameter, 352 compiler, 344

 NOPSKIP, compiler parameter, 347 ALIST, 359

 NOQUOTES, Iocontrol keyword, 300 ARRAYDUMP, 358

 NORMAL, Iocontrol keyword, 192 CHECK, 356

 NOSLIST, compiler parameter, 329, CTRACE, 359

 345 DEBUG, 356

 not, 93, 418, 420 DECK, 326, 344

 not equals, 77, 87, 418 ECHO, 350

 notation, 13 EPAGES, 355

 NOTIMES, Iocontrol keyword, 296 ETIME, 354

 NOXREF, compiler parameter, 346 EXECUTE, 344

 null, 58, 146, 420 FILE, 334, 349

 Number, 97, 438 FULLSLIST, 345

 NUMBER parameter, to compiler, 347 GENERATE, 358

 numbers, 458 ID, 358

 internal representation, 469 INDENT, 346

 numeric symbol, 25, 417, 421 LIBSEARCH, 351, 375

 LINECNT, 346

 O/S Type I linkage, 265, 481 LONG, 329, 352

 object deck, MAP, 352

 output, 374 NOCHECK, 356

 running, 327 NODEBUG, 356

 Odd, 84, 438 NOECHO, 350

 of, 63, 139, 420 NOINDENT, 346

 operation exception, 414 NOMAP, 352

 operator, NONUMBER, 347

 assignment, 124 NOPROMPT, 352

 equality, 77 NOPSKIP, 347

 inequality, 78 NOSLIST, 329, 345

 precedence table, 461 NOXREF, 346

 shift, 94 NUMBER, 347

 or, 93, 420 PAGES, 355

 ordered insertion, 152 PROMPT, 352

 500 Index

 MTS 16: ALGOL W in MTS

 September 1980

 PSKIP, 347 Arccos, Longarccos, 53, 294,

 PSTACK, 359 431

 PTRACE, 359 Arcsin, Longarcsin, 53, 294,

 RUNPARM, 353 431

 SHORT, 352 Arctan, Longarctan, 53, 294,

 SIZE, 349 431

 SLIST, 329, 345 Base10, Longbase10, 91, 432

 SYNTAX, 358 Base16, Longbase16, 91, 432

 TABLES, 359 bits, 97

 TERSE, 350 Bitstring, 97, 432

 TIME, 354 clock, 283

 TRCOMMENT, 348 Code, 91, 432

 TRIDENTIFIER, 347 complex, 54, 292, 293

 TRLITERAL, 348 Cos, Longcos, 52, 293, 432

 TRRESERVED, 348 Cosh, Longcosh, 53, 294, 433

 ULRESERVED, 348 Cot, Longcot, 52, 293, 433

 VERBOSE, 350 Cxcos, Longcxcos, 54, 293, 433

 XREF, 329, 346 Cxexp, Longcxexp, 54, 293, 433

 list, 482 Cxln, Longcxln, 54, 434

 literal to Call, 267 Cxsin, Longcxsin, 54, 293, 434

 passing convention, 110 Cxsqrt, Longcxsqrt, 54, 292,

 run time, 359 434

 ARRAYDUMP, 364 Date, 285, 434

 CC, 363 Decode, 91, 434

 DATAPARM, 364 default values, 291

 DEBUG, 364 Entier, 51, 434

 EPAGES, 362 Erf, Longerf, 54, 294, 435

 ETIME, 361 Erfc, Longerfc, 54, 294, 435

 FILE, 361 example, 55

 NOCC, 363 exceptional conditions, 287,

 NODEBUG, 364 291

 PAGES, 362 Exp, Longexp, 52, 293, 435

 SIZE, 360 Exponent, 51, 435

 string in quotes, 365 extended storage access, 309

 TIME, 361 External, 310, 435

 type correspondence, 277 floating point conversion, 51

 parenthesis, 45, 418 Fullword, 311, 436

 partial array, 106 Gamma, Longgamma, 54, 294, 436

 per cent, 20, 418 Halfword, 311, 436

 period, 418 hyperbolic, 53, 294

 philosophy, system design, 321 Imag, Longimag, 51, 436

 Pi, 282, 444 Imagpart, Longimagpart, 51, 436

 plus, 42, 43, 47, 418 Intbase10, 91, 436

 POSINPUT, Sense keyword, 213 Intbase16, 91, 436

 POSOUTPUT, Sense keyword, 213 inverse trigonometric, 53, 294

 post mortem dump, 376 Link, 263, 437

