
File No. S360-36
Order No. GC27-6939-10 OS

Systems Reference Library

IBM System/3S0 Operating System:

MFT Guide

OS Release 21.7

This publication provides information concerning Version II of
Multiprogramming With a Fixed Number of Tasks (MFT) for
installation personnel who are responsible for selection,
evaluation, and implementation of System/360 Operating System
configurations. The information is presented in five major
sections:

• The MFT Control Program
• MFT Options
• Planning Considerations
• Modifying the System
• Logic Summary

The descriptive information is supplemented by examples and
illustrations including a sample job scheduling sequence and
sample partition configurations for systems with 128K, 2S6K,
and SI2K bytes of main storage.

Page of GC27-6939-io
Revised April 16, 1973
By TNl: GN28-2546

Eleventh Edition (March, t 972)

This is a major revision of, and obsoletes, OC27-6939-9. Section IV of this publication
contains a major portion of the information formerly in IBM System/360 Operating System:
System Programmer's Guide, GC28-6550. The publication, IBM System/360 Operating System:
Data Management for System Programmers, GC28-6550, contains the remaining System
Programmer's Guide material. Changes to text and illustrations are indicated by a vertical
line to the left of the change; a summary of major changes follows the contents.

I This edition with Technical Newsletter GN28-2546 applies to Release 21.7 of IBM
System/360 Operating System, and to all subsequent releases until otherwise indicated in
new editions or Technical Newsletters. Changes are continually made to the information
herein; Before using this publication in connection with the operation of IBM Systems,
consult the latest IBM Systelll/360 and System/370 Bibliography, GA22-6822, for the editions
that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department D58, Buildina 706-2, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967,1968,1969,1970,1971,1972

)
This guide describes how to use the MFT
(multiprogramming with a fixed number of tasks)
control program. The MFT control program
performs system functions, such as input/output
operations and supervision of jobs, and processes
up to 15 jobs concurrently.

This guide is intended for new users as well as
users familiar with the MFT control program.

It presents material in five sections and four
appendices.

Section I describes the MFT control program to .
new users or to those who wish to review MFT. This
section describes storage organization, initial
program loading, and nucleus ~nitialization
programs and the four major functions of the
control program. Experienced users do not need to
read this section.

Section II describes briefly the options available
for MFT. Planning and managerial personnel can
use this information when expanding their system
with the MFT options.

Section III explains device requirements, system
generation macro instructions, and planning aids.
P,rogrammers will find this information helpful to
run their programs quickly and efficiently. Planning
personnel can use this information to optimize
system performance according to the demands of
their installation.

Section IV lists the standard IBM cataloged
procedures for Reader/Interpreters and writers,
and methods for modifying the control program. This
section explains how to write cataloged procedures,
includes examples of modified cataloged
procedures, and describes methods of modifying
the control program. Planning personnel need this
information to tailor the control program to their
installation's requirements.

Section V explains in detail the MFT control
program. A new user should fully understand the
first four sections of this guide before reading this
section. An experienced user could go directly to
this section.

Preface

Appendix A describes the recovery management
routines available for MFT.

Appendix B contains the formats for system
macro instructions that either modify system
control blocks or obtain information from system
control blocks.

Appendix C explains control character
transformations used with user-written writer
routines.

Appendix D describes the use of the RESERVE
macro instruction with the Shared DASD (Direct
Access Storage Device) option.

As a prerequisite, users must have read:

IBM System/360 Operating System: Introduction,
GC28-6534

Other publications that the reader will find
helpful, and that are referred to within this
publication are:

IBM System/360 Operating System:

Advanced Checkpoint/Restart Planning Guide,
GC28-6708

Data Management to{ System Programmers,
GC28-6550

Data Management Macro Instructions, GC26-3794

Data Management Services, GC26-3746

Job Control Language Reference, GC28-6704

Messages and Codes, GC28-6631

Operator's Reference, GC28-6691

Storage Estimates, GC28-6551

Supervisor Services and Macro Instructions,
GC28-6647

System Control Blocks, GC28-6628

System Generation, GC28-6554

Utilities, GC28-6586

This publication also refers to the following
program logic manuals (PLMs):

IBM System/360 Operating System:

Input/Output Supervisor Program Logic Manual,
GY28-6616

Machine-Check Handler for:

System/360 Model 65 Program Logic Manual,
GY27-7155

4 MFT Guide (Release 21.0)

System/360 Model 85 Program Logic Manual,
GY27-7184

System/370 Models 135 and 145 Program Logic
Manual, GY27-7237

System/370 Models 155 and 165 Program Logic
Manual, GY27-7198

MIT Supervisor Program Logic Manual,
GY27-7236

(

)

Summary of Amendments

I Section I: The MIT Control Program
Concepts of MFT

MFT Terminology
MUltiprogramming with a Fixed Number of Tasks
System Inititalization .
Partitions
Concurrent Operations
Task Switching

Functions of the Control Program With MFT
Job Management.
Task Management . .
Data Management . .
Recovery Management

Control Program Organization
Resident Portion of the Control Program
Nonresident Portion of the Control Program

Main Storage Organization .
Fixed Area
Dynamic Area
System Input Reader Partitions
Problem Program Partitions . .
System Output Writer Partitions
Direct System Output Writer Partitions
Extending Main Storage

Sequence of Operation . . .
Job Processing Under MFT .

Partition Job Class Facility
Partition Redefinition . .

Partition Combination
Identity Change . . .
Partition Recovery . .
Partition Definition Processing

Input Readers
Resident Readers.
Transient Readers
Enqueueing Jobs by CLASS and PRTY

Job Initiatation and Termination
Job Initiation
Job Termination

Direct System Output Writers
System Output Writers
System Restart

Invoking System Restart
Jobs That Were Being Interpreted
Jobs on Input, Hold, and Output Queues
Jobs That Were Dequeued
System Ouptut Processing.

MFT Features
Extended Multiprogramming Capabilities
Independent Job Scheduling
System Management Facilities (SMF)
Job/Step CPU Timing. . .
Job Step CPU Time Limiting
Wait Time Limiting
Small Partitions. . . .
Checkpoint/Restart . .
Input Stream From Disk

Contents

13

15
15
16
16
17
17
17
17
18
18
18
18
19
19
19
20
21
22
22
24
24
25
25
25
27
29
30
31
31
32
32
33
35
36
36
38
39
39
40
41
42
44
45
46
46
46
46
46
47
47
47
47
48
48
48
48
48

, Contents 5

MFT With Subtasking
Generalized Trace Facility . .

Generalized Trace Function
Trace Edit Function

Section II: MIT Options.
Alternate Path Retry
Attach Function
Attach Function Made Resident
Basic Direct Access Method (BDAM)
BLDL Table Made Resident .
Channel-Check Handler (CCH) . . .
Checkpoint/Restart Facility
Consoles-Alternate and Composite Console Option .
Consoles-Multiple Console Support (MCS)
Conversational Remote Job Entry (CRJE) Facility
Direct Access Volume Serial Number Verification
Dynamic Device Reconfiguration (DDR)
Extract Function Made Resident
Graphic Programming Services
Identity Function Made Resident
Indexed Sequential Access Method (ISAM)
Job Step Timing
Main Storage Hierarchy Support
Program Controlled Interrupt (PCI) . . .
Reenterable Load Modules Made Resident
Remote Job Entry (RJE) Facility
Resident Access Method Routines. . . .
The Shared Direct-Access Device Option
SPIE Routines Made Resident
Storage Protection Option
System Management Facilities (SMF) . .

. Telecommunications Access Method - BCAM, QT AM, and TCAM Optional .
The Time Slicing Facility
Timing Options.
Trace Option.
Transient SVC Table Made Resident
Type 3 and 4 SVC Routines Made Resident
User-Added SVC Routines.
Validity Check Option.
Volume Statistics Facility .

Section III: Planning Considerations
General Considerations
~inlmum System Storage and Device Requirements
Common Considerations

Estimating Minimum Storage Requirements
Calculating System Configuration . .
Single Console vs. Multiple Consoles

Using Resident Reenterable Routines . .
Placing System Libraries on Direct Access Devices .

Blocking the Procedure Library
Determining the Size of SYS1.SYSJOBQUE ..

Sharing Direct Access Storage Devices (DASD) with Other Systems
Choosing the Size of the Scheduler . . .
Choosing Number and Size of Partitions
Choosing Appropriate Job Classes . . .

Default Job Class
Priority Scheduling Within Job Classes .

A · . JbN'/ sSlgmng 0 amer.......·.·
Formatting Problem Program Messages
Choosing System Input Readers .

Blocking Input.
Choosing the Reader Procedure

6 MFT Guide (Release 21.0)

49
49
50
50

51
51
51
51
52
52
52
52
53
53
55
56
56
57
58
58
58
58
58
59
59
59
60
60
62
62
63
63
63
65
66
66
66
66
67
67

69
69
69
70
71
71
71
73
73
73
74
74
74
75
75
76
77
77
77
77
78
78

/

i'~esident Reader or Transient Reader
Single Reader or Multiple Readers .

Choosing System Output Writers
Resident or Non-Resident Writers . .
Choosing Direct System Output Writers
Use of Multiple Writers

A voiding System Interlocks
Data Set Integrity . . .

System Generation Macro Instructions .
CTRLPROG Macro Instruction
SCHEDULR Macro Instruction
PARTITNS Macro Instruction

Special Considerations
Batch Processing

Choosing Number and Size of Partitions
Small Partitions
Choosing Reader Partitions
Assigning Job Classes to Jobs ...
Assigning Partitions to Job Classes
Choosing System Output Writer Partitions
Choosing Output Classes ... '

Telecommunications
Choosing Number and Size of Partitions
Small Partitions' .
Choosing Reader Partitions
Assigning Job Classes to Jobs ...
Assigning Partitions to Job Classes
Choosing Writer Partitions

Graphics
Choosing Number and Size of Partitions
Choosing Reader Partitions
Assigning Job Classes to Jobs ...
Assigning Partitions to Job Classes
Using the Time-Slicing Feature . .

Spooling (Concurrent Peripheral Operation)
Typical System Configurations . . .

Systems With 128K Main Storage
Long-Duration Jobs
High-Intensity Job Stream

Systems With 256K Main Storage
Systems With 512K Main Storage
System With IBM 2361 Core Storage

Operating Considerations .
Program Execution . . .
Partition Definition . . .
Changing Output Classes
Handling Shared Direct Access Volumes
Restarting the System
Operator Commands

Section IV: Modifying the System.
Reader/Interpreter and Output Writer Cataloged Procedures

Reader/Interpreter Procedures
The EXEC Statement .,
The PARM Field in the EXEC Statement of the Reader/Interpreter
DD Statement for the Input Stream . .
DO Statement for the Procedure Library . .
DO Statement for the Spooling Data Set ..

Reader/Interpreter Procedure Used by Restart.
The EXEC Statement
DO Statement for the Input Stream . .
DO Statment for the Procedure Library
DO Statment for the Spooling Data Set

Output" Writer Procedures

79
79
79
80
80
81
81
82
82
82
83
84
86
86
86
86
86
87
87
87
87
88
88
88
88
89
89
89
89
90
90
90
90
90
91
91
91
91
92
92
94
94
94
95
95
96
96
96
97

99
99

100
101
WJ
104
105
106
107
108
108
108
108
109

Contents 7

System Output Writer.
The EXEC Statement
DO Statement for the OUTPUT Data Set

Direct SYSOUT Writer -- The Synchronous System Output Writer Job.
The EXEC Statement
The DD Statment

Optional SYSABEND Data Set
Cataloging the Procedure
Example of the Use of Symbolic Parameters in Cataloged Reader and Writer Procedures

The PROC Statement
The START Command

SYSIN and SYSOUT Data Blocking
Blocking the Procedure Library

Resident Routines Option
Nucleus Resident Library Routines
The Resident BLDL Table Option

Selecting Entries for the Resident BLDL Table
List IEABLDOO
Resident Reenterable Modules Option
The Resident Access Method Modules Option

ABEND and ABDUMP Requirements
Considerations for Use

List IEAIGGOO
Resident Link Library Modules Option .

Adding the Resident Link Library .Option
The Resident SVC Routines Option
List IEARSVOO
The Resident Error Recovery Procedure Option
Creating Parameter Library Lists
Example
Example of the ERP Option List

Job Queue Format
Logical Track Size -- JOBQFMT
Reserving Initiator Queue Records -- JOBQLMT .

Number of Generation Data Groups.
Number of I/O Devices for Passed Data Sets.
Number of Passed Data Sets
Number of Volumes
Number of System Messages
Use of Automatic Restart . .

Reserving Write-to-Programmer Queue Records -- JOBQWTP .
Reserving Queue Records for Cancellation -- JOBQTMT

Number of Devices
Number of Jobs

Output Separation
Charateristics of an Output Separator.
Programming Conventions.

Output from the Separator
Using the Block Character Routine

Writing an Output Separator Program
Parameter List.

Writing System Output Writer Routines
Charateristics of the Output Writer
Programming Conventions.
Writing an Output Writer

Adding SVC routines to the Control Program
Characteristics of SVC Routines
Programming Conventions for SVC Routines
Writing SVC Routines
Adding SVC Routines Into the Control Program

Specifying SVC Routines
Inserting SVC Routines During the System Generation Process.

Message Routing Exit Routines
Characteristics of MCS "

8 MFT Guide (Release 21.0)

109
109
110
111
112
112
114
114
115
115
116
116
118
119
119
120
120
121
121
121
122
122
124
125
125
126
126
127
127
128
129
130
131
131
132
132
132
132
132
133
134
134
135
135
136
136
137
138
138
139
139
140
140
140·
142
146
146
146
149
149
150
150
151
151

/

\

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

Programming Conventions For WTO/WTOR Routines .
Messages Not Using Routing Codes

Writing a WTO/WTOR Exit Routine
Adding a WTO/WTOR Exit Routine to the Control Pro~ram

Inserting tI-.: WTO/WTOR Exit Routine ... '.
Handling Accour l ing Routines

Programming ":onventions for Accounting Routines
Input Available to Accounting Routines .
Adding an Accounting Routine. . .

Insertion at System Generation .
Insertion after System Generation
MFT Configurations

Output From Accounting Routines .
Adding the Accounting Data Set Writer

Linkage
Input
Specifying the SYS I.ACCT Data Set
Output
Use of ENQ/DEQ . .

The Must Complete Function
Operating Characteristics
Levels of Use of the Must Complete Function
Requesting the Must Complete Functi.,m
Programming Notes. . '.
Terminating the Must Complete Function

The PRESRES Volume Characteristic List .
Characteristics of the PRESRES Volume Characteristics List
Writing the PRESRES Entry Fortnat
Adding the List.

Section V: Logic Summary
Part I: Theory of Operation
Part II: Initialization of the (perating ~ stem
Main Storage Preparation

Initializing the Partitions

Appendix A: Recovery Management
CPU Recovery Facilities . . .'.

System Environment Recording, Option 0, (SERO)
System Environment Recording, Option 1 (SER 1)
Machine-Check Handler (MCH)

MCH for Model 65
MCH for Models 85, 135, 145, 155, and 165

Input/Output RecO\ ery Facilities . .
Channel-Check Handler (CCH) ...

Error Recovery Procedures (ERPs)
Alternate Path Retry (APR) . . .
Dynamic Device Reconfiguration (DDR)

Appendix B: System Macro Instructions
CIRB -- Create IRB for Asynchronous Exit Processing
SYNCH -- Synchronous Exits to Processing Program

SYNCH Macro Definition
ST'AE - Specify Task Asynchronous Exit

Execute and Standard Form of ST AE
List Form of ST AE

Programming Notes
Scheduling of ST AE and ST AI Exit and Retry Routines

ArT ACH - Create a New Task
IMGLlB - Open or Close SYSI.IMAGELIB .. .

liriter-Partition POST -- Post a Nonresident Routine
QEDIT -- Linkage to SVC 34
WTO/WTOR -- Write-to-Operator and Write-to-Programmer with Reply

151
153
154
154
154
ISS
155
155
157
157
157
157
15R
159
159
159
159
159
160
161
161
161
162
162
163
164
164
165
166

167
167
173
173
i73

177
177
177
178
178
17g
179
179
179
180
180
181

183
183
184
184
184
185
186
187

188. !
191
In
193
194
194

Contents 9

Appendix C: Control Chancter Transfonnatlons .
Card Punch Unit
Printer Unit '.

Appendix 0: RESERVE Macro Instruction Used with the Shared DASD Option
The RESERVE Macro Instruction. .

The EXTRACT Macro Instruction
Releasing Devices. .
Preventing Interlocks
Volume Assignment .
Program Libraries

Finding the UCB Address
Providing the Unit Control Block Address to RESERVE

Procedures for Finding the UCB Address of a Reserved Device
RES and DEQ Subroutines,

Index '

10 MFT Guide (Release 21.7)

195
195
196

199
'199
200
200
200
201
201
201
201
202
203

205

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

Figures

I Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
I Figure

1.· Main Storage Organization.
2. Division of Main Storage
3. Sample 256K Batch System Configuration With 1024K Core Storage Unit
4. Contents of Main Storage After Nucleus Initialization
5. Contents of Main Storage After Initialization
6. Input Work Queue After System Initialization
7. Input Work Queues After First Three Jobs Have Been Entered
8. Contents of Main Storage After START Command.
9. Contents of Main Storage after First Job Has Been Scheduled

10. Input Work Queues After All Nine Jobs Have Been Entered
11. Contents of Main Storage With All Partitions Active
12. Sample Five Partition Configuration
13. Partition Configuration After Combination
14. Partition Identification After Combination.
15. Partition Configuration After Recovery
16. Partition Definition Processing .
17. Input Job Stream
18. System Input Reader Processing
19. The MFf System
20. System Restart· Processing . . .
21. Sample 123K Small Partition Configuration
22. Sample 128K Telecommunications-Oriented Configuration
23. Sample 256K Graphic-Oriented System Configuration
24. Sample 256K Telecommunications, CPO, and Batch Processing
25. Sample 128K Batch System Configurations
26. Sample 256K Batch System Configurations
27. Sample 512K Batch Processing System Configuration
28. Operator Command Groups
29. Data Blocking Accepted by Processors Under MFf .
30. Parameter List Referred to by Register 1
31. General logic of Standard output Writer
32. Programming Conventions for SVC Routines
33. Programming Conventions for WTO/WTOR Routines
34. Accounting Routines Available to User
35. System Initialization.
36. Reader/Interpreter ., . . .
37. Initiator /Terminator.
38. Processing a Problem Program
39. System Output Writer
40. Main Storage During Execution of NIP
41. Main Storage at Termination of Master Scheduler Initialization
42. Control Character Translation for Punch Unit Output
43. Symbol Representation of Record Formats.
44. Control Character Representation for Printer Unit Output

21
23
26
27
28
28
28
28
29
29
29
30
32
32
33
34
35
37
40
45
81
89
90
91
93
93
95

103
117
140
144
147
152
156
168
169
170
171
172
174
175
195
196
197

Contents 11

12 MFI' Guide (Release 21.7)

Main Storage Organization Change

Describes how a fragment of the system queue area
rounds the fixed area up to a 2K boundary.

Job Step Timing

Describes the correct method for determining CPU time.

EXEC Statement

Describes the default parameter from the initiator to the
reader for either system tasks or problem programs
started from the operator's console.

SYSIN and SYSOUT Data- Blocking

Lists a new blocking factor for PL/IF on SYSPRINT.

Page of Ge27 0 6939-1O
Revised April 16, 1973
By TNL: GN28-2546

Summary of Amendments
for GC27-6939-10

as Updated by GN28-2546
OS Release 21.7

The Resident Access Method Modules OPTION

Describes additional requirements for the use of the
system log data sets on devices with rotational position
sensing.

STAE - Specify Task Asynchronous Exit

Describes additional return codes encountered when a
program in an active ST AE environment abnormally
terminates.

Inter-Partition POST - Post a Nonresident
ROutine

Introduces this TSO macro and tells how to use the list
and execute forms of it in MFT to pass a parameter list
to a nonresident control program routine.

Summary of Amendments 12. I

12.2 MFT Guide (Release 21.7)

Generalized Trace Facility (GTF)

Describes the tracing and editing abilities of GTF.

BSAM modules for ABDUMP routine

Three BSAM modules should be resident for ABDUMP

Changed list IEARSVOO to support
Open/ Close/EOV

Modules in the list IEARSVOO changed.

System/370 Model 135 Support

MFr supports System/370 Model 135.
Channel Check Handler supports System/370 integrated
channels.
Machine Check Handler supports System/370.

Problem Determination

Adds the new command DUMP to the list of operator
commands.

Automatic Start Command

If a dedicated reader partition exists, the automatic
reader starts in that partition.

Alternate Path Retry (APR)

The V AR Y PATH function of APR is now standard for
MFr.

SVAREA=NO parameter of ATTACH Macro

The parameter SVAREA=NO in the ATTACH macro is
not valid with MFr.

Summary of Amendments
for Ge27 -6939-10

OS Release 21

Disposition of Temporary Dedicated Data Sets

Clarification of submitting seperate jobs instead of job
steps in a job when using temporary dedicated data sets.

MFf Options List

Lists the options available for the MFr user.

System Programmer's Guide Chapters

Section II contains the following System Programmer's
Guide chapters:

The Shared Direct Access Device Option
The Time Slicing Feature

Section IV contains the following System Programmer's
Guide chapters:
Resident Routines Option
Job Queue Format
Output Separation
Writing System Output Writer Routines
Adding SVC Routines to the Control Program
Message Routing Exit Routines
Handling Accounting Routines
The Must Complete Function
The PRESRES Volume Characteristic List

Appendix B contains the following System
Programmer's Guide chapter:

System Macro Instructions

Appendix C contains the following System
Programmer's Guide chapter:

Control Character Transformations (from Writing
System Output Writer Routines)

Appendix D contains the following System
Programmer's Guide chapter:

RESERVE Macro Instruction Used with the Shared
DASD Option (from The Shared Direct Access Device
Option)

Summary of Amendments 13

Summary of Amendments
for GC27 -6939-9
OS Release 20.1

New CPU Support

Adds references to System/370 Model 145.

New Device Support

Adds references to the IB M 2305 Fixed Head Storage
Facility, IBM 2319 Direct Access Storage Facility, and
IBM 3330 Disk Storage Drive.

Summary of Amendments
for GC27-6939-8
OS Release 20

MFf Redocumentation

Adds information formerly contained in IBM
System/360 Operating System: Control Program
With MFf, Program Logic Manual, GY27-7128.

14 MFT Guide (Release 21.0)

Resident BLDL Table

Can contain directory entries from SYS1.SYSCLIB as
well as SYS I.LINKLIB.

Recovery Management

Describes recovery management for MFT. The
discussion is parallel to that found in IBM System/360
Operating System: MVT Guide, GC28-6720, and
includes information formerly contained in IBM
System/360 Operating System: Concepts and
Facilities, GC28-6535.

/

\,

) Section I: The MFf Control Program

The basic concepts of the MFT control program are described in this section for data
processing executives, planners, and system analysts. The organization of this section describes
concurrent porcessing of up to 15 jobs, the functions of the MFT control progrram, and
examples of how MFT processes jobs. Significant and unique features of the MFT control
program are described.

The topics this section describes are:

• Concepts of MFT
• MFT Terminology
• Functions of the Control Program
• Control Program Organization
• Main Storage Organization
• Sequence of Operation
• Job Processing Under MFT
• MFT Features

Concepts of MFf

MFT is a System/360 Operating System option that provides extended mUltiprogramming
capabilities and increased flexibility to the Operating System user whose system has 128K
bytes or more of main storage. The system may reside on any of the following devices:

• IBM 2301 or 2303 Drum Storage

• IBM 2305-1 or 2305-2 Fixed Head Storage Facility

• IBM 2311 or 3330 Disk Storage Drive

• IBM 2314 or 2319 Direct Access Storage Facility

The system may not reside on an IBM 2302 Disk Storage unit or an IBM 2321 Data Cell
Drive.

Systems with MFT can use the Shared Direct Access Storage Device (Shared DASD)
feature. This feature allows two or more independently-operating computing systems to use
common direct access storage devices. MFT can share devices with MVT (multiprogramming
with a variable number of tasks), and other MFT configurations of the IBM System/360
Operating System.

As many as 15 multi-step jobs can proceed concurrently with the operation of: up to three
system input readers, 36 system output writers, and as many direct system output writers as
there are available devices. Each job is processed in a discrete area of main storage known ~s
a partition. A maximum of 52 partitions is allowed in MFT. When a job must wait for
completion of an event such as an input/output operation, another job of lower priority is
allowed to proceed. When the higher-priority job is ready to resume, the lower-priority job's
processing is suspended and control of the CPU is returned to the higher-priority job. The
priority of each job is determined by the partition in which it resides. Jobs are directed to a
given partition or group of partitions through the CLASS parameter of the JOB card.

Section I: The MFf Control Program 15

By using the CLASS parameter to denote different types of jobs, the user can direct jobs to
partitions consistent with the jobs' characteristics. Process-limited jobs, for instance, can be
directed to low-priority partitions so that they do not interfere with efficient processing of jobs
that do not require the CPU as often. Telecommunications jobs can be directed to
higher-priority partitions so that system response time to the terminal user is minimal. If equal
intervals of CPU time are to be allotted to certain graphics or other jobs, these jobs can be
directed to time-sliced partitions (if the time-slicing feature is included in the system). If direct
system output writers are used, the job class of a job must be a job class that the writer can
process. Direct system output writers can handle up to eight different job classes. The CLASS
parameter can be used to establish which jobs are going to be handled by direct system output
writers. Additional applications of the CLASS parameter can be established based on any job
characteristics meaningful to the installation.

To use MFT efficiently, both system and application programmers must understand how it
operates. Because other user personnel may be interested in a summary of MFT operation. This
section summarizes MFT operation in seven major topics:

• "MFT Terminology" defines basic terms used in this publication.

• "Functions of the Control Program" introduces the basic techniques of the MFT control
program. This includes a discussion of the job management, task management, and data
management functions of the control program.

• "Control Program Organization" describes the resident and non-resident portions of the
control program. Three partitioned date sets -- SYS l.NUCLEUS, SYS l.SVCLIB, and
SYS 1.LINKLIB -- contain the control program.

• "Main Storage Organization" shows the difference between fixed and dynamic areas, anQ
describes partitions.

• "Sequence of Operation" describes, on a conceptual level, the scheduling, initaiation, and
termination of jobs.

• "Job Processing Under MFT" describes the principles of job processing used by the MFT
control program.

• "MFT Features" introduces the reader to what the MFT control program can do.

MET Terminology

Unique MFT terminology is explained as it is presented. Certain basic definitions, however, are
essential to understanding the terms as they are introduced. These basic definitions are given in
the following paragraphs.

Multiprogramming With a Fixed Number of Tasks

"MUltiprogramming" refers to the concurrent execution of several units of work (tasks), any
one of which would, in a single-program environment, occupy the computing system until the
task is finished.

Note: Throughout this publi~ation, "job" refers to an externally specified unit of work (a
problem program specified by a JOB card), and "task" refers to any unit of work that must be
performed by the Central Processing Unit (CPU), under control of a task control block
(TCB).

16 MFT Guide (Release 21.0)

I

"

The significance of multiprogramming is that it provides increased throughput and better
utilization of resources. A typical task makes use of only a small part of the resources available
in the system. In a single-program environment, this means that overall application of resources
is low. In a multiprogramming ep.vironment, however, resource application is markedly
improved, because the relatively limited demands of each of several tasks combine to produce
a net demand that is more efficient in terms of the system's capabilities.

The phrase "a fixed number of tasks" indicates that the maximum number of tasks the
system is capable of performing at one time is determined at system generation. The number
of tasks that can be performed at one time can be varied during and after system initialization.

System Initialization

System initialization is the preparation for execution of those elements of the IBM System/360
Operating System that reside in the fixed area of main storage. This preparation is performed
by the Nucleus Initialization Program (NIP) when the system is brought into main storage
through the initial program loading (IPL) procedure, and is supplemented by operator action.

Partitions

Main storage is divided into a system area and a dynamic area. The dynamic area is further
divided, by the user, into a number of discrete areas called partitions. The number of tasks
that can execute in each partition depends on whether the user has selected MFT without
subtasking or MFT with subtasking. The type of ATTACH facility, selected during system
generation, will determine the number of tasks that can execute in each partition.

When MFT without subtasking is selected, only one task will be executed in each partition.
With this version of MFT, the number of partitions determines the number of tasks that can
execute concurrently.

When MFT with subtasking is selected, each task can attach any number of subtasks (up to a
maximum of between 196 and 249); each subtask will then execute in the same partition.

Partitions can be defined as reader, writer, or problem program partitions. Each partition
has a fixed priority within the system (partition 0 has the highest priority; partition 51, the
lowest). The priority determines which partition will gain control of the CPU first when a wait
condition occurs. Small partitions are problem program partitions that are too small to contain
the scheduler.

Concurrent Operation

In a multiprogramming system, tasks are performed concurrently. This is a significant
programming concept. Execution is not simultaneous, or overlapped, or alternating in a fixed
pattern. Each task is contained within a partition. The determination of which task gains
control is based on "waits" and "posts." Waiting for an event, such as the completion of an
input/ output operation, removes the task from contention for control. Posting of the task,
which signals that the awaited event has been completed, causes the task to be placed in a
"ready" status. The task that becomes active is the highest priority task that is ready. This
high-priority task proceeds until another event causes the task to relinquish control. The
relinquishing of control by one task, and the gaining of control by another task, is called a task
switch.

Section I: The MFf Control Program 17

Task Switching

There are two ways in which a task switch can occur:

1. The active task relinquishes control because it must wait for the completion of an event,
such as an input/output operation.

2. Control is seized by a higher-priority ready task as a result of an interruption signaling an
event for which it has been waiting.

The first case illustrates how multiprogramming ensures optimum utilization of resources.
Whenever one unit of work cannot proceed, another (highest-priority) is advanced. In a
single-program environment, no work can proceed while the single task waits for an event. The
second case illustrates how an internal balance between the tasks is achieved. When a task has
control, it retains control only until a task of higher priority becomes ready to proceed.

Note: Throughout this manual, the suffix "K" denotes the value 400 (hexadecimal), or 1024
(decimal).

Functions of the Control Program With MFI'

The control program routines of MFT have four major functions: job management, task
management, data management, and recovery management.

Job Management

Job management is the processing of communications from the programmer and operator to
the control program. There are two types of communications: operator commands, which start,
stop, and modify the processing of jobs in the system, and job control statements, which
define work being entered into the system. Processing of these commands and statements is
referred to as command processing and job processing, respectively.

Task Management

Task management routines monitor and control the entire operating system, and are used
throughout the operation of both the control and processing programs. Task management
routines have six major functions:

• Interruption supervision.
• Task supervision.
• Main Storage supervision.
• Contents supervision.
• Overlay supervision.
• Timer supervision.