 powers functions, 52, 293 Ln, Longln, 52, 292, 437

 precedence, 45, 82, 95 Lngamma, Longlngamma, 54, 294,

 operator, 461 437

 precompiled procedure, 257 Log, Longlog, 52, 292, 437

 calling, 258, 259 logarithmic, 52, 292

 coding, 257 logical, 84

 predeclared function, 50, 431 Number, 97, 438

 Index 501

 MTS 16: ALGOL W in MTS

 September 1980

 Odd, 84, 438 Stop, 307, 428

 powers, 52, 293 Store, 317, 428

 real to integer, 51 Trace, 429

 Realpart, Longrealpart, 51, 438 Translate, 318, 429

 roots, 52, 292 Write, 177, 429

 Round, 51, 438 Writecard, 177, 180, 429

 Roundtoreal, 51, 438 Writeon, 177, 429

 run time messages, 412 Writer, 202, 429

 Sin, Longsin, 52, 293, 438 Xdelete, 222, 430

 Sinh, Longsinh, 53, 294, 438 Xgetcard, 220, 430

 special, 54, 294 Xputcard, 221, 430

 Sqrt, Longsqrt, 52, 292, 439 predeclared variable, 441

 string conversion, 90 A_Count, 129, 441

 Tan, Longtan, 52, 293, 439 Attnmark, 308, 441

 Tanh, Longtanh, 53, 294, 439 Canreply, 281, 441

 Time, 283, 439 Divzero, 287, 414, 441

 timer, 283 Endfile, 287, 441

 trigonometric, 52, 293 Epsilon, 282, 442

 Truncate, 51, 439 Error, 200, 442

 predeclared procedure, 423, 467 Exception, 286, 288, 442

 Assign, 203, 423 Filemark, 442

 Attntrap, 308, 423 Fn_Value, 290, 291, 442

 Call, 263, 265, 267, 269, 271, format, 180

 272, 273, 423, 491, 492 Function, 287, 290, 413, 443

 Cmd, 424 I_W, 181, 186, 443

 Control, 210, 424 Input, 200, 443

 Empty, 206, 424 Intdivzero, 287, 414, 443

 extended storage access, 309 Intovfl, 287, 414, 443

 Fetch, 316, 424 Longepsilon, 282, 443

 Flush, 206, 424 Lowercase, 320, 443

 Get, 224, 231, 424 machine constants, 281

 Getcard, 218, 425 Maxinteger, 282, 444

 Geton, 224, 231, 425 Maxreal, 282, 444

 Getstring, 227, 231, 425 Ovfl, 287, 414, 444

 input/output utility, 205 Pi, 282, 444

 Iocontrol, 188, 188, 295, 425 Print, 200, 444

 Locate, 312, 426 Punch, 200, 444

 Move, 314, 426 R_Cmplx, 273, 275, 444, 492

 Newline, 193, 426 R_Code, 271, 275, 444, 492

 Protect, 207, 426 R_D, 181, 186, 445

 Put, 225, 231, 426 R_Expchar, 181, 186, 445

 Putcard, 219, 427 R_Float, 273, 275, 445, 492

 Puton, 225, 231, 427 R_Format, 182, 186, 445

 Putstring, 229, 231, 427 R_Sig, 181, 186, 445

 Qualify, 208, 427 R_W, 181, 186, 446

 Rcall, 275, 427, 492 Rdr, 201, 446

 Read, 174, 427 R0, 272, 275, 307, 446, 492

 Readcard, 174, 176, 427 R01, 273, 446, 492

 Reader, 202, 428 R1, 273, 275, 446, 492

 Readon, 174, 428 S_W, 182, 186, 446

 Release, 204, 428 state variables, 281

 Rewind, 205, 428 Syscode, 447

 Sense, 211, 428 Sysindex, 223, 447

 502 Index

 MTS 16: ALGOL W in MTS

 September 1980

 Sysparm, 282, 447 ASA, 209

 Unfl, 287, 414, 447 CTFIELDED, 209

 Uppercase, 320, 447 CTRETURNS, 209

 User, 200, 447 IC, 209

 Write_Cc, 195, 448 MAXINPUT, 208

 Wtr, 201, 448 MAXOUTPUT, 208

 Xcpaction, 288, 448 MCC, 208

 Xcplimit, 288, 448 PAGELIMIT, 209

 Xcpmark, 289, 448 PL, 209

 Xcpmsg, 289, 448 quotation mark, 417

 Xcpnoted, 288, 448 QUOTES, Iocontrol keyword, 300

 predefined input/output stream,

 200 R-factor, 252

 prime, 417 r-type calling convention, 482

 PRIMES, Iocontrol keyword, 301 R_Cmplx, 273, 275, 444, 492

 Print, 200, 444 R_Code, 271, 275, 444, 492

 privileged operation exception, R_D, 181, 186, 445

 414 R_Expchar, 181, 186, 445

 PROBLEMCPU, Iocontrol keyword, 295 R_Float, 273, 275, 445, 492

 procedure, 99, 103, 107, 107, 420 R_Format, 182, 186, 445

 building a library, 329 R_Sig, 181, 186, 445

 call back from external rou- R_W, 181, 186, 446

 tine, 263 Rcall, 275, 427, 492

 declaration, 460 returned value, 492

 formal parameter, 102 Rdr, 201, 446

 function, 107 Read, 174, 427

 precompiled, 257 Readcard, 174, 176, 427

 calling, 258, 259 Reader, 202, 428

 coding, 257 Readon, 174, 428

 predeclared, 423, 467 real, 28, 37, 57, 67, 168, 420

 proper, 99 conversion functions, 51

 recursive, 118 internal representation, 472,

 post mortem dump, 377 478

 statement, 465 to integer functions, 51

 production mode, 326, 344 Realpart, 51, 438

 program interruption run time mes- record, 35, 141, 163, 420

 sages, 412 absent with Xgetcard, 220

 PROMPT, compiler parameter, 352 class declaration, 460

 proper procedure, 99 compiler source image, 372

 Protect, 207, 426 creation, 142

 protection exception, 414 deletion, 152

 PSKIP, compiler parameter, 347 field access, 145

 PSTACK, compiler parameter, 359 field designator, 145

 PSW, Iocontrol keyword, 297 insertion, 148, 150, 152

 PTRACE, compiler parameter, 359 multiple class, 163

 Punch, 200, 444 recursive procedure, 118

 Put, 225, 231, 426 reference, 34, 39, 58, 69, 142,

 Putcard, 219, 427 163, 173, 420, 459

 Puton, 225, 231, 427 array, 147

 Putstring, 229, 231, 427 assignment, 146

 expression, 464

 Qualify, 208, 427 post mortem dump, 377

 -IC, 209 relations, 77

 Index 503

 MTS 16: ALGOL W in MTS

 September 1980

 Release, 204, 428 Rewind, 205, 428

 rem, 43, 48, 420 REWIND keyword, to Sense, 212

 replication factor, 233 right parenthesis, 45, 418

 data driven, 252 roots functions, 52, 292

 reserved word, 366, 419, 421 Round, 51, 438

 abs, 41, 419 Roundtoreal, 51, 438

 algol, 258, 419 run time diagnostics, 375

 and, 93, 419 run time messages,

 array, 67, 68, 69, 419 end-of-file, 415

 assert, 128, 419 fatal, 403

 begin, 65, 419 predeclared function, 412

 bits, 69, 93, 419 program interruption, 413

 case, 63, 139, 419 running object decks, 327

 comment, 20, 419 RUNPARM, compiler parameter, 353

 complex, 67, 419 R0, 272, 275, 307, 446, 492

 div, 42, 48, 419 R01, 273, 446, 492

 do, 131, 133, 419 R1, 273, 275, 446, 492

 else, 60, 136, 419

 end, 65, 419 s-type calling convention, 482

 false, 419 S_W, 182, 186, 446

 for, 133, 419 SCARDS, 322

 fortran, 276, 419 scope, 122

 goto, 125, 419 semicolon, 20, 417

 if, 60, 61, 136, 420 Sense, 211, 428

 integer, 67, 420 CONCATENATION, 212

 is, 78, 163, 420 DEFAULT, 212

 logical, 67, 77, 420 FDNAME, 211