The task management routines are collectively referred to as the "supervisor."

Data Management

Data management routines control all operations associated with input/output devices:
allocating space on volumes, channel scheduling, storing, naming, and cataloging data sets,
moving data between main and auxiliary storage, and handling errors that occur during
input/ output operations. Data management routines are used by processing programs and
control program routines that require data movement. Processing programs use data
management routines primadly to read and write required data, and also to locate input data
sets and to reserve auxiliary storage space for output data sets of the processing program.

18 MFT Guide (Release 21.0)

(

) There are five categories of data management routines:

• Input/Output (I/O) supervisor, which supervises input/output requests and interruptions.
• Access methods, which are used to communicate with the I/O supervisor.
• Catalog management, which maintains the catalog and locates data sets on auxiliary storage.
• Direct access device space management (DADSM), which allocates auxiliary storage space.
• Open/Close/End-of-Volume, which performs required initialization for I/O operations and

handles end-of-volume conditions.

Recovery Management

Recovery management routines: (1) collect and record machine and program data when a
machine check or a channel check occurs; (2) ensure use of all operational online channels;
and (3) attempt to recover from channel and device errors by allowing the operator to
exchange volumes between two devices.

Recovery management routines are described briefly in Appendix C.

Control Program Organization

The control program is on auxiliary storage in three partitioned data sets created when the
sY8tem is generated. These data sets are:

• The NUCLEUS partitioned data set (SYS1.NUCLEUS), which contains the Nucleus
Initialization Program (NIP) and the resident portion of the control program.

• The SVCLIB partitioned data set (SYS1.SVCLIB), which contains nonresident SVC
routines, nonresident error-handling routines, and the access methods routines.

• The LINKLIB partitioned data set (SYS1.LINKLIB), which contains other nonresident
control program routines and IBM-supplied processing programs.

Resident Portion of the Control Program

The resident portion (nucleus) of the control program is in SYS1.NUCLEUS. It is made up of
those routines, control blocks, and tables that are brought into main storage at initial program
loading (IPL) and are never overlaid by another part of the operating system. The nucleus is
loaded into the fixed area of main storage.

The resident task management routines include all of the routines that perform:

• Interrupt supervision.
• Main storage supervision.
• Timer supervision.

They also include portions of the routines that perform:

• Task supervision.
• Contents supervision.
• Overlay supervision.

The resident job management routines are those routines of the communications task that
receive commands from the operator, and the master scheduler task.

Section I: The MFT Control Program 19

Communications Task: The communications task routines process the following types of
communication between the operator and the system:

• Operator commands, issued through a console.

• Write-to-operator (WTO) and write-to-operator with reply (WTOR) macro instructions.

• Interruptions caused when the INTERRUPT Key is pressed, the signal to switch from the
primary console to an alternate console.

Master Scheduler Task: The master scheduler task processes job queue manipulation commands
and partition definition. For example, a HOLD or DEFINE command is processed by the
master scheduler task.

The resident data management routines are the input/output supervisor and, optionally, the
BLDL routines of the partitioned access method, and QSAM for readers and writers.

Note: The resident QSAM routines must be generated with the MFT system, and are also
available to problem programs. They may either be included in the 34K nucleus, or, if a
smaller nucleus is to be generated, the routines may be used in the reader and writer partitions.
However, the size of the reader and writer partitions may increase beyond the 30K/44K and
10K sizes, respectively.

Optionally, other access method routines may be made resident. The 34K MFT nucleus also
includes space for the optional storage protection routines. Although the storage protection
feature is not required for MFT, it should be included. Storage protection prevents the
contents of each partition from being destroyed or changed by another task.

The user may also select resident reenterable routines, which are access method routines
from SYS1.SVCLIB, and other reenterable routines from SYS1.LINKLIB. At system
generation, the user specifies that he wants such routines resident in main storage. At IPL, he
identifies the specific routines desired in the RAM = entry. The selected routines are loaded
during system initialization and reside adjacent to the higher end of the system queue area
unless the BLDL table is also resident (see Figure 1). (The resident BLDL table is optional; if
present, it contains directory entries for selected modules in SYS 1.LINKLIB and
SYS1.SVCLIB.)

Normally-transient SVC routines (i.e., types 3 and 4 SVC routines) can be made resident
through the RSVC option, specified by the user. NIP loads these routines adjacent to the
higher end of the resident reenterable routines. If there is no resident' BLDL table or resident
reenterable routines, the routines are loaded adjacent to the higher end of the system queue
area. (See Figure 1.)

Nonresident Portion of the Control Program

The nonresident portion of the control program comprises routines that are loaded into main
storage as they are needed, and which can be overlaid after their completion. The nonresident
routines operate from the partitions and from two sections of the nucleus called transient
areas.

20 MFf Guide (Release 21.0)

(

(

Low Address

Nucleus
1/0

Supervi$Ol'
Tronsiellt

Area

SVC
Transient

Areo

Page of GC27-6939-IO
Revised April 16, 1973
By TNL: GN28-2546

The non-resident routines which perform job management are collectively referred to as the
scheduler. The scheduler for MFT is packaged in two basic configurations, 30K and 44K.
(Detailed considerations of actual scheduler size are given in the Storage Estimates pUblication.)
At least one partition in the system must be large enough to contain the scheduler. The choice
of scheduler is determined by the amount of main storage available, the number of partitions
needed, and the required sizes of those partitions. (See "Choosing the Size of the Scheduler"
in the Considerations section.)

Main Storage Organization

In a single task environment, main storage is divided into two areas: the fixed area, and the
dynamic area. In mUltiprogramming with a fixed number of tasks (MFT), the dynamic area is
divided further into as many as fifty-two discrete areas called partitions. Figure 1 shows the
division of main storage.

The fixed area, located in the lower portion of main storage, contains the resident portion of
the control program, and control block~ and tables used by the system. The size of the fixed
area depends on the number of partitions established by the user, and the control program
options selected at system generation.

System
Queue
Area

. (SQA)

Additional
SQA

2K Boundary

Partition
(n-O

Partition 0

~~----------------------------~v~--------------------------~A~----__ ----~v High Addrp:v

Fixed Area Dynamic Area

. legend: c=J Required Portion of the Fixed Area

_ Optional Features

n Number of Partitions Generated

Figure I. Main Storage Organization

The MFT system nucleus occupies a fixed area in main storage containing at least 34K
bytes (systems with MCH for 135 require an additional 4K to 8K bytes).

Partitions are defined within the dynamic area, located in the upper portion of main storage,
at system generation. The number of partitions may then be varied within the number specified
at system generation, and the sizes and job classes of partitions may be redefined at system
initialization or during operation. Each partition may be occupied by a processing program, or
by control program routines that prepan job steps for execution (job management routines),
or handle data for a processing program (access method routines).

Section I: The MFT Control Program 21

Page of GC27-6939-10
Revised April 16. 1973
By TNL: GN28-2546

Provided the total number of partitions does not exceed 52 and enough computing system
resources are available, MFT provides for the concurrent execution of as many as 15 problem
programs, 3 input readers, and 36 output writers, each in its own fixed partition of main
storage. The MFT system provides for task switching among the tasks operating in the
partitions, and between those tasks and the communications task and master scheduler task in
the system area.

Fixed Area

The fixed area is that part of main storage into which the nucleus is loaded at IPL. The
storage protection key of the fixed area is zero so that its contents can only be modified by
the cuntrol program. The fixed area also contains two transient areas into which certain
nonresident routines are loaded when needed: the SVC transient area (1.024 bytes) and the
I/u supervisor transient area (1024 bytes). These areas are used by nonresident SVC routines
and nonresident I/O error-handling routines, respectively, which are read from SYS1.SVCLIB.

Each transient area may contain only one routine at a time. When a nonresident SVC or
error-handling routine is required, it is read into the appropriate transient area. The transient
area routines operate with a protection key of zero, as do other routines in the fixed area.

System Queue Area: The system queue area (SQA) is a protected' area in the nucleus. It
contains ENQ/DEQ control block and command scheduling control block (CSCBs). In
addition, if the communications tas)c cannot obtain wro buffer space, SQA is used.

The size of the system queue area is initially established at system generation (via the
SYSQUE parameter of the CTRLPROG macro instruction).

In a system that has MFf with subtasking, the system queue area also contains task related '
control blocks for each active subtask. In this case, the size of the system queue area is
determined by the number of partitions and the number of subtasks that can be concurrently
active. The size of the system queue area, established during system generation, should be
retained.

The system queue area (SQA) is established by NIP adjacent to the fixed area and provides
the main storage space required for tables and queues built by the control program. The SQA
must be at least 1600 bytes for a minimum two-partition system. Its storage protection key is
zero so that it can be modified by control program routines only. Data in the system queue
area indicates the status of all tasks.

I In a system with the storage protection feature, there is, as Figure 1 shows, additional SQA
space between the resident SVC area and the next higher 2K boundary.

Dynamic Are~

Figure 2 shows how the contents 01 each partition in the dynamic area are organized and how
they are related to the rest of main storage.

Job management routines, processing programs, and routines hrought into storage via a LINK,
A IT ACH, or XCTL macro instruction, are loaded at the lowest available address. T~e highest
portion of the partition is occupied by the user parameter area and user save area. The next
portion of the partition is occupied by the task input/output table (TIOT) which is built by a
job management routine (I/O Device Allocation routine). This table is used by data
management routines and contains information about DD statements.

22 MFT Guide (Release 21.7)

Resident Portion of the Control Program

Non-Resident SVC Routines SYS 1. NUCLEUS

~~ .. ~ .. ~ .. ~~ ~~--
,.,- I/O Error Handl ing Routines I

Processing
Program

or
job
Management
Routine

Non-Resident
Control Program
Routines or
Processing Program

Routines
Brought
In Via
LINK,
ATTACH,

and
XCTL
Macro
I nstructi ons

SYS 1. SVCLlB

SYS 1. LI N K LI B

Available
Main
Storoge

--

.....

Partition

Access
Method

Access
Method
Routines

nOT

Routines,
and

Routines
Brought
In
Via
LOAD
Macro-
Instruction

User User
,Parameter Save
Area Area

(Typical for Each)
//

/
/

SVC
Transient
Area

105
Transient
Area (Lowest

Priority
Partition)

/
/ High Address

(Highest
Priority
Partition)

\ !
~~

~------------------~~------------------~--------~ ~--------~------------------~------------------~ Low Address P(n-I) PI PO
~ ____ ~ __ ~y~ __________ ~J\~ __ ~yr-__ ~

Fixed Area Dynamic Area

n = number of partitions generated

Figure 2. Division of Main Storage

Section I: The MFT Control Program 23

Each partition may be used for a problem program as well as for system tasks (readers,
initiators, and writers). When the control program requires main storage to build control, blocks
or work areas, it obtains this space from the partition of the processing program that requested
the space. Access method routines and routines brought into storage via a LOAD macro
instruction are placed in the highest available locations below the task input/output table.

Working storage and data areas are assigned from the highest available storage in a
partition.

System Input Reader Partitions

MFT allows the user to specify as many as three resident reader partitions. The size of the
reader used in the system is the same size as the job scheduler specified at system generation.

A partition is designated at system generation to contain a resident reader by assigning ItR"
in place of the problem program job class identifiers. For example, to establish 0 a resident
reader in partition the PARTITNS macro instruction would be coded as: PO(C-R,S-30K). (For
a description of this macro see "PARTITNS Macro Instruction" in Section III.) To establish a
resident reader after system initialization, the partition's job class identifiers are replaced by
"RDR" in reply to the message IEE802A "ENTER DEFINITION". (In a listing of partitions,
"RDR" will appear in place of the job class identifier(s) for a resident reader partition.) It is
unnecessary to establish a resident reader partition if transient readers will be used. (See
"Input Readers" in this section.)

Problem Program Partitions

MFT permits up to 15 partitions to be specified for problem programs. Each partition may
have up to three job class identifiers; more than one partition may be assigned to service the
same job class(es). Problem program partitions must be at least 8K in size, and at least one of
the partitions should be the size of the scheduler. (If a resident reader partition is not
established, at least one of the problem program partitions must be the size of the scheduler.)
This partition should not be used for processing a long-duration or unending job, such as
telecommunications or graphics, if it is the only large partition in the system.

Large problem program partitions may also be used by the scheduler (if it has work to do),
by a transient input reader, or by a non-resident output writer.

Problem programs run concurrently with system readers and writers. When a problem
program in a large partition is terminated, a scheduler is brought into that partition to initiate
or terminate a small partition, to start a reader or writer in the partition, or to retrieve another
job from the input work queue for the appropriate job class(es). Control is then given to the
appropriate task; e.g., if a problem program is retrieved from an input queue, control is given
to the program for execution.

For example, in Figure 3, P4 is assigned job classes E, D, and A. If a job of class E has just
been terminated, and no small partition has requested scheduling, the initiator first searches the
job class E input work queue. If no class E jobs exist, the initiator searches for job class D
jobs; if no class D jobs exist, the job class A input queue is searched. If all three queues are
empty, the partition remains dormant until it is used by the initiator to schedule small
partitions, PI, P2, or P3, or until another job with class E, D, or A is read into the system and
scheduled.

Whep. a job in a small partition has finished executing, the small partition remains dormant
until a large partition is free to terminate it, and to' initiate a new job into it.

24 MFT Guide (Release 2 t .0)

/
I
~

) As many as 14 small problem program partitions may be defined. Efficient use of small
partitions is achieved through associating one or more job classes with each. Thus, jobs whose
main storage requirements are small can be directed to small partitions for execution. Small
high-priority jobs can be accommodated by defining a small partition in the upper portion of
main storage. This partition might then be assigned a primary job class reserved by the
installation for critical jobs. By assigning secondary and tertiary job classes, the partition need
not remain idle when there is no critical work. By defining a small partition, only the necessary
amount of main storage is set aside for such work.

System Output Writer Partitions

A resident writer partition may be as small as 10K plus the size of the input and output
buffers. (See "Output Writer Partition Size Requirement" in the Considerations section.) The
size of the writer depends upon the output buffer space necessary; Le., if blocked output is
used, the size of the partition must be increased by the logical record length times the blocking
factor. MFT provides the capability of running as many as 36 system output writers
concurrently with problem programs and system input readers.

At system generation, a resident writer partition is established by writing "w" in place of
the problem program job class identifier(s). After system initialization, it is established during
partition definition by replacing the job class identifier(s) with "WTR". No other task can
operate in this partition unless the partition is assigned a problem program job class through
partition redefinition. Each writer can accommodate as many as eight output (SYSOUT)
classes and can share output classes with other writers. (See "Output Writers" in this section.)

Direct System Output Writer Partitions

Direct system output writers can operate in small qr large partitions. However, to control the
writing of a job's output, the direct system output writer must be operating in the same
partition as the job; also, the job's class must be an eligible job class. An eligible job class is
one that has been assigned to the direct system output writer when the writer was started.
Direct system output writers can handle up to eight different job classes.

Extending Main Storage

Main storage can be extended by including IBM 2361 Core Storage Units in the system. Figure
3 illustrates the IBM 2361 Core Storage Unit. There are no unique instructions used in
programming IBM 2361 core storage. It is simply an extension of IBM 2050, 2065 or 2075
Processor Storage (proc~ssor storage) units; that is, the address of the first byte of core
storage is one address higher than that of the last byte of processor storage.

With Main Storage Hierarchy Support for IBM 2361 Models 1 and 2, main storage is
divided into two blocks called hierarchies. Main storage comprises (1) processor storage, which
is referred to as hierarchy 0, and (2) IBM 2361 Core Storage, which is referred to as hierarchy
1. At system generation, a partition can be generated entirely within either hierarchy ° or 1, or
it can span hierarchies ° and 1. The exception to this is that system tasks (readers and writers)
can only be generated in either hierarchy ° or 1. (In using storage hierarchies on a Model 50,
however, if a reader or writer is placed in hierarchy 1 or if a program containing CCWs for
direct access devices is loaded into hierarchy 1, overrun will occur, thereby degrading the
performance or resulting in an uncorrectable input/output error.)

Section I: The MFT Control Program 25

PIP
PO Segment #2

300K

PIP
P2 Segment #1

200K

PIP
P4 Segment #2

240K

Writer
12K

P6

PIP
P7 Segment #1

90K

PIP
P8 Segment #1

94K

PIP
P9 Segment #1

88K

PO
PIP

Segment #1
50K

P1 Reader . 46K

Writer
14K

P3

PIP
P4 Segment #1

86K

P5 Writer
12K

Nucleus
48K

~

~

~

~
~

~

~

~

~

~
~

~

Hierarchy 1
(IBM 2361 Core Storage)

Hierarchy 0
(Processor Storage)

Figure 3. Sample 256K Batch System Configuration With 1024K IBM 2361 Core Storage Unit

26 MFT Guide (Release 21.0)

(

)
For example, in Figure 3, partitions PI, P3, and P5 contain only one segment and are

generated in processor storage. P2, P6, P7, P8, and P9 contain only one segment and are
generated in IBM 2361 Core Storage. PO and P4 are two-segment partitions with a partition
segment in each hierarchy. For a complete description of partition establishment in IBM 2361
Core Storage, see the System Generation publication.

Each partition established during system generation is described by a boundary box. The
first half of the boundary box describes the processor storage partition segment and the second
half describes the core storage partition segment. Any partition segment not assigned main
storage in the system has the applicable boundary box pointers set to zero; if a partition is
established entirely within pierarchy 1, the processor storage pointers in the first half of the
partition's boundary box are set to zero. If a partition segment is not generated in core
storage, the core storage pointers in the second half of the partition's boundary box are set to
zero. If core storage has been included in the system, but is offline, the second half of the
boundary box will contain zeros.

Sequence of Operation

To illustrate how MFT works, a sample sequence of operation is described below. (For an
overview of the processing performed by various components of the control program, refer to
the first part of Section V: Logic Summary. The second part describes how the dynamic area
of main storage is prepared by the master scheduler task after completion of the nucleus
initialization program.) In the job stream shown in Figure 17, the following CLASS parameters
appear on the JOB cards:

1. CLASS=N
2. CLASS=D
3. CLASS=L
4. CLASS=J
5. CLASS=M
6. CLASS=C
7. None
8. CLASS=J,PRTY=12
9. CLASS=C

The system is loaded by use of the normal IPL procedure and initializes itself by use of the
nucleus initialization program (Figure 4). After system initialization, the contents of main
storage are as shown in Figure 5.

Nucleus

Figure 4. Contents of Main Storage After Nucleus Initialization

Section I: The MFT Control Program 27

P4 P3 P2 P1 PO

R

30K 10K 8K 12K 30K

Figure 5. Contents of Main Sto-rage After System Initialization

A c o G M N o

UUUUUUUUUUUUUUU
Figure 6. Input Work Queue After System Initialization

A c o G M N o

UUULJUUUUUUULJULJU
Figure 7. Input Work Queues After First Three Jobs Have Been Entered

The job class identifiers assigned to each partition at system generation are the alphabetic
characters shown in the upper right corner of the partitions. Figure 4 illustrates the input work
queues established at system initialization. When a START command is entered for the reader
in partition 0 (PO), the reader begins reading the job stream and entering jobs into the input
work queues for each CLASS (Figure 7). The START commands for the initiator and writer
are also entered.

The initiator in P4. now schedules the first job (Figure 8). Because N is the primary job
class assigned to P4, the initiator searches the CLASS=N queue first (job 1 has been placed
on the queue by this time), and job 1 is initiated and given control (Figure 9). The reader
continues reading the input stream, placing jobs in· their appropriate queues. Because job 7 has
no CLASS parameter, it is placed on input work queue A (the default job class). Job 8, with a
PRTY parameter specifying priority 12, is placed on input queue J ahead of job 4, unless job 4
has already been scheduled. At this point jobs 1 through 9 have been read and placed on their
appropriate queues (Figure 10).

P4 P3 P2 P1 PO

Figure 8. Contents of Main Storage After ST ART Commands

28 MFT Guide (Release 21.0)

(

P4 P3 P2

Figure 9. Contents of Main Storage After First Job Has Been Scheduled

" PO

Reader
(rudln.lnput atmm)

30K

A COG J M N 0

lJUWlJUUUUUWUlJlJlJU
Figure 10. Input Work Queues After All Nine Jobs Have been Entered

When job 1 has finished processing, a scheduler is brought into P4 to terminate the job, and
to initiate jobs in small partitions P2 and P3. Job 5 is scheduled into P2 (because M is the
primary class) and job 6 into P3. The scheduler now searches input work queue N for a job
for P4. Because the CLASS=N queue is empty, the CLASS=C queue is searched. Job 9 is
waiting on the queue; therefore, it is scheduled into P4. At this point, the contents of main
storage are as shown in Figure 11.

A scheduler enters P4 each time a job terminates in that partition. The scheduler first
checks whether jobs in P2 or P3 need to be terminated. If so, they are terminated by the
scheduler in P4, and new jobs are then scheduled into P2 and P3. This sequence continues
until all jobs have completed proc~sing, or until the system is shut down.

P4

Job 9
(runnln"

30K

P3

10K

Figure 11. Contents of Main Storage With All Partitions Active

Job Processing Under MFT

P2 P1

8K 12K

PO

Reader
(donnant)

30K

This topic briefly describes the operation of the MFT control program during job processing~ The
description consists of:

- Partition Job Class Facility

1

-: Partition Redefinition
Input Readers
Job Initiation and Termination

- Direct System Output Writers
- System Output Writers
- System Restart

Section I: The MFT Control Program 29

I

Partition JDb Class Facility

The partition job class facility allows one or more partitions to be assigned to selected jobs.
During system generation, a partition must be assigned to service each job class that will be
used. These assignments may be modified later4 (See "Partition Redefinition H in this section.)
Each problem program partition may be assigned as many as three job classes designated by
the alphabetic characters A through O. These job class designations have no inherent meaning;
they can be used to denote any job characteristic, which would influence the choice of
partitions for the job, meaningful to the installation. More than one partition may be assign.ed
to service the same job class(es). In Figure 12, P3 is assigned to job classes C, J, and A; r4 is
assigned to N, C, and D. These partition job class identifiers are used by the system to .
determine which input queue is searched first by an initiator servicing a specific partition. (See
"Problem Program Partitions" in this section.) The sequence in which jobS are selected from
each input work queue is determined by the PRTY parameter. (See "Enqueuing Jobs by
CLASS and PRITt in this section.)

P4 P3 P2 P1 PO

PIP PIP PIP Writer Reader-
30K 10K 8K 12K -

Figure 12. Sample Five-Partition Configuration

The assignment of partition(s) in which a job executes is controlled by using the CLASS
parameter on the JOB statement. The format' of this keyword parameter is:

CLASS=job class

where job class is the alphabetic identifier (A-O) assigned to the job. If this parameter is
omitted from the JOB card, a job class of A is assigned by the system. Any of the 15 job
classes may be used, provided at least one partition has been assigned to each of the classes
specified. When a job class for a particular job is designated (by the CLASS parameter), the
job is executed only in a partition that has been assigned to service that class. If more than
one partition is assigned to service that job class, the job is executed in the first available
problem program partition. A typical JOB card may be specified as follows:

//JOBPAY JOB 661,'JDOE' ,CLASS=C,PRTY=12

In the configuration illustrated in Figure 12, this JOB card causes the job to execute in
either P3 or P4, whichever is available first.

30 MFT Guide (Release 21.0)

R

\

Partition Redefinition

Partition redefinition allows the operator to change, the number of partitions, their size, and
their job classes at any time after initial program loading (IPL). Adjacent partitions may be
combined to accommodate jobs with large storage requirements; these partitions may be
reestablished subsequently (within SYSGEN limits) when the need for a large partition has
passed. Job classes assigned to a partition may be changed also, to accommodate changes in
the work load for one or more job classes. Reader and writer partitions may be respecified as
problem program partitions and assigned to service jobs from as many as three job classes. Problem
program partitions may be respecified as reader or writer partitions by assigning RDR or WTR
in place of the problem program job class.

In addition, if the time-slicing feature is included in the system, the number of time-slicing
partitions can be decreased or irlcreased, within system generation limits, the range of the
highest and lowest partition numbfr to be time-sliced can be changed, or the amount of time
to be allotted to each task can be modified. All time-slicing attributes may also be canceled.

Partition redefinition is invoked in either of two ways, depending on whether it is to be
invoked during or after system initialization. At system initialization, the partition configuration
may be changed by replying "YES" to message IEE801D "CHANGE PARTITIONS?".
Alternatively, partition redefinition may be invoked after system initialization by entering the
operator command, DEFINE. The format of this command is shown in the Operator's Reference
publication.

Note: The DEFINE command cannot be entered through the input stream.

Partition Combination

Adjacent partitions may be combined as soon as their jobs have been terminated. If an
unending job is being executed in a partition that is to be combined with an adjacent partition,
the unending job must first be terminated with a CANCEL command. All other partitions that
are to be conbined, including readers and writers, are made quiescent by the system as soon as
their current tasks are completed. Any number of adjacent partitions may be combined. For
example, in Figure 12, P2 and P3 may be combined into one larger partition of 18K.
However, P2 and P4, and PI and P3, may not be combined. When P2 and P3 are combined,
the new configuration is as shown in Figure 3. P2 or P3 may be made the inactive partition.
When P2 and P3 are combined, the job classes to be serviced by the new partition (P2) must
be determined. If no change in job class(es) is specified, the classes currently being serviced by
P2 remain as the job class assignments of the new partition. (See "Identity Change" beloW.)
The inactive partition (P3) is made nondispatchable until it is recovered.

With the optional storage protection feature attached to the system, a unique protection key
is available for each problem program partition. A list is kept of each available key for
subsequent reassignment to combined or recovered partitions. When partitions are combined or
recovered, the first available protection key on the list is assigned to them.

Note: With systems having the protection feature, storage assignment increases through
partition redefinition should be made in increments of 2K bytes. If they are not, the system
rounds the value to the next 2K increment.

Section I: The MFT Control Program 31

P4

PIP

30K

Figure 13. Partition Configuration After Combination

P4

PIP
30K

Figure 14. Partition Identification After Combination

Identity Change

P2

P2

P1

P1

PO

ReadJr

301(

PO

Reader
30K

Partition redefinition also allows the job classes specified at system generation or at system
initialization to be changed. Problem program partitions may be redefined either as readers (by
entering RDR) or as writers (by entering WTR). Reader and writer partitions may be changed
to problem program partitions to service as many as three problem program job classes. When
partitions are combined or recovered, the job class(es) that will be assigned to the resulting
partitions must be determined. In Figure 13, P2 and P3 were combined into the larger partition
P2. However, the original partitions each had three job classes. Therefore, the decision must
be made whether to choose new job classes or some combination of the six old classes. For
example, P2 could be assigned job classes C, A, and M, or a new job class could be specified,
such as O. A new configuration is illustrated in Figure 14. If a new job class identifier(s) is
not included during partition combination, the job class(es) originally assigned to the partition

. which remains active is unchanged. As a result, some jobs already enqueued on the input
queue may not have a partition assigned to service them.

Partition R~covery

Partitions that were combined may be reestablished, or recovered. In Figure 13, P3 is now
inactive, but is to be recovered. Once again the decision must be made as to which job classes
will be assigned to both P2 and P3. P2 and P3 need not retain their original size, nor their
previous job classes. Figure 15 shows a possible new configuration with P3 recovered.

Note: When recovering partitions, a job class(es) must be specifIed for the partitions being
recovered, since only the clirrently active partition has a job class(es) assigned.

32 MFT Guide (Release 21.0)

(

/
\

\,

P4 P3

PIP PIP
30K 10K

Figure 15. Partition Configuration After Recovery

Partition Definition Processing

P2 P1

PIP Writer
8K 12K

PO

Reader
30K

R

As shown in Figure 16, when the operator enters either DEFINE or the reply "YES" to the
"CHANGE PARTITIONS?" message, the system requests that the definitions be entered. If
"LIST" was specified, the system lists the current partition configuration, including the
time-slicing specifications, if this feature was chosen. (The operator must remember to
CANCEL all affected unending jobs before redefining the system. If he does not, the new
partition definitions do not take effect.) After definitions are entered, the system checks their
validity and also inhibits scheduling subsequent jobs into the affected partitions. The system
will stop any active direct system output writer in the affected partition. When the current jobs
have been terminated, the new definitions are implemented. Section III contains operating
considerations associated with partition redefinition. For a complete discussion of partition
redefinition, see the Operator's Reference publication.

Section 1: The MFT Control Program 33

At System
Initial ization

YES

System requests
new definitions
be entered

If 'LIST' was
specified, the
current definitions
are listed

,

Operator enters
new definitions

System checks
that portiti ons
are adjacent and
sizes are correct

System quiesces all
affected partitions;
performs definition

Figure 16. Partition Definition Processing

34 MFT Guide (Release 21.0)

After System
Initial ization

DEFINE

(

)
Inpllt Readers

MFT allows as many as three input readers to read and analyze input streams. Each reader
executes concurrently with problem programs and writers in other partitions. A reader executes
in any problem program partition (transient reader) or previously defined reader partition
(resident reader) large enough to accommodate it. Input stream data for the step being read is
transferred to direct access storage, where' it is. held until execution of the associated job. The
problem program retrieves the data directly from the storage device. Multiple input stream data
sets are permitted within job steps. A card reader, magnetic tape unit, or di ;~(storage device
unit may be specified as the input. dev.ice. Figure 17 illustrates a job stream on cards.

2111 22'tZl~:1 2llt2~22l 2?~222~ ?J.2?~22?22 22Z1 ?l2?11 (?1~1211?~(]:?;('~:(?1?~1

33:S~Jil t Jtl3l13ll3 l3i'l]1 :ill ~l3 33 SJ4 3lS::: SJ~~lLd3~S1~J3:L~Ld3~JS4,.1

.""'4~444{'(4,H;4 4:H.¢'t44 .f4~~4 444~4'A~4' 4·Hi41,~4!~Lq~q~4}.~4~~~*.:~$..!~L~{4!§U4

~ S~ ~~!t~S~~ i5~ ~~~~,5~~ ~55ii~$ sa 55 ~ :. ~~~~!; a). ~~ ~4 5 ~ ~~, a S(~ $:; ~" ~ 55 ~ j a" ~ ~ j ~) ~ ~ ~ ~ ~ ~ &

"$.' &'S&5~G' e~t!~S'$§&ti~tHGa£;*~£~tI'G ~f.lqH$!He!; t~6::~6:b lHCi(,ei;t&~~~&~!;P;\H,;"q,

Figure 17. Input Job Stream

A START command is entered to activate the reader. As the input stream is read,
statements are analyzed as shown in Figure 18. If the statement is Job Control Language
(JCL), it is scanned, and keyword and positional parameters are de~rmined. If errors are
found (e.g., no programmer's name, invalid continuation card, invalid parameters), control is
passed to a routine which prints error messages on a system output device. The remaining JCL
statements are analyzed and any further error messages are written out. The- job is then run
out and must be reentered in the input stream with the correct JCL. If no error is found, JCL
statements for the entire job are converted to control tables and entered in the input work
queue corresponding to the CLASS and PRTY parameters specified on the JOB statement.· (See
"Enqueuing Jobs by CLASS and PRTY" in this section.)