 long, 41, 48, 67, 420 INDEX, 212

 not, 93, 420 INPUT, 212

 null, 58, 146, 420 IOCBLOCK, 214

 of, 63, 139, 420 LFDNAME, 211

 or, 93, 420 LSTREAM, 211

 procedure, 99, 107, 420 MAXINPUT, 213

 real, 67, 420 MAXOUTPUT, 213

 record, 141, 163, 420 OUTPUT, 212

 reference, 69, 142, 163, 420 POSINPUT, 213

 rem, 43, 48, 420 POSOUTPUT, 213

 result, 113, 420 REWIND, 212

 shl, 94, 420 STREAM, 211

 short, 41, 48, 420 SYSBLOCK, 213

 shr, 94, 420 SYSINPUT, 213

 step, 133, 420 SYSOUTPUT, 213

 string, 68, 85, 421 TYPECODE, 212

 then, 60, 136, 421 SERCOM, 322

 true, 421 shift, 94

 until, 133, 421 shl, 94, 420

 value, 111, 114, 421 short, 41, 48, 420

 while, 131, 421 SHORT parameter, to compiler, 352

 RESETSCAN, Iocontrol keyword, 300 shr, 94, 420

 restrictions, 367 significance exception, 414

 result, 113, 420 significand, 473

 return code, from Call, 271 long, 476

 returned line number, 223 simple,

 504 Index

 MTS 16: ALGOL W in MTS

 September 1980

 input/output, 17 iterative, 130, 466

 statement, 121 multiple assignment, 45

 type, 27 number, 371

 bits, 32, 69, 93 output, 177

 complex, 31, 67 procedure, 465

 correspondence for external reference assignment, 146

 routines, 277 simple, 121

 integer, 27, 67 while, 131, 466

 logical, 32, 67, 77 step, 133, 420

 long complex, 32, 67 Stop, 307, 428

 long real, 30, 67 STOP, control record, 343

 real, 28, 67 storage, extended access, 309

 reference, 34, 69, 142 Store, 317, 428

 string, 33, 68, 85 stream directed input/output, 217

 variable, 103 STREAM keyword, to Sense, 211

 declaration, 37, 459 stream name, in MTS, 321

 Sin, 52, 293, 438 stream pointer variable, 201

 Sinh, 53, 294, 438 string, 33, 38, 58, 68, 85, 171,

 SIZE, 421, 459

 compiler parameter, 349 assignment, 88

 run time parameter, 360 comparison, 87

 slash, 42, 47, 418 constant, 368

 format, 235, 242 conversion functions, 90

 SLIST, compiler parameter, 329, expression, 85, 464

 345 format, 231, 232

 source, obtaining input length, 306

 file line number, 371 output, 178

 from files, 333 run time parameter, 365

 listing, 333, 345, 370 structured type, 34

 record, 371 array, 34, 67

 statement number, 371 record, 35, 141

 SPACE, subprogram, 99

 control record, 333, 342 subroutine,

 Iocontrol keyword, 192 assembler, 265

 special functions, 54, 294 calling convention, 481

 specification exception, 414 fortran, 265

 SPRINT, 322 subscript, 70

 SPUNCH, 322 subtraction, 43, 47, 418

 Sqrt, 52, 292, 439 SUPERCPU, Iocontrol keyword, 296

 state variables, 281 symbol, 13

 statement, 121, 465 addition, 43, 418

 assert, 128, 466 alphabetic, 25, 417, 421

 assignment, 44, 124, 465 assignment, 44, 124, 418

 case, 139, 466 asterisk, 42, 418

 conditional, 136 basic, 417

 empty, 129 becomes, 44, 124

 field assignment, 145 colon, 417

 for, 132, 466 colon equals, 44, 124, 418

 format assignment, 180, 187 comma, 417

 goto, 125, 466 digit, 25, 417, 421

 if, 136, 466 division, 42, 418