If the statement is data, it is transferred to direct access storage where it is retrieved by the
problem program. Command statements in the input stream are passed to the master scheduler
for processing. When end-of-file (EOF) is reached, or a STOP command is issued, control is·
passed to the communications task to issue the READER CLOSED message.

Section I: The MFf Control Program 35

Resident Readers

A resident reader partition is established by assigning "R" to a partition at system generation,
or "RDR" during redefinition, in place of the job class identifier.

The resident reader in Figure 1 0 would be started by the following START command:

START RDR.PO,devicename

This reader can be stopped only when the job stream input device reaches end-of-file, or by
the STOP command:

STOP RDR.PO

If a resident reader is used, input to the reader can be blocked. However, the size of the
resident reader partition must be increased if the input is/to be blocked. (See "Reader Partition
Size Requirement" in the Considerations section for reader partition size information, and
"Blocked Input" for information related to blocked and unblocked data.)

Note: "RDR" and "WTR", and "DSO" are used throughout the text as names of standard
reader and writer cataloged procedures. See "Choosing the Reader Procedure" in Section III for
information on the IBM-supplied reader procedure to use. (Cataloged procedures are explained
in Section in the IV and Job Control Language Reference publication.)

Transient Readers

A transient reader operates in a problem program partition until it reads a job for that
partition's, or a small partition's, job class(es). At that time, the reader's work areas are saved
on direct access storage, and control is passed to the initiator to schedule the job into the
partition. When the job has been terminated, and no further jobs require the partition, the
reader's work areas are restored, and the reader resumes execution.

If a transient reader is started in a specific partition by including the partition assignment in
the START command, it always resumes operation in the same partition when there are no
more jobs on the queue(s) that the partition is assigned to service. This type of transient
reader is referred to as user-assigned and is started in the same manner as the resident reader.

An "s" may be substituted for the partition assignment in the START command, allowing
the system to place the reader in the first problem program partition of sufficient size that has
no work enqueued on any of the queues that the partition is assigned to service. This type of
transient reader is referred to as system-assigned and is started with the following command:

START RDR.S,devicename

Resident and transient readers may operate in the same system, provided no more than one
system-assigned transient reader is specified, and the total number of readers does not exceed
thr\!e.

Note: Blocked input (from tape or disk) to a transient reader is not permitted. (See "Blocking
Input" in Section III.)

Hierarchy Support: If main storage hierarchy support is included in the system, the transient
reader can be placed in either hierarchy 0 or hierarchy 1, depending on the following
conditions:

36 MFT GuidefRelease'21.0)

(

I

'"

)

COMMUNICATIONS TASK

Print Message:
READER CLOSED

CONSOLE DEVICE

Figure 18. System Input Reader Processing

ERROR ROUTINE

Print error messages
Run-out job

MASTER SCHEDUL ER

Process Commands

Section I: The MFT Control Program 37

• If a partition is defined only in one hierarchy, and is at least the size of the reader, the
transient reader is placed in that hierarchy.

• If a partition is defined in both hierarchies, and hierarchy 0 is large enough to contain the
reader, it is placed in hierarchy O. However, if hierarchy 0 is not large enough for the
reader, the reader is not placed in either hierarchy, regardless of the size of hierarchy 1.

Examples:

HO=OK,H 1 = 50K -.- the reader is placed in hierarchy

HO=44K,Hl = lOOK -- the reader is placed in hierarchy 0

HO= 10K,H 1 =200K -- the reader is not placed in either hierarchy

• If a Model SO is being used, and a reader is placed in hierarchy 1, overrun will occur.

Enqueuing Jobs by CLASS and PRTY

Each job read by system input readers is converted into tables that are placed in the queue
specified by the CLASS parameter. Jobs are entered into the input work queues for each class
according to the PR TY parameter (PR TY values range from a low of 0 to a high of 13). One
input work queue exists for each of the 15 job classes. Jobs having the same class and priority
are placep in the queue first-in/first-out (FIFO). When the input work querte for a job class
contains one or more jobs, termination of a job in any partition assigned to service work for
that job class is followed by selection of the next highest-priority job from the input queue. Selection
and initiation of the new job does not require operator intervention.

For example, if CLASS=D, PRTY = 12is specified on the JOB statement, the job is placed
on the input work queue for job class D, behind any previously enqueued PRTY = 12 jobs, but
ahead of all other jobs of lower priority.

The PRTY parameter applies only to'initiation priority, not to dispatching priority.
Dispatching priority governs which job should be given control of the CPU. In MFT,
dispatching priority is derived from the relative position of the partitions: PO has highest
priority, PSI lowest.

The dispatching priority of a task is determined from the relative position of the task control
block (TCB) on the dispatching queue. (The dispatching queue is the chain of TCBs indicated
by the TCBTCB fields.) If the MFT system does not have the subtasking option, all TCBs are
established in the nucleus at system generation. Their order provides a dispatching priority
starting with resident system task TCBs, through the job step task TCB of the highest priority
partition (PO), to the successively lower priority partitions' TCBs (PI-P51). Control of the
CPU is given to the program represented by the highest-priority ready TCB.

If the MFT system has the subtasking option, TCBs established at system generation in the
nucleus represent the resident system tasks and the job step task of each partition. However,
each job step task can attach subtasks, each of which will have a TCB located in the system
queue area. The dispatching priority is initially the same as the partition's priority. The
dispatching priority becomes different than the partition's priority when a job step task issues a
CHAP (change priority) macro instruction to change its dispatching priority. If dispatching
priorities are not changed, each partition's job step task is dispatched before its subtasks,
which are then dispatched in the order in which they were attached. When all of a job step's
subtasks have been dispatched, the job step task of the next lower priority partition can be
dispatched.

38 MFT Guide (Release 21.0)

(,

'I

(
\
\~

) Note: If no PRTY parameter is specified on the JOB card, the job is assigned (he default
priority specified in the reader procedure.

If the time-slicing feature was specified at system generation, the effective dispatching
priority of a group of time-sliced partitions can be altered. Time-slicing allows the user to
establish one group of consecutive partitions in which the task in each of the partitions is
assigned a uniform interval of time to retain control of the CPU. When the allotted time has
elapsed, the next lower-priority ready task gains control of the CPU for its allotted time. This
process continues until either all tasks are waiting and completed, or until a task of
higher-priority becomes ready.

Job Initiation and Termination

The job scheduler contains the initiation, allocation, and termination portions of the control
program. As illustrated in Figure 19, the job initiation portion selects jobs from input work
queues and determines which type of output writer to use for each output class. As each
problem program is executed, it retrieves its input (SYSIN) data from the direct access device
where it was previously stored by the system input reader. (Note that this retrieval takes place
at direct access speeds, which is faster than reading input data directly from a card reader.)
Durin.g problem program execution, output data directed to an output class is recorded on a
direct access device, or written directly to the output device depending on the type of output
writer selected.

Jobs are scheduled for execution according to:

1. Their job class identifier.
2. Their priority within the job class queue.
3. An available partition corresponding to the appropriate job class.

When a job is complete, the scheduler performs the required termination and informs a
system output writer that the data produced by the problem program is ready to be written on
the specified device.

Job Initiation

To schedule a job, the system places an initiator in an available partition. The initiator selects
a job from the input work queues established by the system input reader, allocates devices for
it, selects an output writer and, schedules it for execution. The initiator operates in any
scheduler-size problem program partition. Small partitions are scheduled by an initiator
contained in a large partition. Initiators obtain jobs for partitions based on the job classes
assigned to the partitions, and the priority of the jobs within the job classes. The jobs are then
scheduled for execution. An initiator can be given control during system initialization, or after
a job has been terminated.

An initiator first checks whether a small partition needs scheduling. If the small partition has
requested scheduling, a job requiring that partition is scheduled into it. The initiator then
schedules the next available job into its partition and passes control to the first step of that
job. When system output writers are used, output data sets are placed on direct access storage
devices while the job is being processed. The output data sets are enqueued by output class
and subsequently retrieved by system output writers.

Section I: The MFf Control Program 39

DATA DATA

COMMANDS

MESSAGES I
I ,

MASTER MESSAGES
SCHEDULER and
COMMUNICATIONS
T AS K 1-4--"------,

PROCESSING
PROGRAM

MESSAGES

Figure 19. The MFT System

Job Termination

INITIATE

MESSAGES TERMINATE

L--_~ INITIATOR/
TERMINATOR

WORK QUEUES

OUTPUT
WRITER

DIRECT
SYSTEM
OUTPUT
WRITER

DATA
DEFINITIONS

The termination portion of the control program dete"rmines first whether step termination or job
termination is to be performed. Step termination includes disposing of data sets, de allocating
input/ output devices, processing condition codes, and executing an accounting routine. If the
job contains additional steps, control is returned to the initiator to schedule the next job step.
Job termination is performed after the last step of a job has been terminated. An accounting
routine is executed and data set disposition and input/output de-allocation that could not be
done at step termination are completed.

If the job used direct system output writers, its output was written directly to an output
device or devices: no intermediate device had to be used and no output work is enqueued.

40 MFT Guide (Release 21.0)

(

,I

\

) If the job used system output writers, its output is entered in the output work queue for
processing by the system output writer. Output work queue members are enqueued within
output class according to the PRTY 'parameter on the JOB card. Jobs having the same output
class and priority are placed in the· queue on a first-in-first-out (FIFO) order. For example, if a
single output class is specified for system messages and all output for a particular problem
program, the output work queue for that class includes, at job termination:

1. All system messages produced at job initiation, such as allocation messages.

2. All problem program output.

3. All system messages produced during job termination.

This output is transferred to the specified output device in the order shown. Different types
of output, such as system messages and problem program data, are never intermixed. Control
is then returned to the initiator for scheduling of a new job.

Data sets for a job are enqueued on the output work queue according to output class and
priority, so that they can be written by an output writer. These data sets may include data sets
produced during a job step, as well as control program messages. Depending on its characteristics
and the way it is to be processed by the control program, a data set may be assigned to any
one of 36 output classes (A-Z, 0-9) defined at an installation. A particular output class may
reflect such characteristics as priority of the data, type of device to record it, or location or
department to which it is to be sent. (See "Choosing Output Classes" in Section III.)

Direct System Output Writers

Direct system output writers are a job scheduler function. They enable a job's output data sets
to be written directly to an output device during execution of the job. They write problem
program and system messages, produced by the initiator/terminator, directly to system output
devices. Valid output devices are: printer, punch, and magnetic tape.

Direct system output writers operate in large or small problem program partitions. As many
writers can operate in a partition as there are devices available. Each writer must be assigned
to only one device and can process one system output class. Problem program output can be
handled by a direct system output writer if the job class of the problem program is an eligible
job class and the problem program is executing in the same partition as the writer. When the
problem program writes its output, the output will go directly to the output device assigned to
the direct system output writer. System output writers can handle as many as eight different
job classes; each of the job classes must be specified in the START command. For example: if
the operator enters the command,

START DSO.P3,283,,(JOBCLASS=ABC,
OUTCLASS=B)

any job running in partition 3 with a jobclass of A, B, or C and an output class of B will have
its output written directly

The job class and output class of a direct system output writer can be changed by use of
the MODIFY command. For example: if the operator enters the command,

MODIFY 283,JOBCLASS=DE,OUTCLASS=A

Section I: The MFT Control Program 41

any direct system output writer writing to output device 283 will process jobs with a jobclass
of D or E, and an output class of A.

Direct system output writers can be stopped by a STOP command.

A user-supplied DSO procedure may be used, but it must execute the IBM -supplied direct
system output writer.

System Output Writers

System output writers are IBM-supplied or user-written programs that retrieve problem
program output from temporary direct access storage, and transcribe it to the device specified
by the problem programmer. This device is specified on the SYSOUT parameter on the DD
statement describing the output data set. The temporary data sets may be written on any direct
access storage device except the IBM 2302 Disk Storage Unit; i.e., the valid devices are:

• IBM 2301 and 2303 Drum Storage.

• IBM 2305-1 and 2305-2 Fixed Head Storage Units.

• IBM 2311 and 3330 Disk Storage Drives.

• IBM 2314 and 2319 Direct Access Storage Facilities.

Up to 36 system output writers can be established. Each writer operates independently in its
own partition concurrent with the execution of other system tasks and problem programs.
MFT provides the same output writer services as MVT. Each system output writer can handle
as many as eight different output classes; more than one writer can service the same output
class. As many as 14 non-resident writers may be started if the total number of resident and
non-resident writers does not exceed 36. Non-resident writers operate in the same way as
resident writers, except that they are executed in problem program partitions.

When a job is terminated, system messages and output data are enqueued in the appropriate
system output queue. One system output queue exists for each output class. Queues are
serviced in the order specified in the ST ART command. These classes override those in the
writer cataloged procedure. The writer dequeues the first entry from the primary queue. If
there are no entries in the primary queue, the writer dequeues the first entry in the secondary
queue. This continues through the eighth queue, or until the writer finds work.

For example, to start a writer in PI (see Figure 10) to process six output classes, the
operator could enter the following command:

START WTR.Pl,OOE"ABCDEF

(The comma before output class A replaces the positional parameter, volumeserial.)

The writer first processes all the output from output class A. When the queue for class A is
empty, the writer processes class B. When the output class B queue is empty, the writer again
searches the class A queue. If no output has been enqueued for class A, the writer now
searches the output class C queue. The writer continues processing in this manner until the
following STOP command is entered:

STOP WTR.Pl

42 MFT Guide (Release 21.0)

(

/

.""

) If no work is enqueued for any of the classes assigned to an output writer, the writer is
placed in a wait condition until a job is terminated that has system messages and/or system
output data sets for one of the writer's classes. When the last record in a queue entry has been
processed, the writer deletes the entry before dequeuing another entry.

Writer tasks are performed concurrently with other writer tasks, readers, and problem
programs. A writer task is terminated only when the operator issues a STOP command. The
MODIFY command can be used to change a writer's classes. (See "Changing Output Classes"
in the Section II.)

If a resident writer is established at system generation, "w" is assigned to the partition, in
place of the problem program job class. No other work is performed in the partition unless its
identity is changed through partition redefinition. Resident writers operating in small partitions
are scheduled by a scheduler-size partition, when the large partition is available for scheduling
duties. (See "Job Initiation and Termination" in this section.) After a writer is started, no
other scheduling services are necessary until a STOP writer command is entered. At that time,
a scheduler in a large partition terminates the writer.

Writers that operate in problem program partitions (non-resident writers) are brought into a
problem program partition of sufficient size (at least 10K plus the input and output buffer
sizes) by a START command which specifies that partition or contains an "s" for a
system-assigned writer. A syst~m-assigned writer does not leave its partition, as does a
system-assigned reader. The writer operates in the partition until a STOP command is entered.
At that time, the scheduler may initiate a problem program in the partition.

A user-written output writer procedure may also be used. This procedure may execute a
user-written writer program or the IBM-supplied writer. If a user-written writer procedure is
used, it must be placed in SYS1.PROCLIB and named in the START command. For example,
if a user-written output writer procedure called USERWRIT is to be started in P3, the
following command would be used:

START USERWRIT.P3,OOE

Hierarchy Support: If main storage hierarchy support is included in the system, the non-resident
writer can be placed in either hierarchy 0 or hierarchy 1, depending on the following
conditions:

• If a partition is defined in only one hierarchy, and is at least the size -of the writer, the
non-resident writer is placed in that hierarchy.

• If a partition is defined in both hierarchies, and hierarchy 0 is large enough to contain the
writer, it is placed in hierarchy O. However, if hierarchy 0 is not large enough for the writer,
the writer is not placed in either hierarchy, regardless of the size of hierarchy 1.

Examples:

HO=OK,Hl=50K -- the writer is placed in hierarchy 1

HO=44K,Hl = lOOK -- the writer is placed in hierarchy 0

HO= lOK,Hl =200K -- the writer is not placed in either hierarchy

• If a writer is placed in hierarchy 1 and a Model 50 is being used, overrun will occur.

Section I: The MFf Control Program 43

(See "System Output Writers" in the Considerations section for additional information on
resident and non-resident writers.)

System Restart

Because it is sometimes necessary to shut down the system (end-of-shift, end-of-day, normal
maintenance, or system malfunction), system restart allows the system to resume operation
without having to reenter jobs that have been enqueued. Information concerning jobs on the
input, hold, and output queues, and jobs in interpretation, initiation, execution, or termination,
is preserved for use when the system is reloaded (see Figure 20). When the system is restal\ted,
the operator receives messages describing the status of each job in the system. If the job wa's
being interpreted, the jobname is written out at the console. If the job was under control of a
scheduler, the jobname and stepname are given. In addition, the operator is told whether
allocation was being performed for the job, or whether the job was being executed or
terminated.

44 MFT Guide (Release 21.0)

(

(
"<I.

)
SET Command

Information rT~essages
are issued for the
operator.

Jobs under
interpretation
are run-out.

Job; on the
input, hold, or
output queues
remain there.

Jobs dequeued from
the input, hold, or
output queues are
run-out.

Jobs under ~
termination continue
to be terminated.

Data sets being written
by an output writer
are reprocessed.

Normal Processing
Continues

Figure 20. System Restart Processing

Invoking System Restart

After the system is reloaded, and after nucleus initialization, system restart may be invoked by
omitting the "F" suffix from the Q=(unitname,"F") parameter of the SET command, or by
omitting the Q= parameter entirely. This is valid only for the initial SET command, and
cannot be done at any other time. This omission indicates to the system that the job queue
data set (SYS 1.SYSJOBQE) already exists in proper format, and requires only initialization.

Section I: The MFT Control Program 45

Jobs That Were Being Interpreted

When the system must be restarted, jobs that were being interpreted are run-out and must be
reentered in the input stream.

Jobs on Input, Hold, and Output Queues

All jobs that were enqueued on their appropriate job class, hold, or output class queues, remain
there for subsequent processing when the system is restarted. No operator action is required.

Jobs That Were Dequeued

Jobs that were de queued from the input and hold queues are run-out and must be reentered -in
the input stream. However, if the entire job (i.e., not job step) was being terminated, the job
does not have to be reentered in the input stream; system restart completes the termination.

With the checkpoint/restart facility, any job that was in step termination at restart time will
be executed starting at the next step of the job, after system restart is complete. Any job that
requested restart will be restarted at the current step, after system restart is complete, if the
following conditions are satisfied:

• The step completed the allocation phase (that is, the phase between allocation and step
termination) .

• System completion code 2F3, designating system restart, was specified as eligible for restart.

• The operator replied yes to the verification request (message IEF225D) to restart the job.

System Output Processing

Output jobs that were being processed by a system output writer are requeued to reprocess
any data sets which had not been written completely at the time the system was shut down.
No operator action is required. All system messages and data sets that had not been processed
are written by the first eligible output writer started.

MFf Features

MFT makes possible the concurrent execution of up to 15 separate jobs within a single
computing system having only one central processor, while continuing to provide all other
applicable services of the IBM System/360 Operating System. Other features of MFT include:

• Independent job scheduling.
• System Management Facilities (SMF)
• Job/step CPU timing.
• Job step CPU time limiting
• WAIT time limiting
• Small partitions (sm~ller than the size of the scheduler).
• Checkpoint/restart.
• Reading of an input stream from an IBM 2311, 2314, 2319, or 3330.
• Concurrent execution of tasks within a partition.

I. Generalized Trace Facility (GTF)

46 MFT Guide (Release 21.0)

/
I
\~

Each feature is described briefly in the following paragraphs.

Extended Multiprogramming Capabilities

MFT extends to 15 the number of jobs that may operate concurrently in the system. Jobs are
scheduled into partitions through use of the CLASS parameter on the JOB statement, in
conjunction with the PRTY parameter. The CLASS parameter may designate one of the 15
available job classes, A-O. With the optional storage protection feature, each of these jobs is
protected from damage by other jobs, and the system areas are protected from damage by
other jobs, and th~ system areas- are protected from all problem programs.

Independent Job Scheduling

All partitions are independent with respect to job scheduling and initiation. Jobs are scheduled
into the first available problem program partition that services the corresponding job class.
Jobs are initiated according to the PRTY parameter on their JOB cards. The operator
intervention and job sequencing requirements imposed by the W AITR macro instruction and
the SHIFT command in the first version of MFT, are eliminated. The W AITR is treated as a
WAIT macro instruction.

System Management Facilities (SMF)

SMF is optional with MFT. SMF collects and, optionally, records system, job management,
and data management information, and provides control program exits to installation-supplied
routines that can periodically monitor the operation of. a job or job step.

SMF is invoked at system generation by specifying TIMER=JOBSTEP in the SUPRVSOR
macro instruction and ACCTRTN=SMF in the SCHEDULR macro instruction. There are two
options for SMF:

• OPT= 1 specifies that only system and job information be collected.
• OPT=2 specifies that system, job, and job step information be collected.

The collected information is written onto data sets resident on either tape or direct access
devices.

Job/Step CPU Timing

The job step CPU timing feature is optional (unless SMF is selected) with MFT. The amount
of time that each job or job step has control of the CPU is calculated by task management
routines. If SMF is selected, this value is passed to the SMF routines, and to a user-supplied
accounting routine if one is provided. If SMF is not selected, the value is passed to a
user-supplied accounting routine.

The job/step CPU timing feature is invoked at system generation by specifying
TIMER=JOBSTEP in the SUPRVSOR macro instruction, and ACCTRTN=SUPPLIED or
ACCTRTN=SMF in the SCHEDULR macro instruction. CPU timings are calculated for each
job step. This value is then passed, along with an accumulated value for the entire job, to a
user-supplied accounting routine for further processing.

Note: The CPU timings include only the active time that the CPU has control of the job step.
It does not include the wait time or the time used by the initiator and terminator for that job.

Section I: The MFT Control Program 47

Job Step CPU Time Limiting

This feature allows the user to specify the maximum amount of time that a job step can use
the CPU. However, if the SMF option is selected and a user exit routine is provided, this
routine can extend the time limit so that processing can continue.

Wait Time Limiting

This feature suspends processing of a job step if the job step remains in a wait state for more
than a established time limit. If the SMF option is selected, the installation can provide a user
exit routine to extend the time limit.

Small Partitions

Small problem program partitions can vary in size from 8K bytes to the size of the scheduler
selected for the system. Small partition scheduling permits jobs to be scheduled into partitions
that are smaller than the size of the scheduler. This scheduling service is provided by a
partition of scheduler size whenever the large partition is available for scheduling purposes.
This can take place at initiation and termination of jobs.

Checkpoint/Restart

The checkpoint/restart facility provides an opportunity to restart a job that terminates
abnormally due to a hardware, programming, or system error. The restart is permitted either_ at
the beginning of a job step or at a checkpoint within a job step. In either case, the restart may
be automatic or may be deferred until the job is resubmitted. For a the checkpoint/restart
facility, see the publication Advanced Checkpoint/Restart.

The checkpoint/restart facility permits a restart either at the beginning of a job step (step
restart) or at a checkpoint within a job step (checkpoint restart). A checkpoint restart is
requested by issuing a CHKPT macro instruction; a step restart by including special parameters
in the job control statements for the job.

In a checkpoint restart, the restart must be executed in the same main storage area as was
used for the original execution. The required main storage must be contained within one
partition. Furthermore, the partition must be a problem program partition; that is, the partition
must not be defined as a reader or writer partition. Restart may also be delayed if a DEFINE
command entered by the operator changes the boundaries of the partition. In a step restart,
there are no such restrictions.

In a system that has MFT with subtasking, a CHKPT macro should not be issued by a
subtask or by a job step task that has active subtasks. For further information, see the
Operator's Reference publication.

Input Stream From Disk

MFT allows the user to establish a disk storage drive (IBM 2311 2314, 2319, or 3330) as a
system input device. Data in the input stream is permitted, including multiple data sets for the
same job step, providing the facility for:

48 MFT Guide (Release 21.0)

\

)
1. Reading input from sequentially organized data sets.
2. Deblocking of blocked input records (resident readers only).
3. Automatically switching volumes if end-of-volume is detected on a data set extending across

volumes, or concatenated data sets are being processed.
4. Starting more than one reader for the same disk storage unit.

MFI' With Subtasking

MFT with subtasking allows the user to have any number of tasks (up to a maximum of
between 196 and 249) executed concurrently within a partition. This option provides the user
with a version of MFT that has:

• An ATTACH function that can create subtasks.
• A DETACH function that removes completed tasks that were requested by the A TT ACH

routine.
• A CHAP function that allows a problem program to change dispatching priorities within the

dynamic area of storage.

For description of MFT with subtasking, see the Supervisor Services publication.

Generalized Trace Facility

The Generalized Trace Facility (GTF) program service assists problem determination and
analysis by tracing system events, user events, or both. GTF records and formats trace data on
tape, direct access storage, or internally in the GTF region. GTF can trace:

• I/O interruptions (including program controlled interruptions), both for event classes or for
an individual device

• SIO operations, both for event classes or for an individual device
• SVC interruptions, both for event classes or by individual SVC numbers
• Program interrrupts, both for event classes or for an individual interrupt code
• External interrupts
• Task switches by the System Dispatcher
• User events

GTF performs a wider variety of tracing operations than the as trace option, as well as the
same operations. Unlike the as trace option, GTF is part of the MFT control program
occupying less than 1000 bytes when inactive and the specfied partition size when active. The
as trace option can be included in a system with GTF; but starting GTF suspends the
operation of the trace option.

GTF has a macro to simulate the System 370 monitor call (MC) instruction. This allows
GTF to be used with System 360 CPUs, and on System 370 CPUs not installed with the
monitor call instruction.

GTF comprises two major functions:

• Generalized Trace Function
• Trace Edit Function

Section I: The MFf Control Program 49

Generalized Trace Function

An operator-issued START command initiates the Generalized Trace function as a system task
in a partition (which must be in hierarchy 0 if the installation uses main storage hierarchy
support). The operator can specify in the START command the:

• Tracing in main storage or for an external device
• Suspension of ABDUMP formatting of trace buffers
• Timestamping recording -- or the time of the occurence of an interrupt -- for every logical

trace record

Once the operator starts the trace task, he replies to the message "SPECIFY TRACE
OPTIONS", requesting the:

• Tracing of event classes
• Tracing of single events
• Immediate termination of GTF on error condition in GTF
• Tracing of user-oriented data events

Parameters for the TRACE keyword can be listed in the SYSl.PARMLIB data set, making it
unnecessary for the operator to issue parameters after starting the Generalized Trace function.

GTF traces an event after recieving control from the interrupt handler. GTF gathers
information about the interruption, and records it on the trace data set or maintains it
internally.

Trace Edit Function

IMDPRDMP formats GTF trace data sets with the EDIT control verb, using either the trace
data set or core image dumps generated by IMDSADMP or by the System Dump Facility as
input. To aid in problem determination, keywords in the EDIT control verb allow the user to
select material from the GTF trace data set, such as jobnames, TeB addresses, and single or
mUltiple events in an event class rather than using than the entire trace data set.

The Service Aids SRL, order number GC28-6719, describes both the Generalized Trace
function and the Edit function in detail.

50 MFT Guide (Release 21.0)

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

Section II: MFf Options

This section describes the options that can be included in a system during system generation.
The descriptions are not lengthy and other publications contain further and more detailed
descriptions. The System Generation publication describes how to include these options.

Alternate Patla Retry (APR)

The alternate path retry (APR) option allows an I/O operation that has developed an error on
one channel path to a device to be retried on another channel path to the same device. This
can be done only if another channel path has been assigned to the device performing the I/O
operation. APR also provides the capability to vary a path to a device online or offline by use
of the VARY command.

APR can handle:

1
__ Up to four paths to one device

Two paths to a CPU for a multiprocessing system

While it is not module dependent, APR only performs it function usefully in a system that has
the channel check handler (CCH) and alternate paths to at least one or more I/O devices.

The operation of the selective retry function of APR, done in conjunction with the I/O
supervisor, is automatic. The VARY path function can be initiated by entering the VARY
PATH command in the input stream or at the console.

Attach Function

Standard For' MFT systems without Subtasking
Optional For: MFT systems with Subtasking

There are two versions of the ATTACH function -- with and without the subtasking
capability. One of these versions is always part of the control program.

The ATTACH function without the subtasking capability passes control to a requested load
module and, when the requested load module terminates, ret urns control to the program that
issued the A TT ACH macro instruction.

The ATTACH function with the subtasking capability eft ates subtasks so that the issuing
program and the program requested in the A IT ACH macro instruction compete for system
resource~, This ATTACH function allows more than one task to be executed within one
partition.

Attach Function Made Resident

The routines that make up the A TT ACH function can be made resident in main storage as
part of the nucleus. If this function is not resident, every time an A'IT ACH macro instruction
is issued the ATTACH routines are brought into the supervisor transient area.

Section II: MFT Options 51

Basic Direct Access Method (BDAM)

The basic direct access method (BDAM) can be included in the operating system. If the user
plans to use the SVC 2B (CIRB) in his programs, then BDAM, ISAM, or BTAM must be
specified. .

BLDL Table Made Reside"t

Any or all of the SYSl.LINKLIB directory entries can be made resident in fixed main storage.
The user can modify this list to fit his requirements. If he creates a list of his own, the
operator c:ommunication option in the SUPRVSOR macro instruction must be specified so that
he can hive his list brought in during system Initialization.

The standard list of SYS I.LINKLffi directory entries, IEABLDOO, can be made resident.
This BLDL list has nine entries. To use the BLDL list, the operator communication option
must be specified at system generation time in the OPTIONS parameter of the SUPRVSOR
macro iIlstruction. This will cause the "SPECIFY SYSTEM PARAMETERS" message
(IEAI0tA) to specify a different BLDL list to be used during the loading of the nucleus.

Cltannel·Check Handler (CCH)

CCH intercepts channel-check conditions, performs an analysis of the environment, and
facilitates recovery from channel-check conditions by scheduling device-dependent error
recovery procedures for the input/output supervisor, which will determine whether the failing
channel operation can be retried. If CCH is not present in the system, one of the other
recovery management facilities receives control and writes an error record for the channel
failure. In this case, the error cause system termination.

This feature is optionai in the System/360 Models 65, 75, and 91 if the models are
specified in the CENPROCS macro instruction.

Checkpoi"t / Restart Facility

The checkpoint/restart facility expands the use of the restart capabilities that are provided by
the RD parameter that can be specified in either the JOB or EXEC statements. The RD
parameter permits execution of jobs to be automatically restarted at a job step after abnormal
termination occurs.

The checkpoint/restart facility enables the user to write checkpoint macro instructions
(CHKPT) at various points in his program in order to record job status information. Then,
when an ABEND occurs, his program can be automatically restarted at the last of these points,
or, rest art can be deferred until a later time, when the job can be resubmitted and the
REST ART parameter in the JOB statement is used. The RD parameter can also be used to
suppress partially or totally the checkpoint/restart facility.

The following restrictons apply to the establishment of a checkpoint when using the
CHKPT macro instruction.

• When the checkpoint is established, the job step must comprise a single task. The job step
task must be the only task when the job step is restarted.

• A checkpoint cannot be established by an exit routine that returns control to the control
program.

52 MFf Guide (Release 21.7)

) • If a STIMER or WTOR macro instruction has been issued, a checkpoint cannot be
established before the time interval is completed or the operator's reply is received.

In order to use the checkpoint/restart facility, the user must indicate that he plans to use it
at system generation time in the RESIDNT parameter of the SUPRVSOR macro instruction. The
basic modules required from the SVC library (SYS1.SVCLIB) for the checkpoint/restart
facility will then be loaded automatically at NIP time. In the programs that contain CHKPT
macro instructions, a checkpoint data set and work area must be defined. The .
checkpoint/restart cataloged procedure (IEFREINT) must be in SYS1.PROCLIB either before
or after system generation.

Additional modules from the SVC library will be required if chained scheduling or track
overflow are going to be used. The user obtains the additional modules by constructing his
own access method option list (IEAIGGxx) and includes this in the parameter library
(SYS1.PARMLIB). In order to use his own access method list the operator communication
option must be specified at system generation time in the OPTIONS parameter of the
SUPRVSOR macro instruction. This will cause the "SPECIFY SYSTEM PARAMETERS"
message (IEAIOIA) to be printed during NIP and provides the operator with the opportunity
to specify a different access method option list to be used during the loading of the nucleus.

Consoles--Alternate and Composite Console Options

One primary console must always be specified for any operating system -- except when
specifying the multiple console option (MCS). (See the description in "Consoles - Multiple
Console Support (MCS)".) One alternate console can be specified when MCS is not selected. A
composite. console (e.g., a card reader and a printer) can be specified as a primary or an
alternate console. The composite console is considered as one console even though it may be
two different hardware devices.

The following guidelines must be used when MCS is not selected:

• A primary console must be specified in the SCHEDULR macro instruction.

• A composite console can be used as a primary or an alternate console.

• When a graphic device is going to be active as a console, a device that produces printed
output must be specified.

Consoles--Multiple Consoles Support (MCS)

The user must specify the mUltiple console support (MCS) option to have two or more
consoles active during execution time.

The following consoles must be specified:

• One console must be specified in the SCHEDULR macro instruction as the "master"
console.

• An alternate console for the master console must be specified in the AL TCONS parameter
of the SCHEDULR macro instruction.

• A SECONSLE macro instruction must be coded defining the alternate as a secondary
console.

Section II: MFT Options 53

• Additional secondary consoles can be defined with SECONSLE macro instructions -- up to
a maximum of 31 secondary consoles.

For all consoles for which no alternate console is specified, the master console is automatically
assigned as the alternate.

A hard copy log can be specified either at system generation time or by the operator during
system initialization or exectuion time. A hard copy log is required when there is more than
one active console during initialization or execution time, or when there is an active graphic
console. The hard copy log can be the system log that is contained on SYS1.SYSVLOGX and
SYS1.SYSVLOGY or it can be a console with output capability. If the log is required, the
system records the operator commands, the system commands and responses, and the messages
with the routing codes of 1, 2, 3, 4, 7, 8, and 10 on the hard copy log. Additional messages
can be recorded if desired.

Routing codes and descriptor codes are required for all messages handled by a system using
M CS. Messages that already exist can be assigned routing codes at system generation time, or,
by default, they will be sent to the master console.

Routing codes are assigned to all new operator messages (WTO and WTOR). They
designate, what function the message is connected with and determine where a message will be
sent. A system generation parameter provides the ability to supply routing codes to all operator
~ssages that already exist and do not have a routing code.

Each console is assigned one or more routing codes. The routing codes assigned to a
console are matche9 to the rOl,lting codes assigned to a WTO or WTOR message. If there is a
match, the message is sent to the console. There are some messages that are not routed by the
routing code, e.g., a message that is broadcast to all active consoles.

Descriptor codes must be specified for all new operator messages. They are specified in the
WTO or WTOR macro instructions. They designate how a message is to be printed or
displayed.

All commands have, been arranged by function into four command code groups:
informational, system control, I/O control, and console control.

An exit is provided, just before the routing codes of a message are checked, to enable the
user to supply his own routine to add, delete, or change routing and descriptor codes.

The following guidelines must be used:

• If HARDCOPY=SYSLOG is specified in the SCHEDULR macro instruction during system
generation, then at IPL time the operator must change the HARDCPY parameter to refer to
the address of an operator console that has output capability. The device should not be the
m~ster console. The HARDCPY specification can be changed back after the message
IEE1411 has peen received. (For detail operating instructions see the publication Operator's
Reference.) .

• A master console must be specified in the CONSOLE keyword parameter of the
SCHEDULR macro instruction.

• An alternate' console must be specified in the AL TCONS keyword parameter SCHEDULR
macro instruction.

• The alternate console must be defined in the CONSOLE parameter of a SECONSLE macro
instruction.

54 MFTGuide' (Release 21.0)

(

/
I

\,

'~ ,".', '

• A console with at least printed output capability ,must be specified as the hard copy' log; Although
the system log is not a .console it can be used even though it does not directly produce
printed output.

• A record of the operator commands, the system commands and responses, and rputing
codes 1,2,3,4,7, 8, and 10 should be maintained.

• Up to 31 secondary consoles can be specified with SECONSLE macro instructiQQ$. They
can all have alternate consoles specified. If no alternate is defined, then the master console
automatically becomes the alternate.

• A 2250 Display Unit can be specified as a master, secondary, or alternate cons.Q.l~.

• Any number of consoles can be composite consoles.

• Routing and descriptor codes are assigned to all new operator messages that are written.

Conversational Remote Job Entry (CRJE) Facility

The conversational remote job entry (CRJE) facility provides remote access to the o~.r~ting
system from printer-keyboard terminals. Authorized terminal users can conversationally­
prepare and update programs and data, submit them for OS background proces.sing, and
receive the output either at the central installation or at the remote terminal.

Conversational remote job entry (CRJE) requires the basic telecommunication.~ce$.~.
method (BT AM) routines. Background execution of CRJE-submitted jobs is accomplished
concurrently with normal batch processing under the supervision of the OS job manage,ment
routines. The valid CRJE terminal user is one that has been defined in the system at eRJE
assembly time in the CRJEUSER macro instruction or has been added to the system. by the
central operator using the USERID central command.

The terminal user can insert, replace, delete, or change information to be submitted in jobs
by using the CRJE data set updating facilities. He can have PL/I or FORTRAN sOl1fce
statements checked for syntax errors before· submitting the job. The syntax checking
program(s) are included at system generation time by the CHECKER macro instruction.

The terminal user can inquire about the status of the system or remotely submitted i9bs .. There
is also a message facility for two-way communication between terminal users, and,,~_tw.een
terminal users and the central operator.

CRJE is specified at system generation time in order to have the necessary modQ,les
included in the system. After generation, create the specific CRJE system requiredfQttll~
installation. There are three macro instructions available for this job -- CRJELINE, '"
CRJET ABL, and CRJEUSER. Set up a job th~·includes the CRJE macro instructions
necessary to specify the system; users may inclnde their own routines. The assembler ~l"_nsla.tes
these macro instructions and creates the required modules. The linkage editor incorwr~~,s the
modules into the operating system. ":'.

The following guidelines must be followed:
. ". i ;"" :',;L~~~~

• SYSl.MACLIB must be in the operating system so that the assembler can eXD~}~:;'!'
macro instructions. ; ,i\::'

. ,,",

Section II: ~FIQptipn$ 55
' ..

• SYS 1. TELCMLIB must be in the system to hold some of the CRJE load modules as well as
the telecommunication subroutines.

• Enough system queue space must be specified in the CTRLPROG macro instruction during
system generation to handle the necessary CRJE space requirements.

Direct Access Volume Serial Number Verification

The user can ~dd direct access volume serial number verification to his new system. If he does,
the volume serial number of a direct access device is checked after an unsolicited device end
interrupt condition has been corr~cted and the volume has been put back on line again.

When an unsolicited device end interrupt is received from a direct access device, the 1/0
supervisor (lOS) will insure that the volume serial number of the mounted volume agrees with
the volume serial in the unit control block (UCB).

The coding to do the checking will be included at system generation time unless NODAV is
specified in the OPTIONS keyword parameter of the SUPRVSOR macro instruction.

Dynamic De,ice Recollfiguration (DDR)

The dynamic device reconfiguration option allows a demountable volume to be moved from
one device to another, and repositioned if necessary, without abnormally terminating the job or
redoing IPL. A request to move a volume may be initiated by either the system or the
operator. The volume may be a system residence volume or any other volume.

The system transfers control to the DDR routines when a permanent 1/0 error occurs. These
routines then determine if another device of the same type is available to which the volume
can be moved. When another device is available the system requests a volume swap by issuing
a message to the operator. The operator must answer this message by entering a SWAP
cOllLrnand.

Sometimes the operator will determine that a volume needs to be swapped. He can initiate
this action by entering a SWAP command.

The DDR routines will be used if:

• DDR, DDRSYS, or DDRNSL have been specified in the OPTIONS keyword parameter of
the SUPRVSOR macro instruction during system generation.

• The device that has a permanent 110 error is a 2311, 2314, 2321, any 2400 series magnetic
tape drive, a card reader, a printer, or a card punch. No teleprocessing devices are
supported. Any device for which shared DASD has been specified can only be demounted
and remounted on the same device. The DDR routines can be used for the unit record
devices only if the operator issues the request by means of the SWAP command.

• The type of permanent 1/0 error is supported. The ones that are NOT supported are:
wrong length record, no record found, unit exception, program check, protection check, lOB
intercept condition, backing to load point, or when the permanent 110 error is caused by
the channel program.

56 MFT Guide (Release 21.0)

(

(

"

Notes:

• The user should not code specific unit addresses in programs that will he processed on a
system th, t has DDR.

• The direct access serial number verification routines must be in the system that has th·~
DDR routines.

For FETCH: When I/O errors occur while the FETCH routines are addressing the SVC JB,
the DDR system residence routines receives control, and, if possible, requests a swap. In order
for this to occur, OPTIONS=DDRSYS must have been specified in the SUPRVSOR ma~ro
instruction and the conditions listed above must exist.

For DDR System Residence Routines: When these routines are specified in the OPTIONS
keyword parameter of the SUPRVSOR macro instruction, another keyword parameter,
AL TSYS, must also be specified.

If high availability is important to the installation, a duplicate system residence volume
would be advisable. However, in order to use such a volume, writing on the system residence
volume would have to be prohibited except to the SYS l.LOGREC data set.

The system residence device specified during system generation can be changed at IPL time
by the operator. OPTIONS=COMM must be specified in the SUPRVSOR macro instruction
during system generation in order to be able to make this change.

For Nonstandard Labels: If the user desires DDR and has nonstandard magnetic tape labels,
OPTIONS=DDRNSL must be specified. A nonstandard label routine must be given the name
NSLREPOS. This routine can either be added during system generation using the SVCLIB
macro instruction, or it can be linkage edited into SVCLIB after the system generation process
is completed.

For DDR When EXCP is Used: When the EXPC macro instruction is used to address magnetic
tape drives in a program that will run under a system with DDR, REPOS= Y or N must be
coded in the DCB macro instruction to indicate whether an accurate block count is being
maintained.

Extract Function Made Resident

The routines that make up the EXTRACT function can be made resident in main storage as a
part of the nucleus. If this function is not resident, every time an EXTRACT macro instruction
is issued the routines are brought into the supervisor transient area.

The EXTRACT function that is included in an MFT system with the subtasking capability is
the same as the EXTRACT function in an MVT system.

The EXTRACT macro instruction provides the user's program with information contained
in specified fields of the task control block (TCB) of either the task that issued the macro
instruction or, in a multiprogramming environment, one of its subtasks.

Graphic Programming Services

The graphic programming services handle graphic input and output and a set of
problem-oriented routines that are used as building blocks in the construction of graphic
processing programs. In addition, the graphic subroutine package (GSP) allows the FORTRAN
IV or PL/I F progammer to use the graphic programming services.

Section II: MFf Options 57

Page of GC27-6939-10
Revised April 16, 1973
By T \j"L: GN28-2546

The problem oriented routines are generalized routines that generate graphic instruction for
displaying various images and alphameric information on the IBM 2250 Display Unit. Thl'se
routines function as part of the problem program and are reached by a CALL or LINK r, lacro
instruction.

Identify F",.ctioll Made Resident

The routines that make up the IDENTIFY function can be made resident in main storage as a
part of the nucleus. If these j outines are not resident, every time an IDENTIFY macro
instruction is issued the routi:les are brought intothe supervisor transient area. If the
l.tJENTIFY modules are resident, performance increases, but the amoun of fixed main storage
requjre~ also increases.

1 he IDENTIFY macro instruction is used to inform the supervisor of an embedded entry
poim within a load module.

After the IDENTIFY macro instruction has been executed, the entry point can be used in
an ATTACH, LINK, XCTL, or LOAD macro instruction.

Indexed Sequential Access Method (ISAM)

The indexed sequential access method can be included in the system so that tasks can use the
basic indexed sequential access method (BISAM) or the queued indexed sequential access
method (QISAM). If the user plans to use the SVC 2B (CIRB) in his programs, then BDAM,
ISAM, or BT AM must be specified.

Job Step Timin,

The operating system can time each job step and enforce limits on the time it may run. In
systems that include job step timing, the control program passes a parameter called "CPU
time" to the user accounting routine or to the SMF routines. CPU time represents the elapsed
time of step execution minus the unoverlapped wait time.

Subsequent runs of the san.! job may have different CPU times for the following reasons:

• The frequency with \\ hlch the task gets interrupted.
• The amount of code {lCecuted f' ,r each interruption before a. time limit inhibits the

interrupted task.
• The varying exectuion times fOI the SVCs that the job issues.

In addition, the job step timing option includes the following: The data plus the time of day~
changing the tii ,le at midnight; and being able to request, check, and cancel intervals of time.
(See the description of "Timing Options" later in this section.)

Main Storage Hierarchy SuPPtJrt

Main storage hierarchy support provides selective access to either processor storage or IBM
2361 core storage.

Main storage is divided into two blocks known as hierarchies; hierarchy 0 is assigned to
processor storage and hierarchy 1 to the 2361. Program controlled interrupt (pel) must always
be specified. (See the description of "Program Controlled Interrupt (PCI)" later in this
section.)

58 MFT Guide (Release 21.7)

)
If there is no 2316 Core Storage Unit in the system, any references to hierarchy 1 will have

to be defined at IPL time. Hierarchies for partitions in MFT are defined in the PARTITNS
system generation macro instruction.

Program Controlled Interrupt (PCI)

The program controlled interrupt (PCI) facility permits the program to cause an I/O interrupt
during execution of an I/O operation. PCI provides a means of altering the program of the
progress of chaining during an I/O operation. It also permits programmed dynamic
main-storage allocation.

A routine, PCI fetch, is able to bring a program into main storage with only one seek of the
disk if:

• A buffer is always available for relocation dictionaries.
• No errors occur during the I/O operation.
• No cylinders boundaries are crossed while bringing in the program.
• The speed of the central processing unit allows PCI to modify the channel command' word

before it reaches the channel.

An additional WAIT and seek are required each time a buffer is not available. A seek is
required each time an error occurs or a cylinder is crossed. If the speed of the central" .
processing unit does not allow PCI to perform its function in time, the number of seeks
needed by the standard fetch are required.

Reenterable Load Modules Made Resident

Reenterable load modules from the SYS I.LINKLIB and SYS I.SVCLIB can be made resident. MFT
systems can have only user-written load modules and the loader program modules from

LINKLIB made resident in the reenterable load module area. ' ,

There are standard lists that are used during IPL time to place the load modules from the
libraries into the fixed portion of main storage; IEAIGGOO for SYSl.LINKLIB and' ' .1

IEARSVOO for SYSl.SVCLIB. If the user desires to create his own list, then the operator
communication option (OPTIONS=COMM) must be specified in the SUPRVSOR macro
instruction. This will cause the message (IEAI01A) to print out "SPECIFY SYSTEM
PARAMETERS". Then the operator will provide the unique identification for the list. The:
reenterable load modules pointed to by the list will be loaded into main storage at IPL time.

Remote Job Entry (RJE) Facility

The remote job entry (RJE) facility provides a method of entering jobs from remote work'
stations into the job stream. Once the jobs have been entered, execution proceeds under the
supervision of the operating system. Any output data sets created by a remotely: submitted job"
that the user wants returned are placed in a separate output class and then sent to ·theremote
user.

The RJE facility operates on a computer-based telecommunications system that"has the
System/360 Operating System and requires the basic telecommunications access '·method·
(BT AM) routines. RJE is specified at system generation time in order to have the necessary
modules included in the system.

, Section.l; MFT ,Options ~9

After generation the user must create the specific RJE system required for his installation. There
are four macro instructions available for this job -- RJETERM, RJELINE, RJEUSER, and
RJET ABL. The user sets up a job that includes the RJE macro instruction necessary to spe.cify
his system and may include user-written routines. The assembler translates these macro
instructions and creates the required modules. The linkage editor incorporates the modules into
the operating system. SYS 1.MACLIB must be in the operating system so that the assembler
can expand the macro instructions. SYS 1. TELCMLIB must be present in the operating system
also to. hold some of the RJE load modules as well as the telecommunicatiori subroutines.

Enough system write-to-operator (WTO) buffers must be specified in the WTOBFRS
parameter of the SCHEDULR macro instruction during system generation so that an RJE task
will not have to wait to display a message. If a wait occurs, a work station time-out could
result. A recommended value for the number of buffers is twice the number of
telecommunication lines in the system.

Resident Access Method Routines

Reenterable access method load modules can be made resident from the SYS1.SVCLIB.

The standard list, IEAIGGOO, contains the names of the access method routines that are to
be loaded and made resident by IPL. If the user desires to create his own list to load certain
modules, then the operator communication option (OPTIONS=COMM) must be specified in
the SUPRVSOR macro instruction. Then at IPL time the message (IEA101A) will print out
"SPECIFY SYSTEM PARAMETERS". The operator answers with the unique identification
numbers for the user's list. The access method routines that are pointed to by this list will then
be loaded into main storage at IPL time.

The Shared Direct-Access Device Option

The Shared DASD option allows computing systems to share direct access storage devices. Systems
can share common data and consolidate data when necessary; no change to existing records,
data sets, or volumes is necessary to use the facility. However, rt:;organization of volumes may
be desirable to achieve better performance.

The following control units and devices are supported by the Shared DASD option:

1. IBM 2841 Storage Control Unit equipped with two-channel switch -- IBM 2311 Disk
Storage Drive, 2303 Drum Storage, and 2321 Data Cell.

2. IBM 2314 Direct Access Storage Facility equipped with the two-channel switch -- IBM
2314 Disk Storage Module.

3. IBM 2314 Direct Access Storage Facility combined with the IBM 2844 Auxilliary Storage
Control -- IBM Disk Storage Module. Device reservation and release are supported by this
combination with or without the presence of the two-channel switch. Two channels -- one
from System A and one from System B -- may be connected to the combination. In
addition, the two-channel switch may be installed in either or both of the control units, thus
permitting as many as four systems to share the devices.

4. IBM 2820 Control Unit with two-channel switch -- IBM 2301 Drum Storage.

5. IBM 2835 Storage Control Unit with two-channel switch -- IBM 2305 Fixed Head Storage
Facility.

60 MFT Guide (Release 21.0)

(

6. IBM 3830 Storage Control Unit with two-channel switch -- IBM 3330 Disk Storage Drive.

Alternate channels to a device from anyone system may only be specified for the IBM 2314
Direct Access Storage Facility, or the IBM 3330 Disk Storage Unit.

The Shared DASD option requires that certain combinations of volume characteristics and
device status be in effect for shared volumes of devices. One of the following combinations
must be in effect for a volume of device:

System A

1. Permanently resident
2. Reserved
3. Removable
4. Offline

Systems A, B, C

Permanently resident
Reserved
Offline
Removable or reserved

If a volume / device is marked removable on anyone system, the device must be in offline
status on all other systems. The mount characteristic of a volume and/or device status may be
change on one system as long as the resulting combination is valid for other systems sharing
the device. No other combination of volume characteristics and device status is supported or
detected if present.

The RESERVE macro instruction is issued by a task to reserve a device for use by a
particular system. The RESERVE macro instruction protects the issuing task from interference
by other tasks in the system. Each task issuing the RESERVE macro instructions must also use
the DEQ macro instruction to release the device. (See Appendix D for a full discussion about
using the RESERVE macro instruction with the Shared DASD Option.)

The RESERVE instructions for the same resource without an intervening DEQ will result in
an abnormal termination unless the second one specifies the keyword parameter RET = .
Termination routines in all operating system confiruartions will release devices reserved by a
terminating task.

Operating system configurations do not have to be identical to share a data set. The only
additional equipment needed for the Shared DASD option is either a two-channel switch or a
2844 AuxilliarY Control unit. The user must also observe certain restrictions about the data
sets that are shared. The following data sets cannot be shared:

SYS1.SVCLIB SYS1.SYSJOBQE

SYS1.NUCLEUS PASSWORD data set

SYS I.LOGREC SYSCTLG (on system residence volume)

SYS1.SYSVLOGX SYSl.MANY

SYSl.SYSVLOGY SYSl.ACCT

SYS1.DUMP

SYS 1.LINKLIB (can only be shared when the 2 systems are same type)

Volume handling on the Shared DASD option must be clearly defined since operator actions
on the sharing system must be performed in parallel. You should make sure that following
rules are in effect when using the Shared DASD option:

Section II: MFT Options 61

1. Operators should initiate all shared volume mounting and dismounting operations. The
system will dynamically allocate devices unless they are in reserved or permanently resident
status, and only the former can be changed by the operator.

2. Mounting and dismounting operations must be done in parallel on all sharing systems. A
VARY OFFLINE must be effected on all systems before a device may be dismounted.

3. Valid combinations of volume mount characteristics and device status for all sharing systems
must be maintained. To IPL a system, a valid combination must be established before
device allocation can proceed. This valid combination is established either by

a. Specifying mount characteristics of shared devices in PRESRES

b. Varying all sharable devices off line prior to issuing start commands and then following
parallel mount procedures described in the chapter "How to use the Shared DASD
Option" in the Operator's Guide.

Note: The Set-Must-Complete (SMC) parameter available with the ENQ macro instruction
may also be used with RESERVE.

Note: If a restart occurs when a RESERVE is in effect for devices, the system will not restore
the RESERVE; the user's program must reissue the RESERVE.

SPIE Routines Mad~ Resident

The Set Program Interruption Element (SPIE) function can be made resident. If this function
is not resident, it is brought into the supervisor transient area whenever a SPIE macro
instruction is executed.

The SPIE macro instruction specifies the address of a routine to be used when specified
program interrupts occur in the task that issued the macro instruction.

Storage Protection Option

When the storage protection feature is included in the central processing unit, this option may
be specified. The validity check option is included as a standard feature when this option is
specified.

When the storage protection option is specified, the size of all protected areas must be a
multiple of 2,048 bytes.

The storage protect hardware is a standard feature for models 50 and larger. But the storage
protection programming option must be specified during system generation. If the storage
protection programming option is specified, the validity checking function is included and
cannot be specified in the system generation coding.

62 MFT Guide (Release 21.0)

(

) System Management Faci/ities (SMF)

The System Management Facilities (SMF) are a group of routines that collect and record data
about how the system and the 110 devices were used by the jobs and the job steps. The data
that is collected by the SMF routines is put on one or two data sets (SYS I.MANX and
SYS I.MANY) -- one if magnetic tape is used, or two if direct access devices are used. Six
exits are provided so that the user can supply his own exit routines to supplement the SMF
option. The data collected by the user can be recorded on his own or the SMF data sets.

In order to use SMF, the user must specify the ACCTRTN parameter in the SCHEDULR
macro instruction and the TIMER parameter in the SUPRVSOR macro instruction at system
generation time. A definition list (SMFDEFL T) should be placed in the parameter library
(SYS1.PARMLIB) before the first IPL:(This list can be put in either before or after system
generation.) The definitions in the list provide the factors that determine which functions SMF
will perform and whether any of the six exits (IEFUJV, IEFUJI, IEFUSI, IEFACTRT,
IEFUTL, IEFUSO) are going to be used. If the user has written one or more routines to
supplement SMF, they may be placed in SYS1.CI505 before system generation is started.

The SMF macro instruction (SMFWTM) and the SMF dump routine (IF ASMFDP) are
included automatically at system generation time as part of the SMF routines. The macro
instruction is used to write the user's data records onto the SMF from the SMF 110 buffer. The
dump routine should be used, if the data sets are on direct access devices, to dump the
contents to magnetic tape. A sample program (TESTEXIT) to test the SMF routines and any
user written routines is provided in the sample library (SYS1.SAMPLIB) of the starter
operating system.

Telecommunications Access Method -- BTAM, QTAM, and TeAM Optional

The telecommunications access method can be included in the system so that tasks can use
the basic telecommunications access method (BT AM) or the queued telecommunications access
method (QTAM). BTAM may be used with any control program; QTAM can be used with
MFT. If CIRB (SVC 2B) is desired in the new system, BDAM, ISAM, or BTAM must be
specified.

The Time Slicing Facility

The user can establish a group of tasks (called the time-slice group) or partitions that share the
use of the CPU, each for the same, fixed interval of time. All member tasks are given an equal
slice of CPU time, and no task or partition within the group can monopolize the CPU.

The time slicing option is included in the system to provide a method of controlling
response time of a task. However, since it is being implemented in a priority dispatcher, any
task of a higher priority than that of the time-slice group will be dispatched first, if it is ready. Time
slicing applies only to the problem program priorities, 0-13. Priorities 14 and 15 are reserved

for the system and cannot be time-sliced. Therefore, the response time of a time-slice task can
be affected by the processing of system tasks, such as readers, writers, master scheduler, etc.,
which will always run at a higher priority than the time-slice group. To guarantee response
time, the time slice group should be defined in the high priority partitions.

Section II: MFT Options 63

A group of contiguous partitions defines the time-slice group. All tasks scheduled into those
partitions are time-sliced and are treated as though they had the same dispatching priority. In
MFT, only one group of tasks can be specified to be to be sliced.

Time-slicing operates within the structure of the current dispatcher. A priority is assigned to
a group of tasks that are to be time-sliced. The time slicing occurs among the tasks in the
group only when the priority level of the group is the higQest priority level containing a ready
task. Each partition in the group is dispatched for the specified time slice. The time slicing
continues until either all partitions are waiting, or a partition of higher priority than that of the
group becomes ready.

The dispatcher will recognize that a priority level is being time-sliced; it will determine
which partition within the group is to be dispatched and then dispatch that partition for the
maximun time interval. If the time-slice task loses control prior to the expiration of its interval
(because an implicit or explicit wait is issued, or because a higher priority partition becomes
ready), the remainder of the time is not saved. That is, when control returns to the time-slice
group, the next ready partition in the group is given control, not the interrupted partition.

The time slicing facility is especially useful in a graphics, environment or in any application
of a conversational nature where concurrent tasks may involve conversation between the user
and the problem program yhrough a terminal. Establishing a time-slice group within this
environment enables tho~ tasks to be performed with a uniform response time.

The group of tasks to be time-sliced and the lenght of the time slice are specified by the
installation at system generation time. This can be modified in MFT with the DEFINE
command. Any partition in the system that is not defined within the time-slice group is
dispatched under the current priority structure; that is, the partition is dispatched only when it
is the highest priority ready partition on the TCB queue.

Time slicing is invoked through either the JOB statement or, in MFT systems with
subtasking, through the use of the A TT ACH and CHAP macro instructions.

If a task becomes part of the time slice-group through the use of A TT ACH and CHAP (in
an MFT system with subtasking), the task gains control according to the priority used with
ATT ACH or CHAP. The task gains control, as part of the time-slice group, when the partition
with the same priority gains control (even though the task resides in a partition that is not part
of the time slice group). Equally, a task that is time-sliced may use A TT ACH and CHAP with
a priority that does not fall within the range of priorities assigned to the time slice group. The
attached or changed task is not part of the time-slice group even though it resides in a
time-slice partition.

The time-slice group is composed of a group of contiguous partitions and all tasks scheduled
into those partitions are time-sliced. Also, each partition in the system is assigned to at least
one job class. Since a job is scheduled into a partition, according to the CLASS parameter on
the JOB statement, careful consideration should be given to the job-class assignment in order
to enable the user to control the use of time slicing at his installation. For example:

1. Partitions PO-P2 have been assigned as the time-slice partition.

2. The partitons have been assigned the following job classes:

PO=G,Pl =G,P2=(G,D),P3=B,P4=(B,C,O)

64 MFT Guide (Release 21.())

(

('

\
\\,

In this example, the user can insure that a job will be time-sliced by specifying CLASS=G on
. the JOB statement. This specification guarentees that the scheduler will initiate the job only
into a partition assigned to CLASS G, i.e.; PO, PI, or P2. Since PO-P2 have been designated
as time-slice partitions, that job will be time-sliced.

MFT systems with sub tasking assign time-slicing both by partition and by dispatch priority
of .the job classes assigned to the time slice partitions. If a program uses the ATTACH or
CHAP macro instruction, the priority used with A TT ACH of CHAP determines when the
attached or changed task is time sliced, not the partition in which it resides. (However, a
program cannot exceed the limit priority assigned its jobclass.) For a discussion of dispatch
and limit priority, see the Supervisor Services and Macro Instructions publication.

Modifications to time slicing are made like other partition modifications. At system
initialization, changes can be indicatied by replying "YES" to the message "IEE80ID
CHANGE PARTITIONS". After system initialization, changes can be indicated through the
DEFINE command. In both cases, changes are actually made by responding to the message: "IEE002A
ENTER DEFINITIONS" of "IEE803A CONTINUE DEFINITION" with the new TMSL
reply. With this reply, the operator can request a list of current time-slicing specifications,
change the range of time-slicing partitions and the time interval, or cancel time-slicing
specifications altogether.

Note: Non-interactive jobs should not be run concurrently and time sliced since this may
significantly decrease performance.