 input, 174 double asterisk, 42, 418

 input/output, 187 double colon, 418

 Index 505

 MTS 16: ALGOL W in MTS

 September 1980

 double slash, 417 if statement, 466

 empty, 129, 421 iterative statement, 466

 equals, 77, 87, 418 logical expression, 463

 exponentiation, 42, 418 logical value, 458

 greater than, 78, 87, 418 numbers, 458

 greater than or equals, 78, 87, operator precedence table, 461

 418 predeclared procedure, 467

 hash mark, 417 procedure declaration, 460

 left parenthesis, 45, 418 procedure statement, 465

 less than, 78, 87, 418 record class declaration, 460

 less than or equals, 78, 87, reference, 459

 418 reference expression, 464

 letter, 25, 417, 421 simple variable declaration,

 minus, 42, 43, 418 459

 multiplication, 42, 418 statement, 465

 negation, 42 string, 459

 not, 93, 418 string expression, 464

 not equals, 77, 87, 418 user oriented, 449

 numeric, 25, 417, 421 value, 458

 parenthesis, 45, 418 variable, 462

 per cent, 20, 418 while statement, 466

 period, 418 SYNTAX parameter, to compiler, 358

 plus, 42, 43, 418 SYSBLOCK, Sense keyword, 213

 prime, 417 Syscode, 447

 quotation mark, 417 Sysindex, 223, 447

 representation, 366 SYSINPUT, Sense keyword, 213

 right parenthesis, 45, 418 SYSOUTPUT, Sense keyword, 213

 semicolon, 20, 417 Sysparm, 282, 447

 slash, 42, 418 SYSPGNT, Iocontrol keyword, 298

 special, 417 system design philosophy, 321

 subtraction, 43, 418 system state, 332

 underscore, 418 compilation, 332

 vertical bar, 417 dormant, 333

 syntactic entity index, 457 execution, 332

 syntax,

 arithmetic expression, 463 T-format, 240, 249

 array declaration, 460 TABLES, compiler parameter, 359

 assert statement, 466 Tan, 52, 293, 439

 assignment statement, 465 Tanh, 53, 439

 bits expression, 464 TERSE, compiler parameter, 350

 bits sequence, 459 then, 60, 136, 421

 block, 465 Time, 283, 439

 case expression, 464 TIME parameter,

 case statement, 466 at run time, 361

 complete, 455 to compiler, 354

 conditional expression, 464 timer functions, 283

 declaration, 459 TITLE, control record, 333, 343

 expression, 461 TOTALCPU, Iocontrol keyword, 295

 for statement, 466 Trace, 429

 function designator, 462 trailing blanks, 187

 goto statement, 466 Translate, 318, 429

 identifier, 458 TRCOMMENT, compiler parameter, 348

 if expression, 464 TRIDENTIFIER, compiler parameter,

 506 Index

 MTS 16: ALGOL W in MTS

 September 1980

 347 Uppercase, 320, 447

 trigonometric functions, 52, 293 User, 200, 447

 inverse, 53, 294 user defined input/output stream,

 TRIPLESKIP, Iocontrol keyword, 193 201

 TRLITERAL, compiler parameter, 348 user oriented syntax, 449

 TRRESERVED, compiler parameter,

 348 value, 27, 111, 114, 421, 458

 true, 421 variable, 58, 462

 Truncate, 51, 439 declaration, 37

 type, 27 predeclared, 441

 of result, stream pointer, 201

 addition, 47 VERBOSE, compiler parameter, 350

 assignment, 49 vertical bar, 417

 asterisk, 47