Timing Options

The TIME Option

The INTERVAL Option

The JOBSTEP Option

These options may be selected when an interval timer is included in the central processing unit. There
are three levels of interval timer support that may be specified:

• Time (TIME) provides the facilities of the TIME macro instruction, which is the date and
time of day.

• Internal Timing (INTERVAL) provides the ability to request, check, and cancel time
intervals with the STIMER and TTl MER macro instructions, plus the ability to change the
time at midnight. This level of support also includes the facilities provided by the TIME
macro instructions.

• Job Step Timing (JOBSTEP) provides the ability to time each job step and enforce the time
limits. This level ·of support also includes the facilities provided by the TIME, STIMER, and
TTIMER macro instruction. (See "Job Step Timing Option" in this section.)

If no timing options are specified, then just the time of day is available.

If SMF (System Management Facilities) is to be induded, TIMER=JOBSTEP must be
specified in the SUPRVSOR.

Section II: MFT Options 65

Trace Option

A tracing routine that aids in debugging and maintenance can be added to the system.

The tracing routine stores information pertaining to start I/O '(SIO) instruction execution,
supervisor (SVC) interruptions, external interruptions, program check interruptions, and I/O
interruptions in the trace table. When the table has been completely filled, the next new entry
in the table will overlay the first entry, the next one overlays the second entry, etc.

During system generation, only the size of the table is specified. However, when this system
generation parameter is specified, the trace program routines are also included as part of the
control program.

Transient SVC Table Made Resident

The relative track addresses (TTR) of all transient supervisor (SVC) routines are included as
part of the resident table of control program SVC routines. (See the description in "Type 3
and 4 SVC Routines Made Resident" in a succeeding topic.)

If type 3 and 4 SVC routines are being made resident, this option must be specified also.

During a nucleus generation this option can be added or deleted from the options specified
during a complete system generation.

Type 3 and 4 SVC Routines Made Resident

Modules of type 3 and 4 supervisor (SVC) routines can be made permanently resident in the
fixed area of storage.

Type 3 and 4 SVC modules are loaded and made resident at IPL time. When this option is
specified, the transient SVC table option must also be specified. The SVC table is a table
containing the relative track address of all transient SVCs. This table is also stored in the
resident portion of the control program.

The names and sizes of the type 3 and 4 SVC routine modules are given in the appendix of
the Storage Estimates publication. (See also the preceding description "Transient SVC Table
Made Resident".)

During a nucleus generation this option can be added or deleted from the options specified
during a complete system generation. But the transient SVC table option will have to be
specified the same way it was specified in the last complete generation.

User-Added SVC Routines

User-written supervisor (SVC) routines can be added to the control program.

All of the SVC routines, whether they are to be transient or resident, must. be listed in the
operand of the SVCT ABLE system generation macro instruction.

Any resident SVC routines that are to be added must be specified in the system generation
RESMODS macro instruction. The fixed storage requirement is increased by the total of the
sizes of the routines that are going to be added plus the size of the control information.

66 MFT Guide (Release 21.0)

(

/

\

(

Any transient SVC routines that are to be added must be specified in the SVCLIB system
generation macro instruction in the operand. In this case, only the size of the control
information is added to the fixed storage requirements.

Non-standard error routines can be one of the types of routines that are added. User-written
routines must have a value from 220 to 229. This value is the suffix of the name IGEOO by

which the error routine is contained in SYS 1.SVCLIB.

Validity Check Option

Extra validity checking can be added to the new system to determine whether addresses are
loaded within proper boundaries. The validity checking is provided for the WAIT, POST, and
GETMAIN/FREEMAIN modules. The checking for wait also checks for the number of
events.

This option is specified in the SUPRVSOR system generation macro instruction.

During a nucleus generation this option can be added or deleted from the options specified
during a complete system generation.

Volume Statistics Facility

The volume statistics facility is used only for magnetic tape volumes with or without labels and
provides two functions. Either one or both functions can be specified at system generation
time in the SCHEDULR macro instruction. One function is error statistics by volume (ESV)
and is intended primarily to be used with labeled volumes. It will handle unlabeled volumes if
the serial number is given to the operating system. Statistics about the number of read or write
errors and the system and unit on which it is located are recorded.

The other function is error volume analysis (EVA) and is intended primarily to be used for
unlabeled or non-standard labeled volumes. It monitors the number of read or write errors
based on the limits the user provides at system generation time.

The error statistics by volume (ESV) routines collect a set of statistics for each labeled tape
volume during any interval that the volume is open. An unlabeled tape volume can be handled
if the serial number has been supplied to the operating system.

If ESV =SMF is specified at system generation time, the statisitcs are accummulated on the
system management facility (SMF) data sets, SYSl.MANX or SYSl.MANY. ACCTRTN=SMF
should be specified in the SCHEDULR macro instruction, but if it is not coded it is assumed. If .
any subparameter for ACCTRTN other than SMF is specified, it is ignored and SMF is
assumed. The TIMER keyword parameter is also required in the SUPRVSOR macro
instruction for MFT systems. The IFHST A TR utility program is used to print the ESV records,
record 21, from an SMF data set that is on magnetic tapti. If SYSl.MANX is on tape, no
transfer is required. But if the SMF data sets are on a direct access device, the user must dump
them onto tape in order to be able to extract the ESV records. The SMF dump program,
IFASMFDP, is used to transfer the data from SYSl.MANX and SYSl.MANY to tape.

If ESV =CON is specified or if ESV is not coded, an abridged version of the statistics is
printed on the console. This occurs at end-of-volume or when the tape is closed.

Section II: MFT Options 67

The user can provide his own recording routine. ESV=CON must be specified or the
keyword parameter can be omitted since the default is CON. The UeBs, in the proper format,
will be constructed at system generation time. He can provide his own method, using SV C 91,
specify· his own record format, and select his own recording data set. If he uses the SMF
record 21 format instead of his own, he can use the IFHST A TR utility to print the statistics.

The error volume analysis (EVA) routines acts as a monitor the number of read and write
errors for unlabeled or non-standard labeled tape volumes. The user provides the maximum
limits for read errors and/or write errors and, if the maximum is reached or exceeded, a
message, IEA620I, is printed on the console.

6R MFT Guidc (Releasc. 21.(»

(

(
~,

(

Section III: Planning Considerations

Programming planners and systems analysts preparing an MFT system need to know many
factors besides how the control program works or how many options are available to the user. Planning
personnel must know minimum system storage and device requirements. They should be
familiar with the ways of influencing system performance by altering job priorities, changing
job classes, or choosing readers and writers. Furthermore, planners and system analysts want
to know how their special needs at an installation can be considered. To assist in planning an
installation, this section describes:

• General Considerations
• Minimum System Storage and Device Requirements
• Common Considerations
• Special Considerations
• Typical System considerations
• Operating Considerations

General Considerations

In preparing to use MFT, data processing planners and system programmers should evaluate
not only the characteristics and requirements of the jobs to be processed by the system, but
the characteristics and facilities of the system that influence how a job is processed once it has
been presented to the system. Some of these characteristics are general and apply equally to all
types of jobs. Others are related directly to job type. An important category of characteristics,
although related to job types, is exhibited primarily in system operation, and must be
considered by machine room supervisors and machine operators.

In this section, the topic "General Considerations" describes items of interest primarily to
planning personnel, that should be considered before generation of an MFT system. The topic
"Special Considerations" describes "Batch.Processing," "Telecommunications," "Graphics,"
and "Concurrent Peripheral Operation" -- considerations important to the systems programmer
and the application programmer. These four topics are organized similarly, in "checklist"
fashion, so that the reader interested in a given job type need read only "General
Considerations" and the topic corresponding to the job type in which he is interested, to learn
all considerations pertinent to that job type. Because partition configurations will depend on
the amount of main storage available as well as on the types of jobs to be run, the topic
"Typical System Configurations" describes partition arrangements for systems with 128K
bytes, 256K bytes, and 512K bytes of main storage. These configurations are general, but
should be helpful for planning. The seventh topic, "Operating Considerations" describes briefly
characteristics of MFT that may affect operating procedures.

All of the messages, including operator responses and system actions, are explained in the
Messages and Codes publication.

Minimum System Storage and Device Requirements

The minimum MFT system requires 34K.

A computing system using MFT must have at least 128K bytes of main storage and the
following devices (which are included in the MFT 34K nucleus):

Section IH: PlanningConsideratioris 69

• One selector channel
• Two direct access storage devices (except the 2302 Disk Storage Unit)
• One IBM 1052 Printer-Keyboard

I · One IBM 3210 or 3215 Console Printer Keyboard
• One card reader or tape device
• One card punch or tape device
• One printer or tape device

The minimum MFT system must also include the resident queued sequential access method
(QSAM) routines for use with system readers and system output writers. The 34K nucleus
supports these QSAM routines. However, if QSAM is not included in the nucleus, the size
of the reader or writer partition must be increased to accommodate these routines.

The 34K nucleus supports a maximum of 2 partitions. For each additional partition
generated, the size of the nucleus must be increased by 1 K bytes.

The following features are also supported in the 34K nucleus:

• One multiplexer channel
• A third direct access device
• Four additional tape devices
• Storage protection

For each additional channel, input/output device, or control program feature, the size of the
nucleus must be increased by the amount of main storage required as listed in the Storage
Estimates publication.

If the shared direct access device feature is selected, the system must also include one IBM
2314 Direct Access Storage Facility combined with a 2844 Auxiliary Storage Control unit, or
one of the following units equipped with a two-channel switch:

• IBM 2305 Fixed Head Storage Unit
• IBM 2314 Direct Access Storage Facility
• IBM 2820 Control Unit (with IBM 2301 Drum Storage)
• IBM 2841 Storage Control Unit (with IBM 2311 Disk Storage Drive, 2303 Drum Storage,

or 2321 Data Cell)
• IBM 3330 Disk Storage Drive

I Common Considerations

Several considerations apply to all phases of the system; these must be considered regardless of
the type of job that is being run. They include:

• Estimating storage requirements.
• Choosing SYSGEN macro instruction options.
• Using resident reenterable routines.
• Placing system libraries on direct access devices.
• Sharing direct access devices with other systems.
• Choosing the size of the scheduler for the system.
• Choosing the number and size of partitions.
• Specifying appropriate job classes.
• Assigning job names.

70 MFT Guide (Release 21.0)

\

) • Formatting problem program messages.
• Choosing input readers and output writers.
• A voiding system interlocks.

Estimating Minimum Storage Reqlfirements

MFT operates in a system with at least 128K bytes of main storage. The system nucleus
requires approximately 34K bytes, exclusive of space for resident access methods (other than
QSAM) or the resident BLDL table. (See "Main Storage Organization" in Section I: The MIT
Control Program for the components of the nUcleus). If these features are selected, the
corresponding main storage requirements should be added to the size of the nucleus. For
complete information on storage requirements, see the Storage Estimates publication.

Calculating System Configurations

The configurations possible at a given installation may be roughly calculated as follows:

1. From the total main storage capacity, subtract the size of the system area.

2. Subtract the size of the scheduler-size problem program partition which is required for the
system.

3. If resident writers are used, subtract 10K plus the input and output buffer sizes for each
writer specified.

4. If a system input reader(s) is to be resident also, subtract the size of the reader for each
one specified (30K or 44K plus the buffer sizes, depending on the scheduler chosen).

Remaining main storage may be apportioned through any combination of the following:

1. Inclusion of other optional features of the Operating System.

2. Increasing the size of the problem program partitions already defined.

3. Increasing the number of problem program partitions.

4. Increasing the number of system output writer partitions.

5. Increasing the number of system input reader partitions.

Note: If the system includes the storage protection feature, all storage assignment increases
must be made in increments of 2K bytes.

Single Console vs. Multiple Consoles

Through multiple console support (MCS), an installation may use one primary (or master)
console and multiple secondary consoles where each console is dedicated to one or more
system functions (for example, tape library, disk library, or teleprocessing control). MCS
services all consoles concurrently, creating an environment for operator/system interaction that
gives each console the appearance of being the only console on the operating system. Each
console operator receives only those messages from the system that are related to the
commands that he enters and to his assigned functions.

MCS provides the mechanism to:

• Route messages to selected functional areas

Section Ill: Planning Considerations 7)

• Allow a user-written exit routine to modify the message's routing and descriptor codes prior
to the issuance of the message

• Switch to an alternate console if a primary console should fail

• Allow automatic message deletion on devices such as display tubes (graphics)

• Support a hard copy log for the recording of routed messages, operator commands, and
system responses

Selective message routing, provided under MCS, is the ability to route both problem
program and system-initiated messages to functional areas and the SYSLOG device. Messages
appear only on consoles that have been specifically designated to receive the messages. In this
manner, a console whose function is to receive tape messages, for example, is prevented from
receiving messages not pertinent to that function. Routing codes are defined in the Supervisor
Services and Macro Instructions publication.

A system generation option is provided to permit insertion of a resident, user-written exit
routine in the communications task. The exit routine receives control prior to routing any
WTO and WTOR messages whose routing codes will be used by the operating system. The
exit routine may examine but not modify the message text; however, the exit routine may
modify the message's routing and descriptor codes. Messages will be sent only to those
locations specified in the modified routing codes. A complete explanation of the exit routine is
in Section IV.

MCS permits console switching, which can be initiated automatically, by operator command,
or when the operator manually presses the interrupt key on the system control panel:

• Automatic console switching to an alternate console occurs when permanent hardware errors
are detected by the operating system.

• Command-initiated console switching occurs when the system accepts a valid V AR Y
operator command. Command-initiated console switching is used to restructure the system
console configuration and the hard copy log. Console switching to an alternate console can
be performed by placing the original console either online or offline.

• Manual switching is limited to the master console (primary console device) and is initiated
by pressing the interrupt key on the system control panel. Manual switching to a new
master console is used when the master console is inoperative and'the hardware failure
cannot be detected by the system.

Messages can be automatically deleted from the screen on the Model 85 Operator Console
with CRT Display by means of the DOM macro instruction. When a system or problem
program no longer requires that a message be displayed -- for example, if a WTO macro
instruction was issued and the message is no longer needed -- a DOM macro instruction should
be issued to delete the message from the screen.

MCS allows buffered or immediate hard copy. Thus, no information is lost when messages
and operator commands are deleted from graphic displays. In addition, the hard copy device
can be used as a collection point for all messages and commands. Routing codes and the time,
if the timer option is present, are prefixed to all messages and commands that are sent to the
hard copy log. The system log -- the only buffered hard copy device supported -- must be
specified at system generation, and can be modified at system initialization or during system
operation. If hard copy is desired on a console, the hard copy device can be specified at
system generation, at system initialization, or during system operation. Although the system log

72 MFT Guide (Release 21.0)

(

)
is supported with or without the MCS option, the hard copy log is only supported with the
MCS option.

Using Resident Reenterable Routines

The resident reenterable load module feature allows problem programs to share reenterable
code. It provides improved performance by placing frequently used modules in the resident
reenterable routine area. It also provides reduced main storage requirements by placing
modules in the area that are common to concurrently running jobs.

The feature uses the RAM parameter to make possible the pre-loading of both access
method modules from the SVC library and any user-written reenterable modules from the link
library. The feature can be specified at system generation by specifying
RESIDNT = (RENTCODE,ACSMETH) in the SUPRVSOR macro instruction. At system
initialization, the user can either cancel the feature entirely or provide up to four lists of access
method and other reenterable modules of his own choosing to be loaded into the resident
reenterable routine area.

In an operating environment where any problem program issues an A TT ACH, LINK,
LOAD, or XCTL macro instruction to request use of a reenterable module that is not resident
in its partition, the supervisor will search the resident reenterable routine area for the module.
No additional copies need be brought into main storage. Therefore, frequently used reenterable
load modules should be loaded into the area. Any user-written reenterable load module and
the loader modules from the link library can be loaded into the area by including it in one of
the lists of modules specified; type III and IV SVC routines, however, must be loaded only
into the RSVC area.

Placing System Libraries on Direct Access Devices

Several factors must be considered when putting system libraries (SVCLIB, MACLIB,
LINKLIB, PROCLIB, PARMLIB, and SYSJOBQE) on direct access storage devices. If all six
libraries are on the same device, throughput is decreased because of excessive arm interference.
To increase throughput, libraries should be balanced on devices; devices should be balanced on
channels. The ideal condition would be to have each library on a different direct access device,
and each device on a separate channel. In installations with smaller systems, it would be best
to have SYSJOBQE and LINKLIB on the same direct access device on chann~Ll, and
SVCLIB, PROCLIB, PARMLIB, and MACLIB on another device on channel 2.

Whenever more than one library is to be placed on a 2311, 2314, 2319, or 3330 disk
storage device, arm movement can be substantially reduced by placing the volume table of
contents (VTOC) approximately midway between the first and last cylinders being used. The
libraries, starting with the most frequently referenced, can then be alternately placed on both
sides of the VTOC with the least referenced libraries furthest from the VTOC.

Blocking the Procedure Library

Blocking the procedure library conserves input/output storage space. The procedure library
may be blocked during system generation or afterwards by using utilities.

Blocking the procedure library during system generation is done by pre-allocating the
procedure library with RECFM=FB and BLKSIZE=(a multiple of 80). During Stage II of
system generation, the iebcopy utility program blocks the procedure library on the new system.
Blocking the procedure library may require that the reader partition size be increased (see

Section III: Planning Considerations 73

"Reader Partition Size Requirement"). If possible, the reader partition size should be
considered prior to system generation -- that is, prior to the PAR TITNS macro instruction -­
to prevent redefining partitions at IPL just for procedure library blocking.

A preliminary study used a typical procedure library containing 54 procedures to determine
the most efficient blocking factor to conserve input/output storage space. Blocking factors
from 1 to 40 (BLKSIZE=80 to 3200) were used. It was found that blocking factors in the
range 8 to 12 were most efficient. For example, on a 2311, an unblocked procedure library
required 30 tracks but a blocked procedure library (with blocking factors in the range 8 to 12)
required only 21 tracks, a reduction of 30% in I/O storage space.

Determining the Size of SYS1.SYSJOBQE

The size of the job queue data set (SYSl.SYSJOBQE) for a particular installation depends on
several factors:

• Maximum number of jobs that will be queued at any time on the input and output queues.
• A verage size of the jobs.
• Number of records in a logical track.
• Number of 176-byte records on a physical track.

For the formula to estimate the size of SYS I.SYSJOBQE, see the Storage Estimates publication.

Sharing Direct Access Storage Devices (DASD) With Other Systems

If the shared DASD feature is selected at system generation, considerations should be given to
volume assignment and classification (read only or read/write) of common data sets. Volume
handling and device reservation procedures must be carefully defined, because the shared
DASD feature cannot prevent or resolve interlocks between systems. Detailed considerations
for using the shared DASD option are given in Section IV.

Choosing the Size of the Scheduler

MFT provides two basic scheduler packages, 30K and 44K. (Detailed considerations of actual
scheduler size are given in the Storage Estimates publication.) The choice of scheduler depends
upon several factors: desired throughput, desired partition configuration, and main storage size. Usually,
the primary factor is the amount of main storage available. In a 128K system, using the 30K

scheduler allows specification of a greater number of partitions because 64K (with the 34K
nucleus) would still be available for other problem program partitions, writer partitions, and/or
reader partitions.

With the 44K scheduler in a 128K system, the user has 50K to establish either another
problem program large parition, or several small problem program and/or writer partitions.
The 44K scheduler increases throughput, but leaves less main storage for other partitions. If
jobs are of short duration, it may be advisable to use the 44K scheduler, because scheduling
activity will be high. However, if jobs are relatively long in execution time, the scheduler will
not be needed as often; therefore, the 30K scheduler could be utilized.

The actual scheduler size needed to initiate a job may be specified during system
generation (by use of the MINPART parameter) or during initialization (by use of the MIN
parameter). This value may be equal to or greater than the scheduler design level selected.

74MFT Guide (Release 21.0)

(

('

\.

Note: The size of the scheduler chosen at system generation determines which reader will be
used by the system when START commands are entered for a reader (see "System Input
Reader Partitions" in Section I).

Choosing Number and Size of Partitions

The number of partitions needed at an installation depends primarily on the number of
different job categories (i.e., batch, graphics, telecommunications, and CPO) expected to run
concurrently. At least one partition must be specified for each category. The number of
partitions for each category, based on the number of jobs expected to be run in each, should
then be established. In practice, the maximum number of partitions for which there is available
main storage should be established. If fewer partitions are needed during operation, the
number of partitions can be reduced by the operator either at system initialization or during
operation. If necessary, partitions may be reestablished up to the limit specified at system
generation.

Note: If the maximum number of partitions is established at system generation, the size of the
system queue area (SQA) at system generation also should reflect this maximum number.
Then, if the number is reduced at system initialization, the SQA can also be reduced, by
replying to message lEA 1 0 1 A "SPECIFY SYSTEM PARAMETERS".

Within the limits of the system, the maximum number of partitions that can be specified
depends on the size of the selected scheduler in relation to the amount of main storage
available. At least one partition must be large enough to accomodate the selected scheduler. If
a job is known to exceed the size of its intended partition, an adjacent partition can be
eliminated and its storage reassigned to the other partition. Reassignment of contiguous
partitions can be accomplished without interfering with unaffected partitions.

Choosing Appropriate Job Classes

A system installation can be set up for maximum efficiency and throughput by properly using
the partition job class concept. Particularly, the processing characteristics of jobs likely to
execute concurrently must be examined. Failure to consider job mix can lead to degrading
system performance. Multiprogrammed jobs can, under certain circumstances, run slower than
they would if processed sequentially. Because the previous version of MFT could not recognize
processing characteristics of a particular group of jobs, it was necessary for job streams to be
balanced so that concurrently operating jobs were complementary rather than conflicting.
However, now the required balance can be achieved with proper use of the CLASS parameter
by:

• Establishing the job characteristics to be controlled, based on the typical processing
workload

• Establishing a suitable partition structure compatible with the job characteristics to be
monitored

• Establishing the convention that jobs having certain characteristics are to be directed,
through the CLASS parameter, to the appropriate partitions

Typical job characteristics are:

• High compute, low input/output time
• Balanced compute and input/output time
• Low compute time, high input/output time

Section Ill: Planning Considerations 75

• Use of specific types of input/output equipment, such as 2250 terminals, magnetic tape
only, or telecommunications terminals

• Large main storage requirements
• Small main storage requireme'nts
• Setup or non-setup jobs
• Use of preallocated data sets
• Time-slicing considerations

With this type of categorization, job mix can be balanced for improved throughput. For
example, one partition can be established for high-input/output jobs and another for high
compute-time jobs. Process-limited jobs (such as compilers) can then be assigned to the high
compute-time partition, and jobs with high input/output requirements (such as sort programs,
and reading and writing of data sets) to the input/output partition. Normal job scheduling
should then produce a satisfactory job mix. Because jobs are queued by the CLASS parameter,
and because each partition is scheduled for its next job immediately after the preceding one is
complete, the system as a whole tends to execute complementary jobs concurrently.

The CLASS parameter may also be used to direct jobs that are to be time-sliced to
partitions that were defined as time-slicing partitions. However, when using the time-slicing
feature, caution should be taken when assigning a job· class to a particular job. If a job is to be
time-sliced, it must be assigned a job class that will be serviced by a time-slicing partition.
Likewise, if the job is not to be time-sliced, it should not be assigned a job class that a
time-slicing partition has been assigned to service.

A partition should be established to service each job class specified on a JOB card. If a job
is assigned to an unserviced job class, it remains on the input queue for that class indefinitely,
or until the operator discovers (by use of the DISPLAY N command) that the job has not
been executed.

Default Job Class

If no CLASS parameter is specified on the JOB card, the system assigns job class A to the
job. Therefore, a small partition should not be assigned to service job class A unless all jobs
run at the installation will fit into that small partition. It is advisable to make job class A either
a secondary or tertiary job class in one or more partitions, to ensure that any jobs that are
assigned the default job class will be executed.

The default job class is given to a job only when no CLASS parameter is specified, not
when an incorrect job class is given. For example, if P2 is specified as job classes M and L
(Figure 10), P3 as C, J, and A, and P4 as N, C, and D, the following JOB card illustrates an
invalid job class specification:

//MFT JOB ,'MYJOB' ,MSGLEVEL=O,CLASS=G

Because job class G is an invalid job class for this particular configuration, the job will not
be assigned job class A. It is placed on the CLASS=G queue, and is never initiated. It remains
there indefinitely until the operator discovers that the job has not been executed. Therefore,
extreme caution should be used when choosing a job class for the job to ensure that a
partition has been specified for that job class. To prevent delays in processing jobs with
"invalid" job class designators, the operator should enter DISPLAY N periodically to obtain a
listing of the jobs on the hold and input work queues.

76 MFT Guide (Release 21.0):

(

) Priority Scheduling Within Job Classes

Jobs within job classes can be initiated according to a priority specified in the PRTY parameter
on the JOB card. For example, several jobs may be designated job class B. Within this group
of jobs, some are to be initiated before others. Therefore, higher priorities can be assigned to
these jobs with the PRTY parameter. This affects only the way the job is initiated, not
dispatched. If no PRTY parameter is specified, jobs are assigned the default priority
established in the reader procedure and are initiated FIFO for each job class. Therefore, each
group of jobs for a particular job class should be analyzed to determine if some are to be
initiated before others, and to assign these preferred jobs higher priorities.

Assigning Job Names

Any valid job name is acceptable to the MFT system. Therefore it is possible that jobs with
identical job names could be in the system at the same time. These duplicate-name jobs could
be on the same input queues, different input queues, or executing in different partitions. The
existence of these duplicate-name jobs could cause confusion when using the DISPLAY,
CANCEL, HOLD, RELEASE, and RESET commands. For example, if a CANCEL command
is entered for a job in the hold queue or an input queue, the system will cancel the first job
encountered if duplicate job names are in the queue.

To prevent this confusion, a procedure should be established which will ensure that all jobs
have unique names. This could be done, for example, by varying a portion of the jobname, i.e.,
JOBPA Y1, JOBPA Y2, etc., to reflect sequence of input. Other methods of unique
identification for jobs could be derived from application, programmer's name, time-of-day,
date, or any combination of these which would satisfy the needs of an installation.

In addition, job names of PO, PI, ... PSI should not be assigned because these are the
partition identifiers. For example, if a job is assigned a name of P4, and a CANCEL command
is entered for this job, both the job mimed P4 and the job that is running in Partition 4 will be
canceled.

Formatting Problem Program Messages

In MFT it is necessary to relate WTO and WTOR messages to the problem program which
issued them. In order to do this, a partition identifier is added to each message issued by a
problem program partition. The maximum length of WTO messages is 122 characters. The

I maximum length of WTOR messages is 119 characters.

Example: WTO messages appear in the following form:

PHASE A ENTERED Pn

Similarly, WTOR messages in MFT include the partition identifier as follows:

id REPLY 8 CHARACTER NAME Pn

Choosing System Input Readers

The size of the system input reader is determined by the scheduler design level selected at
system generation (30K or 44K); i.e., the scheduler design level determines which reader is
used by the system. (See "Choosing the Size of the Scheduler" in this section.) Additional
reader considerations include whether to use blocked input, whether to block the procedure
library, which cataloged ,reader procedure to use, whether to use resident or transient readers,
and whether to use more than one reader.

Section III: Planning Considerations 77

Blocking Input

Blocking the input stream records reduces the time required to access and/or to process them.
Also, if the records are blocked, auxiliary storage space is conserved in that more records can
occupy the same amount of space than if the records were not blocked. There are two types of
blocking that should be considered relative to the input reader.

• Input to the reader from the job stream.
• Output from the reader (i.e., input to the processing program.)

If a resident reader is used, input to the reader from the job stream can be blocked; with a
transient reader it cannot be blocked. If the input is to be blocked, the number of buffers and
their sizes may be specified on the IEFRDER statement in a reader cataloged procedure.
Alternatively, the buffer sizes may be overridden by specifying the new buffer sizes and
number in the START command for the reader. If blocked input is used, the size of the reader
partition should be increased accordingly.

The output from the reader is the input stream data that is transferred from the input
stream to a direct access device for subsequent retrieval by the processing program; e.g. all
data records between a DD * statement and a /* statement. This data can be blocked by both
the resident reader and the transient reader. The block size is indicated in the IEFDAT A
statement in the cataloged procedure and may be overridden by specifying on the DD
statement for the job the new buffer size and length for the input stream data. With this
facility, blocking characteristics would be on a DD statement basis instead of a reader basis.

Choosing the Reader Procedure

There are three IBM-supplied cataloged reader procedures that can be specified in a START
command: RDR, RDR400, and RDR3200. The significant difference in these readers is the
block size (BLKSIZE), buffer length (BUFL), and the number of buffers (BUFNO) on the
IEFDATA statement. (All three readers specify unblocked input to the reader.) The
IEFDAT A statement is used to indicate to the reader whether the input stream data is to be
blocked or unblocked. Reader procedure RDR specifies unblocked records; procedure RDR400
specifies blocked records with a block size of 400; procedure RDR3200 specifies blocked
records with a block size of 3200.

The choice of appropriate IBM-supplied reader procedure to use at an installation depends
on whether the input stream is to be blocked or unblocked. If a START command specifying
either procedure RDR400 or RDR3200 is entered, the IBM-supplied or user-written programs
being read must expect blocked input or must override the blocking factor on DD * (or DD
DAT A) statements for these programs. If one of the IBM-supplied reader procedures is not
used, a user-written writer procedure may be used. (See Section IV).

To efficiently use main storage and to increase the efficiency of accessing or processing the
input stream, it is best to use a reader procedure that blocks the input stream data. If the job
stream is intermixed with IBM-supplied or user-written programs that cannot accomodate
blocked input stream data, the DD statements for these particular jobs can specify unblocked
data records. For a complete description of how to override the block sizes in the cataloged
procedure, see the Job Control Language Reference publication.

Resident reader efficiency will be improved if the job stream is blocked, and if a reader
procedure is used that blocks the input stream data. Also, multiple buffers will improve the
efficiency, especially in the case of card input.

Note: If a transient reader is used, only one input buffer should be specified.

78 MFT Guide (Release 21.0)

(

/

\"

) Resident Reader or Transient Reader

In addition to blocking input and choosing the reader procedure, the decision to use a resident
or transient reader depends upon the amount of main storage available, and the quantity of
work to be read from anyone input device. A resident reader improves performance, but
reduces the amount of main storage available for general use. Whether the advantages of a
resident reader compensate for its overhead depends on the size of the system and the type of
job most frequently run. The following general considerations apply:

1. The system input reader can be resident in any MFT system (l28K or larger), and would
probably be resident in any system larger than 128K.

2. In any system of sufficient size, the reader should be resident if a high-intensity job stream
is typical. A high-intensity job stream is one which has a number of relatively-short jobs in
terms of CPU time required~ input-stream processing time is an appreciable percentage of
overall job time.

With a 128K system, it may not be feasible to use a resident reader because of the small
amount of main storage available. Therefore, a transient reader should be considered. A
transient reader makes more main storage available for general use, at the cost of reduced
overall performance. A transient reader should be considered also if the user has input streams
on more than one device, and no device has a majority of the work.

Note: A combination of resident and transient readers may be chosen, but only three readers
may operate in the system at one time.

Single Reader or Multiple Readers

In determining whether to have more than one reader, the size of the machine and the number
of problem program partitions necessary for the installation should be considered. If the user
has 256K bytes or more of main storage, it might be advisable to specify more than one • resident reader. For example, he could specify one reader for cards, one reader for magnetic
tape, and a third for disk.

The primary consideration is to analyze the jobs and to determine which input device will
have the majority of the input in terms of CPU time. If this device is the card reader, then one
reader partition should probably be specified to read the input stream from the card reader
continuously. If, on the other hand, there is a long input stream on magnetic tape and/or
direct access storage, a reader partition(s) should be specified for these devices, and a transient
reader for the card reader. If there is only one long input stream, it would be advisable to
specify one reader partition for that particular device, and start a transient reader for the other
devices.

Choosing System Output Writers

If possible, records to be written by a system output writer should be blocked. This improves
throughput, because less input/output time is required, and disk arm interference is reduced.
However, additional main storage must be provided within the problem program partition,
where the records are initially blocked, and within the system output writer partition, to which {
the logical records are read. (The additional space required, in each case, is equal to the logical
record length times the blocking factor plus the input buffer space.) .

Because there is the choice of specifying partitions as resident writers or having the writers
operate in problem program partitions (see "System Output Writers" in Section I), there are
several factors that must be considered when deciding which type of writer to use.

Section III: Planning Considerations 79

Resident or Non-Resident Writers

With a resident writer, machine size is not as large a factor as with a resident reader because
the minimum system writer is only 10K plus the input and output buffer space, and can
operate in a small partition. The size difference between the writers varies only with the
amount of buffer space specified for the output data sets (i.e., blocked versus unblocked
records).

If a resident writer is not used and, instead, a writer is started in a small problem program
partition, throughput may be decreased because the system does not start the writer until it
terminates the problem program in the small partition. Thus, the writer must wait until a large
partition is free to terminate the small partition and to start the writer. The advantage of a
resident writer is that it need not wait until a problem program partition is free. Once the
START command is entered, the writer is scheduled by the first scheduler-size partition that is
free to perform scheduling services. It continues to write until a STOP command is entered.
The writer can then be restarted when it is necessary.

A non-resident writer could also be started in a scheduler-size partition, thus avoiding the
wait time required for a large partition to schedule the ~riter into a small partition. However,
this could also waste main storage, because the standard output writer is much smaller (10K)
than the required size of a large partition (that is, the size of the scheduler). In this case, the
relative importance of time versus main storage available must be considered, and then the
decision should be made whether to start a non-resident writer in a small or large partition.

If the system does not contain a resident writer, a writer must always be started in either a
small or large problem program partition often enough to prevent the output work queues from
being filled. If the output queues become filled, the output data not placed on the queues is
lost. Frequent use of DISPLAY Q command will allow the operator to anticipate this
condition. (See the Storage Estimates publication for the formula to determine the size of the
output queue.)

A system-assigned non-resident writer may also be started in a problem program partition;
i.e., START WTR.S,OOE. However, the system-assigned writer does not operate in the same
way as a system-assigned reader. The system-assigned writer does not leave the partition as the
reader does, because the only way to stop a writer in a problem program partition is to enter a
STOP command. Therefore, when using the system-assigned writer, the operator should ensure
that the writer is not remaining idle, thus occupying the partition unnecessarily.

Choosing Direct System Output Writers

Since the user has a choice between direct system output writers and system output writers,
the following factors should be considered when deciding which type of writer to use.

• A direct system output writer does not require its own partition. This can be an advantage
to the user that has a 128K system. The extra storage required by a resident system output
writer could be used to add a small problem program partition or to include a larger
scheduler in the system.

• Each direct system output writer can process only one output class per partition and needs
one I/O device assigned to it~ In a system with several active partitions, there will probably
not be enough I/O devices to run direct system output writers in all partitions for all
output classes. In this case it is possible to have jobs running with more than one output
class. A direct system output writer could handle one output class and system output
writers could handle the others.

80 MFT Guide (Release 21.0)

(

(

\.

)
• Direct system output cannot handle output from system tasks, jobs canceled while on the

input queue, and jobs failed by the reader/interpreter. It is necessary to start a system
output writer to handle these types of output.

• System output writers and direct system output writers could be used together. If the
output queue is filled, direct system output writers could be started in the active partitions.
This would allow the system output writers to clear the output queue, without stopping
work in the problem program partitions.

Use of Multiple Writers

The use of multiple output writers has several advantages. In general, a unique output writer
can be used for each requirement in the system. For example, the following output classes
might be assigned:

• An output class for all system messages
• An output class for all high-priority printed output, or for printed output requiring special

forms
• An output class for all punched output
• An output class for all output to magnetic tape

By specifying the appropriate output class in the DD statement, the programmer selects the
particular device on which his output is to be recorded. Because writers can share output
classes, a writer can have a primary and a secondary function. For example, if output class B is
assigned to a high-priority printer, and output class C to a "background" printer, the
high-priority printer processes only high-priority output (SYSOUT=B).

If no high-priority data is waiting on the output work queue, the output writer performs its
secondary function by taking a job from the SYSOUT=C queue. The advantage in this use of
mUltiple writers is not only that it makes writers available for certain types of unique work, but
that it also permits them to perform other work when circumstances permit.

Note:Problem programs that are device-dependent with respect to data sets written by a system
output writer may have to be modified to run under MFT. If the data control block (DCB) for
the system output device was coded for other than a direct access device, it may not be large
enough for conversion to a direct access device DCB, as required by MFT.

A voiding System Interlocks

A problem can occur when a task controls a resource, but is waiting for another resource
which is under control of a second task. If the second task is waiting, and needs the resource
now under control of the first task, a system interlock condition will occur. The first task
cannot give up its resource until the second task relinquishes the resource it controls, and vice
versa. The two tasks are therefore in a deadlock; processing cannot continue in either
partition.

Two ways to avoid this problem are:

1. Request all resources initially; do not begin an irreversible course of action until all
required resources have been obtained.

2. If holding a formerly obtained resource which may prevent acquisition of another resource,
relea-se the resource before requesting the other resource(s). If the former resource is still
required, request it together with the other resource(s). (See the Supervisor Services and
Macro Instructions publication for further information on system interlock.)

Section III: Planning Considerations 81

Data Set Integrity

An interlock may also occur during job initiation, if a job requests one or more data sets which
are reserved for use by another job which is currently executing in the system. In order to
prevent this interlock, the operator is notified of the condition through a series of console
messages. The operator must then make a decision, based on his knowledge of the jobs in the
system, the system configuration, and the data sets in use. He may wait for the requested data
set(s) to become available, or ~e may cancel the job being initiated. For a complete description
of the messages and replies involved with data set integrity, see the Operator's Reference
publication.

System Generation Macro Instructions

Three system generation (SYSGEN) macro instructions are required to specify the
characteristics of an MFT system: CTRLPROG is used to specify control program options;
SCHEDULR is used to specify job scheduler options; PARTITNS is used to specify number,
class, size, and time-slicing attributes of the partitions. The parameters required for each macro
instruction are given below. For a complete description of the parameters, see the System
Generation publication.

CTRLPROG Macro Instruction

The parameters required for generation of an an MFT system are:

TYPE
to specify the MFT control program.

MAXIO
to specify the maximum number of input/output operations that can be simultaneously
processed.

The following parameters may also be specified for an MFT system:

FETCH
to specify the type of program fetch to be used.

HIARCHY
to specify the inclusion of main storage hierarchy support.

OVERLAY
to specify overlay supervisor options.

SYSQUE
to specify the size of the system queue area.

TMSLICE
to specify the time-slicing feature.

Example: The following example illustrates the use of the CTRLPROG macro instruction to
specify an MFT control program. The maximum number of input/output operations that can
be simultaneously processed is 20. The advanced overlay supervisor and PCI fetch are
included. The system queue area is assigned a size of 4000 bytes.

CRTLPROG TYPE=MFT,MAXIO=20,FETCH=PCI,OVERLAY=ADVANCED,SYSQUE=4000

82 MFT Guide (Release 21.0)

(

) SCHEDULR Macro Instruction

The SCHEDULR parameters required for generation of an MFT system are:

TYPE
to specify the MFT control program.

CONSOLE
to specify the primary console device.

The following options may also be included in an MFT system:

ACCTRTN
to specify a user-supplied accounting routine or SMF.

ALTCONS
to specify an alternate console for the primary console device, or the alternate console for
the master console if M CS is being used.

CONOPTS
to specify the mUltiple console support (MCS) option and, if MCS is being used, whether a
user exit is desired.

DESIGN
to specify the 30K or 44K job scheduler.

HARDCPY
to specify that a hard copy log is desired to record operator messages and commands (for
MCS only).

JOBQFMT
to specify the format of the system job queue.

JOBQLMT
to specify the number of 176-byte records to be reserved for initiators.

JOBQRES
to specify the system residence device.

JOBQTMT
to specify the number of 176-byte records to be reserved for termination of jobs.

MINPART
to specify the number of lK (1024-byte) blocks of main storage required to initiate a job.

OLDWTOR
to specify the routing codes to be assigned to any WTO or WTOR message without
routing and descriptor codes (for MCS only).

OPTIONS
to specify system log and job scheduler options.

Section III: Planning Considerations 83

PROCRES
to specify the procedure library device.

REPLY
to specify the number of reply queue elements for WTOR routines.

ROUTCDE
to specify the routing codes to be assigned to the master console (for MCS only).

STARTI
to specify an automatic START INIT.ALL command after IPL.

STARTR
to specify an automatic START reader command after IPL.

STARTW
to specify an automatic START writer command after IPL.

WTLBFRS
to specify the number of WTL buffers.

WTLCLSS
to specify the output class of the system log data sets.

WTOBFRS
to specify the number of WTO buffers.

Example: The following example illustrates the use of the SCHEDULR macro instruction. The
size of the job scheduler is 44 K bytes. The address of the primary console device is 009. The
address of an alternate console is 01F. The START commands for readers and writers are to
be executed after the system is loaded into main storage. The devices to be started are located
at OOC and OOE respectively. The START command for initiators is also to be executed
automatically after IPL. An accounting routine has been supplied. The job queue ·and
procedure library reside on the device located at 190. There are 10 data records per logical
track on the job queue. The default value is accepted for all parameters not specified.

SCHEDULR TYPE=MFT,DESIGN=44K,STARJR=A-OOC, STARTW=A-OOE,
ACCTRTN=SUPPLIED, START I;::: AU TO :CONSOLE=009 ,
ALTCONS=OlF,JOBQRES=190,PROCRES=190,JOBQFMT=10

Note: If the multiple console support (MCS) option is selected when coding the SCHEDULR
macro instruction, a SECONSLE macro instruction must be included for each console except
the master console; that is, for the alternate to the master console and for each additional
secondary console. For a complete description of the SECONSLE parameters, see the System
Generation publication.

P ARTITNS Macro Instruction

The PAR TITNS macro instruction is unique to MFT and must be used. It establishes the
maximum number of partitions for an installation. The maximum number of partitions that an
installation intends to use should be established at system generation, because this number can
be reduced during system initialization or, during operation. Unnecessary system generations
may be avoided because the number of partitions in use may never exceed the number
established at system generation. Therefore, if the maximum number of partitions that might
be used at some later date is generated, the system does not have to be regenerated to increase

84 MFT Guide (Release 21.0)

(

) the number of partitions in the system. The attributes of each partition are established as
follows:

Pn(C-class,8-nnK)
where the characters P, C-, S-, and K must appear as shown.

"n"
specifies the partition number, 0-51.

"class"
specifies the partition's function (either one to three job classes A-O for a problem
program partition, or R or W for resident readers and resident writers, respectively).

"nn"
specifies the amount of main storage to be allocated to the partition. One problem program
partition should be the size of the selected scheduler. (If there is not a resident reader in
the system, one problem program partition must be the size of the scheduler.) Resident
readers must be at least 30K or 44K, depending upon the scheduler design level selected. Resident
writer partitions must be at least 10K.

Example: This example illustrates the use of the P ARl'ITNS macro instruction to generate a
five-partitionsystem. Partition 1 is to be a 34816':byte problem program partition. Jobs that
specify CLASS=K or CLASS=E on their job cards are to be scheduled into Partition 1.
Partition 0 is to be a 32768-byte resident reader partition (PO need not be specified before
Pl). Partition 2 is to be a 12288-byte resident writer partition. Partition 3 is to be a
51200-byte problem program partition to service job classes J and A. Partition 4 is a resident
writer partition of 14336 bytes.

PARTITNS P1(C-KE,S-34K),PO(C-R,S-32K),P2(C-W,S-12K),
P3(C-JA,S-50K),P4(C-W,S-14K)

If hierarchy support is included in the system, the format of the macro instruction is changed
to:

HO-nnK
Pn(C-class, H1-nnK
HO-nnK,Hl-nnK

HO-nnK and Hl-nnK

specifies the size of the partitions to be established in each hierarchy. HO and HI are
designations for hierarchy 0 (processor storage) and hierarchy 1 (IBM 2361 Core Storage)
respectively. Problem program partitions can be specified in hierarchy 0, hierarchy 1, or in
both hierarchies. Partitions with a job class of R (reader) or W (writer) can be defined to
exist in either hierarchy but not both. (Note, however, that if a reader or writer is placed
in hierarchy 1 and a Model 50 is being used, overrun will occur.)

Example: This example illustrates the use of the PARTITNS macro instruction to generate the
same five-partition system shown above, but with main storage hierarchy support. Partitions 1
and 4 are generated in hierarchy 1 (IBM 2361 Core Storage).

PARTITNS Pl(C-KE,H1-34K),PO(C-R,HO-32K),P2(C-W,HO-12K),
P3(C-JA,HO-50K),P4(C-W,Hl-14K)

Note: If PI was segmented into both hierarchies, the format would be:

PARTITNS P1(C-KE,HO-10K,H1-24K), ...

Section III: Planning Considerations 85

Special Considerations

Every installation varies in the amount and type of work processed. Special consideration must
be given by application programmers and planning personnel to accommodate the work load
that they anticapate. Some special considerations accommodated by the MFT control program
include:

Batch Processing
Telecommunications
Graphics

• Concurrent Peripheral Operations (Spooling)

Batch Processing

If the installation's work is primarily batch jobs, several factors must be considered when the
system is initialized, and when it is operating. First, the number, size, and job class(es) for
each partition must be determined. Then the decision must be made as to which partitions, if
any,should be specified as resident reader and writer partitions and which partition should
contain direct system output writers. The proper output classes for the installation must also be
determined.

Choosing Number and Size of Partitions

The number and size of partitions depends upon the size of the installation's system. Naturally,
a system with 512K bytes or more main storage has great flexibility, yet even an MFT system
that has 128K bytes has considerable flexibility. There are several possible configurations for a
128K system. The best configuration for a particular installation usually depends on the type
of job most frequently run. There must be at least one scheduler-size (problem program or
resident reader) partition. (See "Choosing the Size of the Scheduler" in this section.)
Remaining main storage can be assigned to other problem programs, reader, and/or writer
partitions. (See "Typical System Configurations" in this section for examples of batch
processing system configurations.)

Small Partitions

Small partitions are well suited to batch processing. However, small partitions require a large
partition for scheduling (see "Job Initiation and Termination" in Section I), so total throughput

may be reduced.

With the configuration shown in Figure 21, PO could be assigned a primary job class of K
reserved by the installation for "critical" small jobs; i.e., jobs that require small amounts of
main storage and that must have fast throughput. By also assigning job classes G and J to PO,
the partition need not remain idle when there is no critical work. When a scheduler is in P2 (at
initiation and termination of jobs), it performs any scheduling duties that have been requested
by small partitions PO, P3, and P4.

Note: Any job assigned a specific class must be able to run in any partition assigned to service
that class.

Choosing Reader Partitions

A reader partition would probably be resident in any system over 128K, but may also be
resident in a 128K system. If a resident reader is chosen for a 128K system, the 30K reader
should be used. This makes more main storage available for problem program and/or writer

86 MFT Guide (Release 21.0)

(

(

\

partitions. If a resident reader is to be used, the best flow of input to the system, and the
greatest amount of processing time for problem programs is gained by placing the reader in a
high-priority partition. If there are at least 256K bytes of main storage, the 30K reader would
probably not be used, because the 44K reader operates more efficiently.

Nucleus
3SK

P4 P3

Figure 21. Sample 128K Small Partition Configuration

Assigning Job Classes to Jobs

P2

PIP
30K

MB

Pt

Reader

30K

PO

PIP
10K

Every job should be assigned a job class, using the CLASS parameter. For batch processing of
input/output-limitedjobs, each job should be assigned a job class that corresponds to a
high-priority partition. Process-limited jobs should be assigned to a lower-priority partition. In
addition, jobs that can be executed without having any special input/output setups (i.e.,
"non-setup" jobs such as a FORTRAN compiler), or that have preallocated data sets, can be
directed to a high-priority partition for fast throughput.

Assigning Partitions to Job Classes

After the job classes have been assigned to jobs, appropriate partitions must be assigned to
service those jobs. If the partitions do not have the appropriate job classes specified, the job
classes can be changed (see "Partition Redefinition" in Section I), or the CLASS parameter
can be changed on the JOB card, before the job is entered in the input stream.

Choosing System Output Writer Partitions

If several partitions are specified as problem program partitions, it is advisable to have at least
one resident writer in a higher-priority partition (PI or P2). A resident writer will ensure that
the output is continually being written. If another writer is needed, a non-resident writer can
be started in a problem program partition, or a problem program partition can be redefined as
a writer partition or a direct system output writer could be used.

Choosing Output Classes

At an installation it may be advisable to set up certain output classes for specific duties. For
example, output class A could be for system messages, and class B for problem program
output. Or, class A could be for system messages, class B for problem program output for the
accounting department, class C for problem program output for the purchasing department,
etc.

Note: System messages are assigned an output class through the MSGCLASS parameter on a
JOB card. Problem program output is assigned an output class through the SYSOUT parameter
on a DD, card. (See the Job Control Language Reference publication.)

AngJher approach would be one in which output class A represents printer system message
output, class B represents punched card output, class C represents. magnetic tape output, and
class D represents printer problem program output. Up to 36 output classes may be specified.

Section III: Planning Considerations 87

When using special forms on the printer, the operator should ensure that system messages are
not written on the special forms. This possibility can be eliminated by establishing a different
output class for output requiring the special forms.

Note:An identification problem may arise if system messages are assigned an output class
different from problem program output. Therefore, it may be helpful for the programmer to
print, as the first line of output, his name and department, if he chooses to use different
classes for message and problem program output. This would also alleviate some ope,rator
problems. (See "Operating Considerations" in this section.)

When the system log option is present, system log data sets must be assigned an output
class. The assignment can be made at system generation by using the WTLCLSS operand of
the SCHEDULR macro instruction. Two log data sets are provided for recording the data sent
to the log. To, avoid the situation where the second data set becomes full before the first data
set can be written, both the size of the data sets and the output writer class must be
considered at system generation. To be sure that a full log data set is processed in a reasonable
period of time, a unique output message class should be assigned for the log data sets and a
writer should be assigned multiple output classes with the log class having the highest pri.ority.

Telecommunications

MFT enables telecommunications jobs to be run concurrently with other types of jobs such as
batch, graphics, and CPO. Several MFT considerations are of interest to the
telecommunications user.

These considerations include the number of telecommunications partitions required, their
placement in the system, their size, and their job class(es).

Choosing Number and Size of Partitions

Telecommunications jobs are considered unending in that they are scheduled only once, and
are terminated only when a CANCEL command is entered, i.e., for partition redefinition. (See
"Partition Redefinition" in Section 1.) There'must be at least one partition for each
telecommunications job being run. The size of the partition depends upon the size of the
telecommunications control program used by the installation.

To avoid delays in servicing lines, a telecommunications job should have unrestricted access
to the resources of the central processor. For this reason, it is best to run telecommunications
jobs in high-priority partitions. Because the telecommunications job is not alone in the system,
its activities should cause minimum interference with jobs in other partitions, and it should not
be susceptible to interference from these other jobs.

Sm~l Partitions

If the telecommunications control program needs a small amount of main storage (i.e., less
than the size of the chosen scheduler), use of a small partition would be efficient since it will
have to be scheduled only once.

Choosing Reader Partitions

If the user is running primarily telecommunications jobs, it would not be necessary to specify a
partition as a resident reader. Initially a transient reader could be brought into a batch problem
program partition to read in the telecommunications jobs. (See Figure 22.) After the

88 MFT Guide (Release 21.0)

/
\,

) telecommunications partitions are activated, and a transient reader has read a job for P4, the
reader will give control to the initiator to schedule a job into P4. (See "Input Readers" in
Section I.)

Assigning Job Classes to Jobs

Each telecommunications job should have a unique job class assigned to it. The message
control partition (PO) should have a different job class from the message processing partition.
Caution must be taken to avoid assigning job classes to problem programs that correspond to
the job class(es) of the telecommunications partitions. In Figure 22, a job is assigned a CLASS
parameter of F if it is a telecommunications message control job. However, if the CLASS
parameter for a message control job is K, the job is placed on input queue K, but never
initiated.

Assigning Partitions to Job Classes

Each telecommunications partition should also have a unique job class so that the appropriate
jobs may be directed to that partition. In Figure 22, PO is assigned job class F, PI is assigned
E, and P2, D. If the job classes are to be changed, a CANCEL command must first be entered
to terminate the unending job, and then the system may be redefined. (See "Partition
Redefinition" in Section I.) Likewise, if the partition is not assigned to the telecommunications
job class, the telecommunications job may never be initiated.

Nucleus
38K

P4

Batch Partition
32K

P3

Figure 22. Sample 128K Telecomml!nications-Oriented Configuration

Choosing Writer Partitions

P2 P1 PO

~----------~y~----------~

TELECOMMUNICA TlONS

Telecommunications jobs will have no real need for resident writers. However, when batch
jobs are run concurrently with telecommunications, a resident writer or a direct system output
writer can be assigned to service the batch partition, as in Figure 22. Direct system output
writers should not be started in a telecommunications partition.

Graphics

Graphics jobs in an MFT environment are subject to several general considerations. A graphics
job associated with an unbuffered IBM 2250 Display Unit may operate with reduced
performance if high telecommunications activity interferes with its access to the central
processor for regenerating the display. In this case the relative importance of the graphics and
telecommunications jobs must be determined, and the decision made as to which to run in the
higher-priority partition. Additional considerations for MFT include assigning job classes to
jobs, choosing the partition to service graphics jobs, using the time-slicing option, and assigning
partitions to job classes.

Section III: Planning Considerations 89

Choosing Number and Size of Partitions

There must be at least one partition for each graphics job being run. The partition size
depends upon the size of the graphics job. Generally, graphics jobs should be run in a
high-priority partition to cause minimum interference with other jobs. Figure 23 shows a
graphics-oriented system configuration. Graphics jobs are executed in PO. P3 could be used for
large compilers, with PI used as a resident writer to service P2 and P3. If telecommunications
and graphics are being run in the same system, the best performance would be gained by
placing the telecommunications job in a high-priority problem program partition, and the
graphics job in a relatively high-priority partition also.

Nucleus

3SK

P3

PIP
lOOK

P2

Figure 23. Sample 256K Graphics-Oriented System Configuration

Choosing Reader Partitions

Pl PO

In an installation running primarily graphics jobs, a resident reader should not be necessary.
The system could utilize a transient reader. After the graphics job has been scheduled, the
partition containing the transient reader could process batch jobs.

Assigning Job Classes to Jobs

Graphics jobs should also have a unique job class assigned to them, to ensure that they are
executed in the selected partition. In Figure 23, jobs are assigned a CLASS parameter of C if
they are graphics jobs.

Assigning Partitions to Job Classes

A graphics partition should be assigned a unique job class that corresponds to the job classes
assigned to the graphics jobs. This ensures that jobs will be enqueued on the proper input
queue, and executed in the appropriate partition. The partition could also be assigned
secondary and tertiary job classes to reduce idle time. In Figure 23, PO is assigned a primary
job class of C for graphics jobs, and secondary and tertiary job classes of Hand 1. If the
partition's job class is to be' changed, and a graphics job is being run, a CANCEL command
must be issued for the graphics job, and then the partition may be redefined.

Using the Time-Slicing Feature

The time-slicing feature of assigning uniform intervals of CPU time to a group of consecutive
partitions is provided at system generation. (The number of time-slicing partitions and the time
interval for each task are specified in the TMSLICE parameter of the CTRLPROG macro
instruction. See the System Generation publication.) The ability to get uniform response time is
useful in a graphics environment, particularly for concurrent applications involving graphics
terminals. To minimize contention for the CPU with other jobs, it is best to establish the
higher-priority partitions as time-slicing partitions.

90 MFT Guide (Release 21.0)

(

/
I

\

)
I Spooling (Concurrent Peripheral Operation)

Spooling (Concurrent Peripheral Operation) is the capability of performing utility functions
such as card-to-tape, tape-to-print, or tape-to-punch while other jobs in the system continue
processing. Execution of spooling jobs in MFT involves the same general considerations for
assigning job classes to jobs and partitions as for telecommunications and graphics jobs.
Spooling jobs should be assigned a class that corresponds to that of the spooling partitions. Spooling
jobs can be placed anywhere in the system. Figure 24 illustrates a system configuration
containing one spooling partition, one telecommunications partition, one resident reader, two
resident writers, and three batch partitions. The spooling partition (P2) is assigned job class D,
and no other partition is assigned this class.

P7 P6 P5 P4 P3 P2 P1

w

Nucleus Writer PIP PIP Writer PIP Reader

40K 12K 44K 14K 12K 44K 48K

Figure 24. Sample 256K Telecommunications, Spooling, and Batch Processing Configuration

Typical System Configurations

PO

commu·
nications

30K

This topic describes partition configurations for systems with I28K, 2S6K, and SI2K bytes of
main storage. These configurations are based on the considerations presented in the preceding
four topics. Working configurations will depend on the individual requirements of each
installation.

Systems With 128K Main Storage

A I28K system can support a variety of configurations. The configuration best for a particular
installation usually depends upon the type of job most frequently run. Two examples follow.

Long-Duration Jobs

For applications where the typical job is of relatively long duration, a transient reader may be
best. For such an application, where input stream processing requires a small percentage of
total operating time and output requires two 'printers, or a printer and a punch most of the
time, the configuration shown in Figure 2SA might be used. This configuration has:

• Two problem program partitions, each handling batched jobs.
• Two system output writers, servicing the batch partitions.
• A transient system input reader.

This configuration permits all of the advantages of MFT to be realized, including
independent partition scheduling and concurrent operation of problem programs and system
output writers.

It would be advantageous to assign a single job class to each of the two problem program
partitions, with one partition to be used for small batch jobs and the other partition for larger
jobs. Or, jobs could be directed to one partition or the other on the basis of characteristics
other than size (such as input/output device requirements).

Section III: Planning Considerations 91

High-Intensity Job Stream

A second configuration, shown in Figure 25B, has:

• One resident system input reader partition.
• Two system output writer partitions, servicing the problem program partition.
• One problem program partition, occupying all storage remaining available after reader and

writer assignment.

This configuration should provide extremely efficient processing of a high-intensity job
stream, where the typical workload involves a relatively large number of short-duration jobs.
With the reader resident, input stream processing and job execution is concurrent with output
writer processing.

Because a high-intensity job stream usually requires more processing time than
input/ output time, the characteristics of the problem programs and the reader are highly
complementary, with a corresponding improvement in throughput.

Systems with 256K Main Storage

A 256K system makes possible a wider variety of configurations. Depending on the
requirements of the installation, the most likely configurations will include two large (80K to
90K) batch partitions, or three to four medium-size (44K or greater) batch partitions. In either
case, several system output writers could be provided to support the batch partitions. Figure
26A illustrates the first case with a configuration of two large batch partitions, a resident
reader, and two resident writers. Figure 26B illustrates the second case: three medium-size
batch partitions, a resident reader, and three resident writers.

92 MFT Guide (Release 21.0)

(

P3 P2 P1 PO

Nucleus PIP Writer PIP Writer

36K 30K 12K 3SK 12K

A. Two Problem Program Partitions - Two Resident Writers

P3 P2 P1 PO

Nucleus Writer PIP Writer Reader

36K 12K 3SK 12K 32K

B. One Problem Program Partition - One Resident Reader - Two Resident Writers

Figure 25. Sample 128K Batch System Configurations

P4 P3 P2 P1 PO

Nucleus Writer PIP Writer PIP Reader

3SK 12K 82K 12K SDK 32K

A. One Resident Reader - Two Residenr Writers - Two Problem Program Partitions

P6 P5 P4 P3 P2 P1 PO

Nucleus PIP Writer PIP Writer Writer PIP Reader

40K 44K 12K 46K 12K 12K 44K 46K

B. One Resident Reader - Three Resident Writers - Three Problem Program Partitions

Figure 26. Sample 256K Batch System Configurations

Section III: Planning Considerations 93

Systems With S12K Main Storage

The choice of configurations available with 512K bytes of main storage is so great that no
"typical" system can be defined. Such a system can support three or four 80K to 90K
partitions, and whatever combinat~on of supporting output writers and input readers is needed.
Figure 27 shows a possible 512K configuration: four large (80K and 90K) batch partitions,
two resident readers, two resident writers, and one small batch partition.

System With IBM 2361 Core Storage

The choice of configurations available with IBM 2361 Core Storage units frequently depend
upon the size of the system's processor storage. With 128K bytes of processor storage, the
partition segments in processor storage will necessarily be fewer and/or smaller than the
partition segments would be in systems with 256K or 512K.

The type of processing to be done and typical job characteristics are as important to the
choice of configurations as is obtaining a good partition balance. Throughput can be increased
if the partition structur~ permits problem programs to take advantage of the IBM 2361 Core
Storage environment in the following ways:

• Larger tables, work areas, and data areas can be used which should yield more direct, more
efficient, and less complex programs.

• Larger program segments can be resident in processor storage, reducing or eliminating
loading and linking to nonresident segments. In the problem program, the use of larger
data areas can reduce the number of input/output transfers required.

• Placing part of a program in IBM 2361 Core Storage frees a corresponding amount of
processor storage, thus permitting more jobs to be executed concurrently in processor
storage.

Programs assembled and linkage edited to include hierarchies will execute in systems
generated with or without a hierarchy structure. Conversely, programs assembled and linkage
edited without hierarchies will execute in systems generated with a hierarchy structure.