 becomes, 49 while, 131, 421

 colon equals, 49 statement, 131, 466

 div, 48 word, 469

 division, 47 Write, 177, 429

 double asterisk, 47 Write_Cc, 195, 448

 exponentiation, 47 Writecard, 177, 180, 429

 if, 61 Writeon, 177, 429

 long, 48 Writer, 202, 429

 minus, 47 Wtr, 201, 448

 multiplication, 47

 plus, 47 X-format, 240, 250

 rem, 48 Xcpaction, 288, 448

 short, 48 Xcplimit, 288, 448

 slash, 47 Xcpmark, 289, 448

 subtraction, 47 Xcpmsg, 289, 448

 simple, 27 Xcpnoted, 288, 448

 structured, 34 Xdelete, 222, 430

 TYPECODE, Sense keyword, 212 Xgetcard, 220, 430

 Xputcard, 221, 430

 ULRESERVED, compiler parameter, XREF, compiler parameter, 329, 346

 348

 underscore, 418 Z-format, 241, 250

 Unfl, 287, 414, 447

 until, 133, 421

 Index 507

 MTS 16: ALGOL W in MTS

 September 1980

 508 Index

 Reader’s Comment Form

 ALGOL W in MTS

 Volume 16

 September 1980

 Errors noted in publication:

 Suggestions for improvement:

 509

 Your comments will be much appreciated. The completed form may be sent

 to the Computing Center by Campus Mail or U.S. Mail, or dropped in the

 Suggestion Box at the Computing Center, NUBS, or BSAD.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications

 Computing Center

 University of Michigan

 Ann Arbor, Michigan 48109

 510

 Update Request Form

 ALGOL W in MTS

 Volume 16

 September 1980

 Updates to this manual will be issued periodically as errors are noted

 or as changes are made to MTS. If you desire to have these updates

 mailed to you, please submit this form.

 Updates are also available in the memo files at both the Computing

 Center and NUBS; there you may obtain any updates to this volume that

 may have been issued before the Computing Center receives your form.

 Please indicate below if you desire to have the Computing Center mail to

 you any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or

 U.S. Mail, or dropped in the Suggestion Box at the Computing Center,

 NUBS, or BSAD. Campus Mail addresses should be given for local users.

 Publications

 Computing Center

 The University of Michigan

 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________

 British Columbia) should return this form to their respective installa-

 tions. Addresses are given on the reverse side.

 511

 Addresses of other MTS installations:

 The University of Alberta

 Information Coordinator

 352 General Services Bldg.

 Edmonton, Alberta

 Canada T6G 2H1

 Information Officer, NUMAC

 Computing Laboratory

 The University of Newcastle upon Tyne

 Newcastle upon Tyne

 England NE1 7RU

 Rensselaer Polytechnic Institute

 Documentation Librarian

 130 Amos Eaton Hall

 Troy, New York 12181

 Simon Fraser University

 Computing Centre

 User Services Information Group

 Burnaby, British Columbia

 Canada V5A 1S6

 Wayne State University

 Computing Services Center

 Academic Services Documentation Librarian

 5950 Cass Ave.

 Detroit, Michigan 48202

 512