Note: If the system configuration includes IBM 2361 Core Storage, caution should be taken
when planning the sizes of the partitions to be included in processor storage. If the partition is
generated in two segments, the segment in processor storage will determine whether the
partition is treated as a small partition or as a large partition. For example, if Partition 4 is
generated with a size of 24K in processor storage, and a size of 400K in IBM 2361 Core
Storage, it would be treated as a small partition, thus requiring a large partition for scheduling
services. If a partition is generated in only one hierarchy, it will follow the regular small/large
partition guidelines.

Operating Considerations

The operator of an MFT system must be aware of several considerations related primarily to
program execution, partition definition, output class reassignment restarting the system, and
operator commands. If the system has the shared DASD option, the operator must also
consider shared volume handling. These considerations are' explained in the following
paragraphs. For a complete discussion of operator requirements unique to MFT, see the
Operator's Reference publication.

94 MFT Guide (Release 21.0)

(

/
\\,

)
PS P7 P6 P5 P4 P3 P2 P1 PO

·Nucleus. PIP PIP ~ p Reader PIP ..L PIP Reader

SOl(90K SOK S 46K SSK 12 12 SDK 46K
K K K

Figure 27. Sample 5I2K Batch Processing System Configuration

Program Execution

Because 15 problem programs can be executed concurrently, the system places additional
responsibility on the MFT operator. At times he may become busy replyingyo system
messages and problem program messages, placing special forms in the printer, etc. Therefore,
whenever possible, he should perform preparatory work, such as obtaining and/or mounting
required volumes, ahead of the required time. When responding to problem program messages,
the operator should respond to the highest priority task first; i.e., the message from the
partition with the lowest number. The operator must also remember that problem program and
system messages may be intermingled on the console device.

In addition, because jobs may not be completed in the same order as they were entered in
the system, the operator must ensure that the correct output is returned to each programmer.

The operator may also be required to start system input readers and output writers at
certain times during operation. He may be given a specific time each day, or may have to use
his judgment based on work load for the system.

Partition Definition

Even though the installation may not intend to use the maximum number of partitions at all
times, the system must be regenerated if the number of partitions originally specified is
increased. Therefore, the maximum number of partitions expected to be used should be
specified at system generation. Partitions can then be redefined to decrease the number in use.

Caution must be observed when redefining partitions. Before redefining partitions, the
operator should check the job class(es) of all pending jobs and ensure that the prospective
partition definitions have job classes corresponding to the jobs that will.be executed. This
includes knowing the job classes of jobs which have already been placed on the input or hold
queues,· but have not been executed. (This can be accomplished by issuing the DISPLAY Q
command.) If possible, he should also check pending jobs for their size requirement (by
checking the job class versus the size of the partition assigned to service that job class) and
compare this with the size of the job partitions. If they are originally assigned a CLASS
parameter that corresponds only to a large partition, they should be reassigned to a large
partition.

If the time-slicing feature is included in the system, the operator should not specify the
same job class'for both a time-sliced partition and a partition that is not time-sliced. For
example, do hot specify a partition with job classes B, C, D in a time-sliced group, and a
partition with job classes D,E,F outside the group. poing so would allow a job with a CLASS
parameter of D to be executed either inside or outside the time-sliced group regardless of the
programmer's intentions for that job. Also, a partition in a time-sliced group should not be
assigned to service jobs with job classes of A, because A is the default job class, and the same

Section III: Planning Considerations 95

problem could arise. For a complete description of how to redefine partitions, see the'
Operator's Reference publication.

After all redefinitions have been completed, message IEF805I "DEFINITION
COMPLETED" is issued. The operator must enter either a START INIT command for each
of the partitions that have been redefined, or a START INIT. ALL command.

Changing Output Classes

The output classes with which a writer is associated can be changed at any time, through
proper use of the MODIFY command, or a combination of STOP and START commands. A
program with a special forms requirement can obtain exclusive use of a printer by informing
the operator to enter a MODIFY command. A STOP command followed by a START
command for the same writer, but specifying a unique output class could also be entered. The
STOP command causes the writer to stop at the end of the job it is currently executing. The
operator then inserts the required forms and issues the new START command. That command
would limit use of the printer to the data set associated with the new output class until another
STOP and START command sequence for the printer is issued. The MODIFY command can
also be used to change the conditions under which the output writer pauses for servicing of its
device.

For example, a writer in partition 2, originally established to service output classes A, B,
and C, could be changed to service only data sets for output class D by issuing "the command:

MODIFY WTR.P2,CLASS=D

Handling Shared Direct Access Volumes

If the shared DASD feature is selected at system generation, additional responsibilities are
imposed on the operator. Volume mounting and dismounting instructions are normally issued
by the operating system. In a shared DASD environment, volume handling must be initiated by
the operator and must be conducted in parallel on both sharing systems. Thus thorough
operator communication from system to system must be maintained. For more information on
these and other detailed operating procedures in a shared DASD environment, see the
Operator's Reference publication.

Restarting the System

To restart the system after it has been shut down, the same steps taken in initially starting the
system are followed, except when the SET command is entered. Either the "F" suffix from the

"Q=unitname" parameter is omitted, or the entire "Q=unitname" parameter is omitted.

The following command illustrates this procedure:

SET DATE=yy.ddd,CLOCK=hh.mm.ss

By omitting the "Q=unitname" parameter, job queue data set information is saved. When
restarting the system to save the information, the operator must make certain that all auxiliary
storage volumes which were in use remain available. This insures that the job queue data set,
output data sets, and input data sets accurately reflect the conditions which existed when a
restart became necessary.

96 MFT Guide (Release 21.0)

(

/

\,

) Operator Commands

The SHIFT command, used with the first version of MFT, is not recognized. The following
commands, and their respective abbreviations, may be used in an MFT system:

CANCEL C RELEASE A
CONTROL K REPLY R
DEFINE N RESET E
DISPLAY D SET T
DUMP
HALT Z START S
HOLD H STOP P
LOG L SWAP G
MODE UNLOAD U
MODIFY F VARY V
MOUNT M WRITELOG W

Note: The commands are subject to the following restrictions:

I . The DUMP, DEFINE, HALT, MODE, and SWAP commands are not allowed in the input
stream; they must be entered through a console.

• The DUMP and MODE commands cannot be abbreviated.

• The MODE command can be used only with System/360 Model 85 and System/370
Models 135, 145, 155, and 165.

• The CONTROL command can be used only with the Model 85 Operator Console with
CRT Display.

Be sure to use the correct abbreviations for operator commands. For example, at system
initialization, if you inadvertently key in S for SET, the system assumes you are giving a
START command. It queues the command, and waits for a SET command. The formats,
functions, and parameters of the commands can be found in the Operator's Reference
publication.

Section III: Planning Considerations 97

(

98 MFT Guide (Release 21.0)

Section IV: Modifying the System

This section describes how the user can modify an MFT system to suit the needs of his
installation. The topics covered in this section are:

• Reader/Interpreter and Output Writer Cataloged Procedures
• Resident Routines Option
• Job Queue Format
• Output Separation
• Writing System output Writer Routines
• Adding SVC Routines to the Control Program
• Message Routing Exit Routines
• . Handling Accounting Routines
• The Must Complete Function

Reader /Interpreter and Output Writer Cataloged Procedures

IBM supplies cataloged procedures for reader/interpreters and for output writers. You can:

• Use the IBM-supplied procedures.
• Use the IBM-supplied procedures, and override given parameters.
• Write and use your own cataloged procedures.
• Write and use your own cataloged procedure, and override given parameters.

The START command starts a reader/interpreter or an output writer, and designates the
cataloged procedure to be used. If you use the START command to start a problem problem,
there will be no SMF recording, or Checkpoint/Restart done for that job. Users can override
given parameters in the cataloged procedure by specifying the desired paramters in the START
command. (The Operator's Guide publication contains a complete description START
command.)

An installation's parameters may differ consistently from those in the IBM-supplied
procedure. If so, users can write cataloged procedures, rather than respecifying the parameters
in every START command. To write cataloged procedures:

• Write the procedure in the required format.
• Add the procedure to the procedure library.
• Specify the procedure name in the START command.

To test the procedure by reference in another job but before adding it to the procedure
library, format it as an in-stream procedure. See the Job Control Language Reference publication
for a description of in-stream procedures. (In-stream procedures can be used with any reader
that uses the IEFIRC reader/interpreter program or the IEFVMA ASB reader program.)

If the parameter values in a cataloged reader or writer procedure change frequently, use
symbolic parameters in place of ordinary parameters. Then assign values to the symbolic
parameters in the START operator command. (For a description of symbolic parameters and
their use, see A lpendix A: Cataloged procedures, in the Job Control Language Reference
publication (G(28-6704. For a description of the START operator command, see the
Operator's Reference publication (GC28-6691).) An illustration of the use of symbolic
parameters is given in this section under "Example of the Use of Symbolic Parameters."

Section IV: Modifying the System :99

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

To obtain a SYSABEND dump when a reader or writer is abnormally terminated, a DD
statement describing the data set to be used must be added to the corresponding procedure.
The format of the DD statement is described in this chapter under the title "Optional
SYSABEND Data' Set" .

Reader /I"terpre.r hoc.res

A cataloged procedure for reader/interpreters requires four job control statements: an EXEC
statement and three DD statements. The names and purposes of these statements are listed
below:

• An EXEC statement with the step name IEFPROC specifies the reader/interpreter
program.

• A DD statement named IEFRDER provides the reader/interpreter with a description of the
input stream .

• A DD statement named IEFPDSI describes the procedure library.

• A DD statement named IEFDA T A defines the spooling or CPP (concurrent peripheral
processing) data set that is used for intermediate storage of input stream data.

The standard reader/interpreter procedure supplied by IBM is named RDR. It specifies a block
size of 80 bytes for the spooling data set. The complete standard procedure is:

IIIEFPROC
II
IIIEFRDER
II
II

I I I
IIIEFPDSI
IIIEFDATA
II

. II
II

Procedure: RDR
EXEC PGM=IEFIRC,REGION=48K,

PARM=' 801 03005001 02490501 OSYSDAbbbE00001A'
DD UNIT=244,LABEL=(,NL),VOLUME=SER=SYSIN,

DISP=OLD,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=l,RECFM=F)

DD DSNAME=SYS1.PROCLIB,DISP=SHR
DD UNIT=SYSDA

SPACE=(80,(500,500),RLSE,CONTIG),
DCB=(BLKSIZE=80,LRECL80),BUFL80),
BUFNO=2,RECFM=F,DSORG=PS)

X

X

X

X
X
X

IBM supplies three other cataloged procedures for reader/interpreters. Two provide
different block size specifications for the spooling data set, and one is used to process job
control statements for jobs being restarted. A procedure named RDR400 provides a block size
of 400 bytes for the spooling data set. The RDR400 procedure is:

IIIEFPROC
II
IIIEFRDER
II
II
II
IIIEFPDSI
II I EFDATA
II
II
II

Procedure: RDR400
EXEC PGM=IEFIRC,REGION=50K,

PARM='80103005001024905010SYSDAbbbE00001A'
DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,

DISP=OLD,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=l,RECFM=F)

DD DSNAME=SYS1.PROCLIB,DISP=SHR
DD UNIT=SYSDA,

SPACE=(80,(500,100),RLSE,CONTIG),
DCB=(BLKSIZE=400,LRECL=80,BUFL=400,
BUFNO=2,RECFM=FB,DSORG=PS)

X

x
X
X

X
X
X

A procedure for reader/interpreters named RDR3200 provides a block size of 3200 bytes
for the spooling data set. The RDR3200 procedure is:

100 MFT Guide (Release 21.7)

)
Procedure: RDR3200

IIIEFPROC EXEC PGM=IEFIRC,REGION=S2K,
II PARM='8010300S00102490S010SYSDAbbbEOOO01A'
IIIEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
II DISP=OLD,
II DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
II BUFNO=1,RECFM=F)
IIIEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR
IIIEFDATA DD UNIT=SYSDA,
II SPACE=(80, (500,12) ,RLSE, CONTIG),
II DCB=(BLKSIZE=3200,LRECL=80,BUFL=3200,
II BUFNO=1,RECFM=FB,DSORG=PS)

The discussion of the special procedure used during restart follows separately under
"Procedures Used by Restart."

When creating a reader/interpreter procedure, comform to the procedure format and the
statement requirements. Use the IBM-supplied procedures as examples. The statement
requirements are explained individually in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the reader/interpreter program. It also passes a set of
parameters to the reader/interpreter program. The format for the EXEC statement is:

IIIEFPROC
II

EXEC PGM=IEFIRC,
PARM=' bpptttooommmiiicccrlssssssssaaaaefh,

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IEFIRC
specifies the reader/interpreter program. The name of the program must be IEFIRC, as
shown.

The P ARM Field in the EXEC Statement of the Reader/Interpreter

P ARM = 'bpptttooommmiiicccrlssssssssaaaaefh'

X

X
X
X

X
X
X

X

is a set of parameters for the reader/interpreter program. This parameter field must consist
of 35 characters, but the last seven have default values and need not be specified. Their
meanings are explained in the following text.

b

pp

ttt

character from 0 through 9 or A through F. Value not used by MFT but must be present.

two numeric characters from 00 to 14. Indicates default priority for jobs from this input
stream. Default priority is assigned to the job if not on JOB statement.

three numeric characters.

000

three numeric characters indicating the default for the primary number of tracks assigned
for SYSOUT data sets. This primary allocation should be made sufficient for most needs, so
that secondary allocation will not. usually be needed.

Section IV: Modifying the System lOt

mmm

iii

three numeric characters indicating the default for the secondary number of tracks assigned
for SYSOUT data sets.

three numeric characters under 255. Value not used by MFT but must be present.

ccc

r

three numeric characters. Value not used by MFT but must be present.

numeric character from 0 to 3. Specifies the disposition of commands read from this input
stream. Used by the reader/interpreter whether or not the command is authorized to be
entered into the input stream (see the aaaa parameter). The reader/interpreter, if r is:

o - passes the command to the Command Scheduling routine for execution.

1 - displays the command (via a WTO macro instruction). Passes it to the Command
Scheduling routine for execution.

2 - displays the command (via a WTO macro instruction),asks the operator whether the
command should be executed (via a WTOR macro instruction), and passes the
command to the Command Scheduling routine if the operator replies in the
affirmative.

3 - ignores the command (treated as a no-operation).

The WTO and WTOR macro instructions issued by the reader/interpreter are sent to the
primary console in systems without the multiple console support (MCS) option and to the
MCS master console in systems with the MCS option.

a numeric character 0 or 1 specifies the bypass label processing options. 0 signifies the BLP
parameter in the label field of a DD statement to be ignored. Label parameter processed as
NL. 1 signifies BLP not to be ignored. Label parameter processed as it appears.

ssssssss
eight alphameric characters specifying default device for SYSOUT. Becomes UNIT
subparameter in the DD statement that defines SYSOUT (if the UNIT field is omitted from
the DD statement). Must be padded to the right with blanks to full eight characters.

Note: This default device can be specified by its address, group, or type. However, the
UNIT = type form may cause all units of that type to be used for system output, since the
device allocation program spreads the data sets among all candidate devices. To preserve
some devices for private volumes, you should define a UNIT group .which is a subset of the
available direct access deivces. You may specify the name SYSOUT as the default unit
name for the system output data sets if it was specified at system generation time; when this
default is used, a unit count of 1 is implied. UNITNAME SYSOUT is fully described in the
System Generation publication.

aa~

for systems with the multiple console support (MCS) option: four hexadecimal numbers
from 0000 to EOOO indicate which operator command groups are to be executed if read
from this input stream. Four blanks default to X"EOOO". Systems without the multiple

102 MFT Guide (Release 21.0)

(

(

)

ef

support option: Set to X"EOOO", permitting all commands except DEFINE and HALT to
be entered into the input stream.
Figure 28 shows the operator commands that are affected by the aaaa parameter in an MCS
environment. The commands are grouped by function. If the command is in a group
authorized by the aaaa parameter, it is processed. If the command is not authorized by the
aaaa parameter, it is ignored and an error message is sent to the master console.

Note: Information commands (Group 0) are always valid when entered into the input
stream.

Command

Group

o

2

3

1,2,3

Function

Informational

System Control

I/O Control

BRDCST

DISPLAY

CANCEL

CENOUT

DEFINE

HALT

HOLD

MOUNT

Commands

LOG REPLY

MSG SHOW
MODIFY SET

QUIESCE START

RELEASE STOP

RESET USERID

WRITELOG

UNLOAD VARY *

Console Control VARY*

Master Console All commands are valid, plus

VARY MASTCONS

VARY HARDCPY

VARY CPU

VARY STOR

VARY CH

Figure 28. Operator Command Groups

• VARY (Group 2) is accepted only to VARY a non-console
device online or offline. VARY (Group 3) provides only for
console switching and console reconfiguration or secondary
consoles.

Bit settings for the aaaa parameter are:
Bit

Bytes Bits Settings Meaning

0 0 1 Group 1 commands executed

(aa) 1 Group 2 commands executed

2 1 Group 3 commands executed

3-7 00000 Reserved

(aa) 0-7 OOOOOOOO Reserved

Example: If you wish to authorize commands from command groups 2 and 3 to be executed
when entered into the input stream, code the aaaa parameter: "6000"

MSGLEVEL default value in absence of a value in the JOB statement. Job control
statements and allocation/termination messages are recorded in the system output data set
aCC10rding to this value.

e
Kinds of job control statements recorded.

Section IV: Modifying the System 103

h

f

o
1

2

- JOB statements only.
- Input statements, cataloged procedure statements, and symbolic parameter

substitution values.
- Input statements only. A blank defaults to a value of O.

Kinds of allocation/termination messages recorded.

o - None, except in the case of an ABEND condition. (In that event, all messages are
recorded.)

1 - All. A blank defaults to a value of 1.

MSGCLASS default value (A-Z, 0-9) in absence of a value in JOB statement. Job control
statements and allocation/termination messages are recorded according to the message class
specified by this character. If the character is blank or absent, A is the default class.

DD Statement for the Input Stream

The reader/interpreter procedure must include a DD statement that describes the input stream. The
format for this statement is:

IIIEFRDER
II

DD UNIT=device, LABEL=(,type,),
VOLUME=SER=SYSIN,

II DCB=(list of attributes) [,DSNAME=name,DISP=OLD]

This statement must be named IEFRDER, as shown. The IEFRDER statement can be
overridden with a START command. The parameter requirements are as follows:

UNIT = device
specifies the device from which the input stream is read. Can be any device supported by
the queued sequential access method (QSAM). Device specified by its address, type, or
group.

LABEL=(,type)
describes the data set label (needed only for tape data sets). If omitted, default to a
standard label.

Note: Label types AL and AUL (American National Standard label types) should not be
used.

VOLUME = SER= SYSIN
specifies the volume containing the input stream. Required for magnetic tape or direct
access volumes. The serial SYSIN is recommended for identification of this volume, but
other serials can be used.

Note: The volume serial numbers should not identify a volume that contains a data set
written in ASCII.

DCB=(list of attributes)

x
X

specifies the characteristics of the input stream and the buffers. If the BLKSIZE, LRECL,
and BUFL subparameters are not specified, an 80-byte value is assigned to each. If the
procedure is going to be used for transient readers, the input must be unblocked 80-byte
records. Other subparameter fields may be specified as needed; otherwise, the QSAM
defualt attributes are assigned, as follows:

104 MFT Guide (Release 21.0)

(

(

\

) BUFNO - two buffers. (If the procedure is to used for transient readers, BUFNO= 1
must be specified.)

RECFM - U-format, with no control characters.

TRTCH - odd parity, no data conversion, and no translation.

DEN - lowest density.

DSNAME = name,DISP = disposition
specifies the name and disposition of the input stream data set to be read. Should be used
only with direct access input stream.

DISP=OLD
specifies that the input stream is an existing data set.

Note: OPTCD = Q should not be coded.

DD Statement for the Procedure Library

The reader/interpreter procedure must include a DD statement that defines the procedure
library. This statement must follow the IEFRDER statement which describes the input stream. The
format for this statement is:

//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR

This statement must be named IEFPDSI, as shown. The parameter requirements are as
follows:

DSNAME=SYSl.PROCLIB
identifies the procedure library. To concatenate other data sets with the system library,
follow the IEFPDSI DD statement with other unnamed DD statements expanding the
system procedure library.

DISP=SHR
specifies that the procedure library is an existing data set and can be shared with other
tasks.

Section IV: Modifying the System 105

DD Statement for the Spooling Data Set

The reader/interpreter procedure must include a DD statement that defines the spooling or
CPP (concurrent peripherial processing) data set. Two DCB parameters (BLKSIZE, and buffer
number) may be overridden by parameters in the input stream on DD* and DD DATA
statements. The spooling data set is used for intermediate storage of input stream data. The
format for this statement is:

IIIEFDATA
II

DD UNIT=device,
SPACE=(units,(quantities),RLSE,CONTIG),
VOLUME=SER=volser,DISP=(status,disp),
DCB=(list of attributes)

x
X
X II

II

This statement must be named IEFDAT A, as shown. The parameter requirements are as
follows:

UNIT = device
specifies one or more direct access devices on which data sets from the input stream will be
written. If more than one device is provided, the different data sets are not necessarily
written in a continuous manner from device to device. Instead, the different data sets might
be "spread" among the available devices in accordance with a reader/interpreter algorithm
that is based on priorities and optimum access. If you want all the input stream data sets
written on the same device, use the VOLUME parameter in this DD statement to identify
the specific volume. The DEFER option must not be used.

Caution: Do not use UNIT group names unless the request is for no more than one device,
or the group is defined to have devices of only one type.

SPACE=(units,(quantities),RLSE,CONTIG)
specifies space allocation for the direct access volume. The RLSE subparameter releases all
unused space to the system when the data set is closed. The CONTIG subparameter ensures
that space is allocated in contiguous tracks or cylinders.

Note: The first space allocation made by the system will be for the reader/interpreter
program itself, which does not need or use the space.

VOLUME=SER=volser
identifies a specific direct access volume. This parameter is not required, but you can use it
to cause all input stream data sets to be written on the same volume. You should also use
this parameter if you specify the DISP parameter.

DISP= (status,disp)
specifies the status and disposition of the spooling data set. This parameter is not required,

, but can be used to bypass the first space allocation (as explained above). To do this, specify

106 MFf Guide (Release 21.0)

(

/
\
~

) the parameter as DISP=OLD. The system then assumes that the data set exists, and does
not allocate space for the reader/interpreter program. Subsequently, the reader/interpreter
forces a DISP=NEW,PASS status for the spooling data set so that space is allocated on it
for recording the. input stream data sets.

DCB=(list of attributes)
specifies the characteristics of the spooling data set and the buffers to be used by the data
set. The RECFM and the LRECL subparameters cannot be overridden and should not be
specified. The values for these subparamaters are RECFM=FB and LRECL=80. The
BLKSIZE and BUFL sybparameters must be specified in the IEFDAT A DD statement. The
BLKSIZE and BUFNO values may be overridden by specifying them on a DD ... or DD
DATA statement in the reader input stream. However, the BLKSIZE and BUFNO values
on the IEFDAT A statement are always used as upper limits. Thus, if the overriding
statements exceed these limits, the IEFDATA values are used. (For a more detailed
explanation of how to override these parameters, see the Job Control Language publication.) The
BUFNO and RECFM subparameters, if not specified, assume the QSAM default attributes
of two buffers.

BUFNO - two buffers.

RECFM - U-format, witr no control characters.

DSORG=PS
Must be coded as shown.

Reader/Interpreter Procedure Used by Restart

The procedure, named IEFREINT, used to process job control statements for a job being
restarted, is a skeleton of the normal reader/interpreter procedures. Its main function are to
define the restart reader/interpreter program, named IEFVRRC, and to make the procedure
library accessible to that program. The procedure is:

IIIEFPROC
II
II
IIIEFRDER
IIIEFPDSI
II I EFDATA

Procedure: IEFREINT
EXEC PGM=IEFVRRC, RESTART READER PROGRAM X

RESTART READER REGION X
PARM=RESTART

DD DUMMY
DD DSNAME=SYS1.PROCLIB,DISP=OLD PROCEDURE LIBRARY
DD DUMMY

When creating your own restart reader/interpreter procedure, you must conform to the
procedure format and the statement requirements. Use the IBM-supplied procedures as
examples. The statement requirements are explained individually in the following paragraphs.

Section IV: Modifying the System 107

The EXEC Statement

The EXEC statement specifies the reader/interpreter program. It also passes a parameter to
the reader/interpreter program. The format for the EXEC statement is:

//IEFPROC EXEC PGM=IEFVIIC,PARM=RESTART

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IEFVRRC
specifies the reader/interpreter program. The name of the program must be IEFVRRC, as
shown.

PARM=RESTART
must be coded as shown.

nn Statement for the Input Stream

Your procednre for the restart reader/interpreter must include a DD statement that describes
the input stream. The format for this statement is:

//IEFRDER DD DUMMY

This statement mustl be named IEFRDER, as shown. The parameter requirements are as
follows:

DUMMY
Must be coded as shown. System input is taken from the SYS 1.JOBQE data set which is
open already.

nn Statement for the Procedure Library

Your procedure for the restart reader/interpreter must include a DDstatement that defines the
procedure library. This statement must follow the IEFRDER statement which describes the
input stream. The format for this statement is:

//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD

This statement must be named IEFPDSI, as shown. The parameter requirements are as
follows:

DSNAME=SYS 1.PROCLIB
identifies the procedure library. To concatenate other data sets with the system library, you
may follow the IEFPDSI DD statement with other unnamed DD statements thus expanding
the system procedure library.

DISP=OLD
specifies that the procedure library is an existing data set.

nn Statement for the Spooling Data Set

The procedure for the restart reader/interpreter must include a DD statement that defines the
CPP (concurrent peripheral processing) data set. Since. the data is already in the checkpoint
data set, DUMMY serves as operand. The format for this statement is:

108 MFT Guide (Release 21.0)

(

(

\\1,.

) IIIEFDATA DD DUMMY

This statement must be named IEFDAT A, as shown. The parameter requirement is as
follows:

DUMMY
must be coded as shown.

Output Writer Procedures

A cataloged procedure for output writers requires two job control statement§: an EXEC
statement and a DD statement.

• An EXEC statement with the step name IEFPROC specifies the output writer program.
• A DD statement names IEFRDER defines the output data set.

System Output Writer

The standard output writer procedure supplied by IBM is named WTR. The standard
procedure is:

IIIEFPROC
II
IIIEFRDER
II
II
II

EXEC

DD

Procedure: WTR
PGM=IEFSD080,
PARM='PA'
UNIT=1403,VOLUME=(",35),
DSNAME=SYSOUT,DISP=(NEW,KEEP),
DCB=(BLKSIZE=133,LRECL=133,BUFL=133,
BUFNO=2,RECFM=FM)

X

X
X
X

When creating an output writer procedure, conform to the procedure format and the statement
requirements. Use the IBM-supplied proce<;lure as an example. The statement requirements are
explained individually in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the output writer program and its region size. It also passes a
set of parameters to the output writer program. The format for the EXEC statement is:

IIIEFPROC
II

EXEC PGM=IEFSD080,
PARM='cxxxxxxxx,seprname'

X

The step name must be IEFPROC, as shown. The parameter requirements are as follows:

PGM=IEFSD080
specifies the output writer program. The name of the program must be IEFSD080, as

. shown.

P ARM = 'cxxxxxxxx,seprname'
is a set of parameters for the output writer program. The first part of this parameter field
can contain from two to nine characters. The second part of this parameter field, if
specified, is separated from the first part by a comma, and contains a program name from
one to eight characters. Both parts of this parameter field are explained below.

Section IV: Modifying the System 109

c
an alphabetic character, either P (printer) or C (punch). Specifies the type of control
characters for the output of the writer.

xxxxxxxx
from one to eight (no padding required) single-character class names for system output. Specify

the type of output the writer can process; also establish the priority of the output classes,
with the highest priority on the left. Included class name parameters in the START
command override this entire set of class names in the cataloged procedure.

seprname
name of the program (up to eight characters) that provides job separation in the output

data set. Named program must reside in the link library (SYS1.LINKLIB). Either specify
the name IEFSD094 to use the output separator supplied by IBM, or specify the name of
your own program. Subparameter may be omitted, in which case no output separator is
used.

DD Statement for the OUTPUT Data Set

The procedure for the output writer must include a DD statement that defines the output data
set. The format for this statement is:

IIIEFRDER DD UNIT=device,LABEL=(,type), X
II VOLUME=(",volcount), X

II DSNAME=anyname,DISP=(NEW,KEEP), X

II DCB=(list of attributes)
II UCS=(code [, FOLD] [, VERIFY]), X

II
[ALIGN]

FCB=(image-id ,VERIFY) X

This statement must be named IEFRDER, as shown. The parameter requirements are as
follows:

UNIT = device
specifies the printer, magnetic tape, or card punch device on which the output data set will
be written. The rlevices that can be used are: 1403, 1442, 1443, 2400, 2400-1, 2400-2,
2400-3, 2400-4, 3400-2, 3400-3, 3400-4, 2520, 2540, or 3211.

LABEL=(,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME = (",volcount)
limits the number of tape volumes that can be used by this writer during its entire operation
(from the time it is started to the time it is stopped). Not required for printer or card punch
devices.

DSNAME=anyname
specifies a name for the output data set (tape only), so it can be referred to by subsequent
job steps. Also necessary for specification of the KEEP subparameter in the DISP field.

DISP=(NEW,KEEP)
specifies the KEEP subparameter to prevent deletion of the output data set (tape only) at
the conclusion of the job step.

110 MFT Guide (Release 21.0)

(

(

\.

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

DCB= (list of attributes)
specifies the characteristics of the output data set and the buffers. BLKSIZE and LRECL
sub parameter fields must be specified iIi all cases. BUFL subparameter field, if not
specified, is calculated on the basis of the BLKSIZE value. Other subparameter fields may
be specified as needed; otherwise, they will assume the QSAM default attributes which are:

BUFNO - three buffers for the 2540 device, two buffers for all other devices.

RECFM - U-format, with no control characters.

TRTCH - odd parity, no data conversion, and no translation.

DEN - lowest density.

UCS= (code[,FOLD n, VERIFY])
specifies the code for a universal character set (UCS) image that will be loaded into the
UCS buffer. FOLD causes bits zero and one to be ignored when comparing characters
between the UCS buffer and the print line buffer. This option allows lowercase character
codes to be printed in uppercase by an 'uppercase chain/train. VERIFY causes the UCS
image specfied to be output for the printer. The UCS parameter is optional and is valid only
when the output device is a 3211 printer or a 1403 printer.

FCB= (image-id[,ALIGN][,VERIFY]
causes a forms control buffer (FCB) image with the specified image-id to be loaded into the
FCB. One of two optional parameters, ALIGN or VERIFY can be coded. ALIGN and
VERIFY each allow the operator to align forms. VERIFY also causes the FCB image to be
output for the printer. The FCB parameter is optional and is valid only when the output
device is a 3211 printer.

By using a certain kind of procedure, it is possible to reduce the amount of CPU time
needed by the writer. This is done by having the SYSOUT writer intercept PUT instructions
and execute an EXCP only when all of a chain of buffers are full. This command chaining is
provided if the writer procedure specifies all of the following conditions:

1. It uses more than 3 buffers.
2. It uses machine control characters in writing to the OUTPUT print or punch device.
3. It does not use PCI.

I 4. The OUTPUT device is a printer other than a 3211 printer, or punch.

It should be noted that if a command chaining procedure is used to a punch, there is no
automatic punch recovery even though there are more than 3 buffers.

Note: When using the UCS parameter with the START WTR command for a 1403 printer'
with the universal character set feature, it lasts until the completion of the writer. The UCS
parameter cannot be overridden for a specific data set when using the (asynchronous) Sysout
Writer.

Direct Syaollt Writer -- TIle S}'IIcltrollo"s System Outp"t Writer Job

The direct SYSOUT writer is an option that results in writing output directly from
(synchronously with the execution of) the'problem program. It requires two job control
statements: an EXEC statement and a DD statement .

• The EXEC statement is named IEFPROC .
• The DD statement is named IEFRDER and describes the final output data set.

Section IV: Modifying the System III

The procedure supplied by mM is named OSO and is described in the following. To create
this procedure, follow its format.

//IEFPROC
//IEDRDER

Procedure: DSO
EXEC PGM=IEFDSO,PARM=(PA"A)
DD UNIT=2400,DSN=SYSOUT,DISP=(NEW,KEEP),LABEL=(,SL),

VOL=(",05),DCB=(BUFNO=3)

The EXEC Statement

The EXEC statement SP(·:ifies the direct SYSOUT writer. It is also used to give the writer
program necessary operat· ng information.

//IE.FPROC EXEC PGM=IEFDSO,REGION=8K,PARM=(cx"jjjjjjjj)

IEFPROC
Name of the EXEC statement. Required as shown.

IEFDSO
Name of the writer program.

PARM=
Information for the IEFDSO program.

c
P for printer or C for card punch. Describes the final hard-copy medium. Must be given.

x
The SYSOUT class to be proc,·ssed. Overriden to value in START command. If not
stated here, must be given in t Ie START command.

,jjjjjjjj
J obclasses to be processed.

From zero to eight letters (A - 0) showing the job classes to be processed.

If any job classes are named in the START command, they overrule all started here.

If none are named here, then the job classes will be those assigned to the partition for
which this writer is started.

The nn statement

This DD statement describes the kind of volume to be used and the format of the data set.

I/IEFRDFR

IEFRDER

DD UNIT=name,DSN=anyname,DISP=(NEW,KEEP),LABEL=(,SL),
VOL=(, , , vol count), DCB(list), UCS=(code [, FOLD] [,VERIFY j

[
,ALIGN]

FCB=(IMAGE-ID ,VERIFY)

Name of the DO statement. Required as shown for IEFDSO.

name
Any fonn of unit identification may be used, for example, OOE, 2400, or TAPE.
Multiple parallel units (UNIT=2400,2) cannot be used.

112 MFf Guide (Release 21.7)

)
DSN =anyname

Name of a non-temporary data set. A name must be given.
If stated here and in the START command also, the latter rules. The name is used in the
disposition message at step termination, and must be used to identify the data set if it is to
be printed later from tape.

DISP= (NEW,KEEP)
Required disposition.

Label= (,SL)
If DSO is being used to write to magnetic tape, standard label tapes are required. The label
description may be stated explicity or may be omitted, in which case SL is assumed.

",volcount
1 - 225.
The maximum number of volumes a data set to be processed by this writer will have.
Determines the amount of job queue space allocated to each SYSOUT data set processed by
this writer. After the first 5 volumes, each subsequent.15 require another job queue record.
If omitted, 1 is assumed.
If stated here and also in the START command, the latter rules.
This value cannot be given in a DD statement of a job to be processed.

list
The following DCB parameters gain control only if they are not also given in the SYSOUT
DD statement or in the DCB macro instruction (that is, default values can be stated in this
procedure) :

BFALN, BFTEK, BUFL, BUFNO, BLKSIZE, LRECL, RECFM, NCP, HIARCHY, UCS.

The following DCB parameters, if stated here, override all except those given in a START
command:

CODE, DEN, MODE, OPTCD, PRTSP, STACK, TRTCH.

The FUNC parameter, when coded here, pertains only to system messages, not data set
output. Punch (P) and interpret (I) are the only valid subparameters for system message
processing.

UCS=(code[,FOLD][,VERIFY])
A UCS image can be'specfied if the device is a UCS printer. the specified code is a one to
four-character name that identifies the DCS image.

FOLD and VERIFY are optional. If the UCS parameter is specified in the START
command, that specification will be used instead of the specification in this procedure.

FCB=(image-[,ALIGN][,VERIFY]
An FCB image load can be specified if the output device is a 3211 printer. The specified
image-id is a one to four-character name that identifies the FCB image.

ALIGN or VERIFY is optional, but only one can be coded. If the FCB parameter is
specified in the ST ART command, that specification will be used instead of the specification
in this procedure.

Note: UCS and FCB images established in the DSO procedure or in the START command are
maintained from job to job until one or both are overridden by a subsequent DD statement or
SETPRT macro instruction. If this happens and tl).e new image is a default image, it is

Section IV: Modifying the System 113

maintained until another image is specified. If the current image is not a default, the original
image established in the ST ART command or the DSO procedure will be used.

Optional SYSABEND Data Set

If the user desires an ABEND dump in the event that the reader, writer or initiator task is
abnormally terminated, a / /SYSABEND DD statement may be included in the respective
procedures. It must be of the following form:

IISYSABEND DD SYSOUT=x

This statement defines the system output class for printed output if the task whose procedure
contains the / /SYSABEND DD statement is abnormally terminated. The "x" must be the
alphabetic or numeric character that represents an output class for printed output. Any printed
output class can be specified.

In addition to the SYSOUT parameter, the user may include a UNIT parameter to specify
the intermediate direct access device and/or a SPACE parameter to specify the amount of
intermediate direct access space required for the dump data set before it is printed. The default
device type provided if the UNIT parameter is SYSDA; and the default allocation provided if
the SPACE parameter is omitted is 5 tracks primary and 1 track secondary. (The default space
allocation is only intended for a partial dump.)

Cataloging the Procedure

The IEBUPDTE utility program adds reader or direct sysout writer procedures to the cataloged
procedure library (SYS1.PROCLIB). Use of this program is fully explained in the Utilities
publication.

The following example shows the control statements needed to add a reader/interpreter
procedure and in output writer procedure to the procedure library. For this example, the
reader/interpreter procedure is named RDPROC4, and the output writer procedure is named
WTPROC2.

The EXEC statement in this example specifies the IEBUPDTE program. The P ARM= NEW
parameter indicates that all input to the utility program is contained in the data set defined by
the SYSIN statement.

The ADD control statement furnishes the name of the member to be added to the
procedure library. The three numbers following the member name indicate:

• The level of modification (00 indicates first run).
• The source of the modification (0 indicates user-supplied).
• The printed output desired (ALL indicates print entire updated member and control

statements) .

The NUMBER statement specifies the sequence numbers for records within the new
member. With this statement, the number 00000010 is assigned to the first record of the new
procedure, and subsequent records are incremented by 00000010.

IINEWPROCS
II
/ISYSPRINT
IISYSUT2
IISYSIN
.1
.1

JOB
EXEC
DD
DD
DD
ADD
NUMBER

114 MFT Guide (Release 21.0)

09#770,D.P.BROWN
PGM=IEBUPDTE,PARM=NEW
SYSOUT=A
DSNAME=SYS1.PROCLIB,DISP=OLD
DATA
RDPROC4, LEVEL=OO "SOURCE=O, LIST=ALL
NEW1=10,INCR=10

(

,/

\
"It

)
IIIEFPROC
II
IIIEFRDER
II
II
II
IIIEFPDSI
IIIEFDATA
II
II
II
II
.1
.1
IIIEFPROC
II
IIIEFRDER
II
II
II
1*

EXEC

DD

DD
DD

ADD
NUMBER
EXEC

DD

PGM=IEFIRC
PARM='8010100150102490501SYSDA
UNIT=2400-2,LABEL=(,NL),
VOLUME=SER=SYSIN,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=1,RECFM=F,TRTCH=C,DEN=0)
DSNAME=SYS1.PROCLIB,DISP=SHR
UNIT=2311,
SPACE=(80,(500,500),RLSE,CONTIG),
VOLUME=SER=222222,DISP=OLD,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=2,RECFM=F)
WTPROC2,LEVEL=OO,SOURCE=0,LIST=ALL
NEW=10,INCR=10
PGM=IEFSD080
PARM='PAC'
UNIT=2400-2,LABEL=(,NL),VOLUME=(",40),
DSNAME=SYSOUT,DISP=(NEW,KEEP),
DCB=(BLKSIZE=133,LRECL=133,RECFM=F,
TRTCH=C)

X

X
X
X

X
X
X
X

X

X
X
X

Example of the Use of Symbolic Parameters in Cataloged Reader and
Writer Procedures.

Symbolic parameters in a cataloged procedure started via the ST ART operator command may
be assigned values in the START command that starts the procedure. This assigns a value to
any parameter in the EXEC or in any DD statement when the procedure starts

A cataloged procedure that uses symbolic parameters may also have a PROC statement that
shows the default values for the symbolic parameters. Keywords that may be used in a JOB,
EXEC, or DD statement cannot be used as symbolic parameters. (For example, you cannot
say that DISP is equal to & REGION.) However, sub parameter keywords of the DD statement
can be used as symbolic parameters. (For example, you may code BUFNO= & BUFNO.)

The following example shows a reader/interpreter procedure that contains symbolic
parameters.

IIRDPR5
II
IIIEFPROC
II
IIIEFRDER
II
II
IIIEFPDSI
IIIEFDATA
II
II
II

PROC

EXEC

DD

DD
DD

The PROC Statement

REG=48,STIME=030,MCS=EOOO,MSGL=01,
PDSI='SYS1.PROCLIB',BLK=80,BUFNO=2
PGM=IEFIRC
PARM='801&STIME.05001024905010SYSDAbbb&MCS&MSGL'
UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
DCB=(BLKSIZE=80,LRECL=80,BUFL=80,
BUFNO=1,RECFM=F)
DSNAME=&PDSI,DISP=SHR
UNIT=SYSDA,
SPACE=(80,(500,500),RLSE,CONTIG),
DCB=(BLKSIZE=&BLK,LRECL=80,BUFL=&BLK,
BUFNO=&BUFNO,RECFM=F,DSORG=PS)

In the preceding illustration the PROC statement assigns default values to the symbolic
parameters & REG, & STIME, & MCS, & MSGL, & PDSI, & BLK, & BUFNO.

Section IV: Modifying the System 115

The START Command

These same symbolic parameters are assigned values with the following START command:

START RDPR5,REG=50,STIME=035,MCS=EOOO,MSGL=11,PDSI='SYS1.USER'
,BLK=400,BUFNO=1

SYSIN and SYSOUT Data Blocking

Performance advantages can be gained by blocking SYSIN and SYSOUT data. Blocking
reduces interference on the devices containing the intermediate data and improves direct access
space use. The IBM-supplied reader procedures provides three levels of SYSIN blocking;
review the blocking provided by the cataloged procedures of the various processors. Figure 29
shows the data blocking that is accepted by processors operating under MFT.

Blocking is obtained by including in the appropriate DD statement DCB information in the
general form

DCB= (RECFM=x,LRECL=x,BLKSIZE=x)

The various programmer's guides should be consulted to determine options that need not be
specified in individual cases. LRECL must be specified for the PL/I and FORTRAM H
SYSLIN DD cards when these files are blocked. Assembler F and FORTRAN G and Hare
effectively unlimited. Sort is limited by assembled-in values. The utilities and RPG are limited
by assembled-invalues of LRECL but may have a blocking factor other than 1. SY~IN and
SYSOUT for the FORTRAN E compiler cannot be blocked through the system input reader
and output writer, although the SYSOUT DD cards must include DCB=BLKSIZE= 121.

When instituting data blocking, consider the following variables:

SIZE option

REGION values

MINPART value

Default REGION value provided by the reader procedure

The FORTRAN H SIZE paramete"r is independent of blocking and buffering considerations,
although the REGION value must be 8K larger than the SIZE value.

116 MFT Guide (Release 21.0)

(

/
I\.,

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

Data Blocking LRECL
Accepted by Pro- RECFM
cessors under MFf BLKSIZE

SYSIN SYSLIN
Processor SYSPRINT SYSPUNCH (IEFDATA) (~3200)

American National 121 80 80 80
Standard COBOL FBA FB FB FB

Ff Ff Ff Ff

Assembler F 121 80 80 80
FBM FB FB FB
Ff Ff Ff Ff

FORTRAN E 121 80 80 80
(with PRFRM option) FM F FB FB

121 80 Ff Ff

FORTRAN G 120 80 80 80
FBSA FB FB FB
Ff Ff FT FT

FORTRAN H 137 80 80 80
VBA FB FB FB
FT FT Ff FT

PL/I F 125 80 <100 80
VBA FB FB FB
4+N*125 FT FT Ff

Linkage Editor 121 80
FM F,FS

E15,E18 121 80
Linkage Editor 121 80
F44 FM,FBM F,FS,FB,FBS

605 400

Linkage Editor 121 80
F88,F128 FM,FBM F,FS,FB,FBS

Ff~4840 3200

Sort 80
U FB
120 FT

RPG 121 80 80 80
FA F FB F
121 80 FT 80

Utilities 121 80
FBA NA FB
FT FT

F-Fixed; FA-Fixed, USASI control characters; FB-Fixed blocked; FBA=Fixed blocked, USASI control
characters; FBSA==Fixed blocked, standard blocks, USASI control characters; FBM-Fixed blocked, machine
control characters; VB-Variable blocked; VBA-Variable blocked, USASI control characters; Ff=Full track;
U-Undefined

Figure 29. Data Blocking Accepted by Processors Under MFf

Notes to Figure 29:

For compile-load-go cases, only the compile step must include complete SYSIN (SYSGO)
DeB specifications.

F=Fixed, FA: Fixed, USASI control characters, FB=Fixed blocked, FBA=Fixed blocked,
USASI control characters, FBM=Fixed blocked, machine control characters, VBA=Variable
blocked, USASI tontrol characters, FT=Full track, U=Undefined.

Section IV: Modifying the System 117

Partition sizes must be adequate to accommodate the specified blocking. The user should
consult the individual programmer guides.

Blocking the' Procedure Ubrary

Blocking the procedure library may, in some cases, improve the use of direct access space and
improve performance. It may be blocked at system generation or subsequently by using the
operating system utilities. Block size must be a multiple of 80. Increased buffer size necessary
for a blocked procedure library must be provided in the region parameter of the reader
procedures for MFT. The partition size must be increased by the block size rounded to the
next higher mUltiple of 2K.

In cases where the partition size has been increased for blocked SYSIN/SYSOOT in excess
of that actuallly required (due to rounding) and the excess is greater than the block size for
the procedure library, a further increase in partition size may not be necessary for processing
blocked records from the procedure library.

The following example shows the control statements needed to block the procedure library
using the IEBCOPY and IEHPROGM utility programs. Step C 1 of job BLOCK copies the
procedure library and blocks it to 400. It deletes the old copy and catalogs the new copy under
the name of LIB COPY. St~p Rl renames the procedure library to SYSI. PROCLIB and
catalogs it under that name.

IIBLOCK
IICl
I/SYSUTl

I/SYSUT2
II
II
IISYSPRINT
IISYSIN
1*

JOB
EXEC
DD

DD

DD
DD

ACCT,D82,MSGLEVEL=1
PGM=IEBCOPY
DSNAME=SYS1.PROCLIB,UNIT2311,DISP=(OLD,DELETE
,KEEP)
DSNAME=LIBCOPY,UNIT=2311,VOLUME=SER=111111, X
DISP=(NEW,CATLG,DELETE),DCB=(RECFM=FB,LRECL=80,X
BLKSIZE=400),SPACE=(TRK,(50,1,10))
SYSOUT=A
DUMMY

IIRl EXEC PGM=IEHPROGM
IIDDl DD UNIT=2311,VOLUME=SER=111111,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

1*

RENAME DSNAME=LIBCOPY,VOL=2311=111111,NEWNAME=SYS1.PROCLIB
CATLG DSNAME=SYS1.PROCLIB,VOL=2311=111111

1 J 8 MFT Guide (Release 21-.7)

) Resident Routines Options

The resident routines options are the BLDL feature, the resident reenterable modules feature,
and the RSVC and RERP features. These features permit pre loading into main storage
routines (or at least their addresses) that otherwise would be repeatedly loaded each time the
routines are requested. The Link list feature, also described in this chapter, permits references
to the Link library to be extended to other data sets.

Nucleus Resident Library Routines

The BLDL, reenterable modules, RSVC and RERP options, allow placing in the nucleus area
of main storage (make resident):

1. All, or a selection of, Link or SVC library directory entries.
2. A selected group of access method routines.
3. A selected group of type 3 and 4 SVC routines.
4. A selected group of error recovery procedures.
5. User-written reenterable routines from the Link library, the OS Loader, reenterable GSP

routines, and the PL/l shared library load module.

Placement occurs during the inital program load (IPL) process. The main storage area that
resident routines occupy becomes part of the "fixed storage" area of the system. In effect, the
nucleus is expanded.

These options are included in the system when it is generated. The System Generation
publication describes the procedure. The resident SVC routine option requires that the Transient
SVC Table option also be included in the system. To exercise control over the other options at
IPL time, specify the operator communication facility for these options when the system is
generated.

Specify the Link library (SYS1.LINKLIB) and SVC library (SYS1.SVCLIB) routines and
directory entries, the access method routines, the type 3 and 4 SVC routines, and the error
recovery procedures to be made resident thr.ough lists of linkage library, access method, SV C
routine, and the error recovery procedures load module names placed in the parameter library­
(SYS 1.PARMLIB).

A standard list and alternative lists of load module names may exist for the options. The
standard list (so called because its member name in the parameter library is predefined) is
automatically referred to during the IPL process when the operator communication facility is
not included in the system with the options. When the operator communication facility is
included, the operator must designate which list is to be used. IBM provides suggested standard
lists for the resident access method modules and resident SVC routine options. These lists are
in the starter system parameter library. Specify operator communication at system generation if
you intend to use both SVC and Link library BLDL lists.

The operator communication facility provides full control over all the options at IPL time,
i.e., selection of alternative or standard lists, and suppression of the options until the next IPL, or
the options are in effect at every IPL, using the standard lists. The operator communication
facility is required for the resident Link library modules option of MFT. Unless the operator
re~rs to load list (or lists) for this option in his RAM= reply, none of the modules named on
a load list is made resident.

This chapter discusses the function of each option, the creation of the ,parameter library
lists, and, lists the content of the resident access method modules and resident type 3 and 4

Section IV: Modifying the System 119

SVC routines standard lists. The Messages and Codes publication describes the message
(message number IEA101A) and replies associated with the options.

The Resident BLDL Table Option

When the system issues ATTACH, LINK, LOAD, or XCTL macro instructions requesting
load modules from partitioned data sets, the BLDL table operation searches the data set
directory for the location of the requested module and fetches the module. The resident BLDL
table option eliminates the directory search required during execution of these macro
instructions when a load module (whose directory entry is resident) is requested from the
linkage or SVC libraries.

This option builds lists of directory entries for use by ATTACH, LINK, LOAD, or XCTL
macro instructions when they request linkage or SVC library load modules. The BLDL
operation in the macro instruction routines searches the library directory only when the
directory entry for the requested load module is not present in the resident BLDL table.

List, 'in a member of SYS 1.P ARMLIB, the names of those linkage or SVC library load
modules whose directory entries are to be made resident. The member name for the standard
,list is IEABLDOO. The load module names must be listed in the same order as they appear in
the directory; that is, they must be in ascending collating sequence. Creation of parameter
library lists is discussed later in this chapter. The next section provides guidelines for choosing
the content of the list.

Note: Directory entries in the resident table are not updated as a result of updating the load
module in the library. The old version of the load module is used until an IPL operation takes
place and the new directory entry for the module is made resident.

Selecting Entries for the Resident BLDL Table

Any load module in the linkage or SVC library may have its directory entry placed in the
resident BLDL table. Other items to consider are:

1. Table Size.
Linkage library - Each entry requires 40 bytes.
SVC library - Each entry requires 32 bytes.

2. Frequency of use of the load module.

Table Size: The resident BLDL table is incorporated in the system nuclues. The additional
storage required is governed by the number of table entries and is acquired by reducing the
amount of dynamic storage area available; therefore, the system nucleus expands. Each
installation using the resident BLDL table option must determine the amount of storage it can
afford for the resident BLDL table.

Frequency of Use: Since resident routines reduce the amount of main storage available to
problem programs, select modules used frequently. The installation's workload should be
considered.

For Link Library Lists: The scheduler, linkage editor, and language processor(s) are possible
selections for Link library lists.

For SVC Library Lists: In general, use any module from the SVC library you would consider for ,
residence (RAM option). Do not create libraries for the following since they are not necessary:

• Load 1 of type 3 and 4 SVCs (i.e. IGCOOXXX).

120 MFT Guide (Release 21.0)

(

) • Modules selected for RAM, RERP, RSVC usage.

Recommended modules should be chosen from access methods and ERPs. Always avoid
placing the following modules in the BLDL list because the have internal BLDL tables and
internal directory entries: OPEN, CLOSE, TCLOSE, EOV, SCRATCH, ALLOCATE,
IEHATLAS, SETPRT, STOW, machine-check handler modules.

The SVC library list can be put in SYS l.P ARMLIB using the member name IEABLDnn. This
nn will be picked up when the operator specifies the system parameters with the response
BLDL=xx,nn.

List lEABLDOO

The IBM-supplied standard list IEABLDOO is:

SYS1.LINKLIB IEBCOMPR,IEBGENER,IEBPTPCH, IEBUPDTE, IEHLIST,IEHMOVE, X
IEHPROGRM,LINKEDIT,SORT

Resident Reenterable Modules Option

The resident reenterable modules options make it possible to pre-load reenterable access
method module and user-written reenterable Link library modules, the OS Loader, reenterable
GSP routines, and the PL/ 1 shared library load module. These two otherwise inpendent
options -- the resident access method modules option and the resident Link library modules
option -- use similarly named load lists (lEAIGG ..) and share an operator reply (RAM=) at
IPL time to refer to their separate lists.

The resident access methods modules option uses a list or list (named IEAIGG ..) to name
the modules to be preloaded and the RESIDNT=ACSMETH entry (in the system generation
statements) to cause use of the pre-loaded modules when a DCB is being completed. The
system comes with a standard list (lEAIGGOO) which is used, unless it was changed or ask for
the use of another list in the operator reply.

The resident Link library modules option uses a list or lists (also named IEAIGG .. , but
ending in a pair of characters other than the ones used to name the resident access methods
option lists) to name the modules to be pre-loaded. The RESIDNT=RENTCODE entry (in
the system generation statements) causes the pre-loaded modules to be used when a LINK,
ATTACH, or XCTL macro instruction refers to the name of a resident module. Because there
is no standard list, no modules are loaded unless you provide such a list.

To use both access method modules and Link library modules options, the system
generation statement entry is: RESIDNT=ACSMETH,RENTCODE and the operator reply is
RAM=kk,ll,mm,nn. Each pair of letters is a pair of numbers (like 01) that identify a list of
either access method or user-written Link library modules and the OS Loader.

The Resident Access Method Modules Option

This option places access method load modules in the system nucleus and creates a resident list
of these modules. A LOAD macro instruction requesting any access method module first scans
the resident list. If the module is listed, no fetch operation is required.

List in a member of SYS l.P ARMLIB, the load module names of access method load
modules to be made resident. The member name for the standard list is IEAIGGOO. A
standard list of most frequently used access method modules is supplied by IBM, and is in

Section IV: Modifying the System 121

SYS l.P ARMLIB of the starter system under the standard member name. The content of the
list is tabulated at the end of this description.

The creation of parameter library lists is discussed in this section. The next section discusses
some considerations pertaining to the use of the access method option.

ABEND and ABDUMP Requirements

The control program uses three BSAM modules (IGG019BA, IGG019BB, and the
device-dependent EOB module) to provide main storage dumps during abnormal termination
processing. These modules should be made resident using the RAM option. This avoids
bypassing the dump facility when there is insufficient space available within the partition of the
failing task into which these modules must be loaded.

Considerations for Use

The storage space required for each access method module consists of the byte requirements of
the module and its associated load request block (LRB). The Storage Estimates publication
provides the byte requirements for access method modules eligible to be made resident. The
byte requirement of the code supporting the option is also provided.

All access method modules placed in the system nucleus are "only loadable". ATTACH,
LINK, and XCTL macro instructions cannot refer to the resident modules.

Users can alter the standard access method list (or create alternative lists) to include access
method modules supporting program controlled interrupt scheduling (PCI), exchange buffering,
track overflow, and the UPDAT function of the OPEN macroinstruction.

For example, if checkpoint/restart is used, the following access method routines must be
main storage resident, whether the checkpoint data set is on tape or on DASD (direct access
storage device):

IGGOl9BA, IGGO,l9BB, IGGOl9CC

If the checkpoint data set is on DASD these additional modules must be resident:

IGGOl9CD, IGGOl9CH, IGG019BC

If chained scheduling is used to write the checkpoint data set,

IGG019CU and IGG019CW

also must be resident. If the data set is on DASD and chained scheduling is used

IGGOl9CV and IGG019CZ

must be resident together with the earlier two routines. If track overflow is used to write the
data set,

IGG019Cl, IGGOl9C2, and IGG019C3

must be resident.

When a composite console is used, an alternative list should include BSAM modules for
card readers and printers. .

If you specify either the 3330 or the 2305 I/O devices in your system, add the following
modules to the standard RAM list (IEAIGGOO):

122 MFT Guide (Release 21.0)

(

(

\:,.

Page of GC27-6939-1O
Revised April 16, 1973
By TNL: GN28-2546

IGG019C4, IGG019FP, and IGG019EK

IGG019CO must also be resident and is on the standard RAM list.

If you use the SAM "search direct" option, it is advisable. to make IGG019FN, and
IGG019FP, and IGG019C4 resident through the standard RAM list. Performance is improved
and required region size is decreased if these modules are resident.

With MFT, the system management facilities (SMF) option requires these additicnaj
modules to be resident: .

IGG019BA, IGG019BB

If the SMF recording is on tape, IGG019CC must be resident; if the SMF data set is on a
direct access device, IGGO 19CD must be resident.

With MFT, the use of the log facility requires IGG019BA, IGG019BB, and IGG019CD to

I be resident. If the system log data sets are on a device with rotational position sensing (RPS),
you must also make IGG019CJ and IGG019FN resident.

To be eligible for use with the resident access method option, access method load moduks
must be reenterable. The module name must be of the· form IGG019xx, where xx can he any
two alphameric characters.

Section IV: Modifying the System 123

List lEAIGGOO

The content of the IBM-supplied standard list IEAIGGOO is:

Module Name Access Metbqd FunetioD

IGG019AV QSAM(SB) PUT Locate for Dummy Data Set

IGG019AN QSAM(SB) Backward Move - Format F, FB, U Records
IGG019AM QSAM(SB) Backward Locate - Format F, FB, U Records
IGG019BE BSAM Magnetic Tape Forward Space or Backspace
IGG019AG QSAM(SB) GET Move with CNTL - Format V Records (Card

Reader)
IGG(119CB SAM Space or Skip Printer
IGG019CA SAM Stacker Select (Card Reader)
IGG019AK QSAM(SB) PUT Move, Format F, FB, U Records

IGG019AJ QSAM(SB) PUT Locate, Format V, VB Records

IGG019AI QSAM(SB) PUT Locate, Format F, FB, U Records
IGG019AC QSAM(SB) GET Move, Format F, FB, U Records

IGG019AB QSAM(SB) GET Locate, Format V, VB Recorqs
IGG019AA QSAM(SB) GET Locate, Format F, FB, U Records
IGG019AR QSAM(SB) PUT Synchronization Routine
IGG019AQ QSAM(SB) GET Synchronization Routine

IGG019AL QSAM(SB) PUT Move, Format V, VB Records
IGG019AD QSAM(SB) GET Move, Format V, VB Records
IGGOt9BD BSAM NOTE/POINT Tape
I(.G019BC BSAM NOTE/POINT Disk
IGG019BB BSAM CHECK (all devices)

IGGOJ9BA BSAM READ/WRITE (all devices)

IGGOJIJCK SAM SYSIN Delimiter Check (Appendage)

IGG019CJ SAM Read Length Check, Format V Records
(Appendage)

IGGOl9CI SAM Length Check, Format FB Records (Appendage)
IGG019CH SAM End-of-Extent Check (Data Extent Block)

(Appendage)

IGG019CL SAM Printer Test Channels 9,12 (Appendage)

IGG019CF SAM ASA Character to Command Code
(Printer-Punch)

IOC,019CE SAM End-of-Block (Printer-Punch)

IGG019CD SAM Schedules I/O for Direct Access Output
IGG019CC SAM Schedules I/O for Tape, Direct Access

Input, Card Reader, Paper Tape Reader
IGG019CO SAM Channel end (Format U).

IGGOJ9C4 SAM Search Direct (SD) or Rotational Position
Sensing. (RPS) Fixed Standard

End-of-Extent Appendage.

IGGOl9FN SAM Checks RPS values (PO). Start I/O for
Search Direct (SO).

IGG019FP SAM Channel end appendage for S .!arch Direct
(SO).

SB-simple buffering
SAM-common sequential access method routines

124 MIT Guide (Release 21.7)

Note: If the system generation statements specify the use of both MCS and of an IBM 2740
Communications Terminal as an operator's console, the RAM option list (module IEAIGGOO)
is effectively extended by the following character constants in the nucleus initiation program
module IEAANIP:

DC C'IGG019MA'
DC C'IGG019MB'
DC C'IGG019MO'

BTAM Read/Write module
BTAM Appendage
BTAM 2740 module

The effect of these DCs is that the named modules are loaded whether or not the RAM option
is specified in the system generation statements. If RAM is not specified, they are loaded into
the RAM area (even if the operator cancels use of the RAM option).

Resident Link Library Modules Option

This option permits pre loading user-written reenterable Link library modules, the IBM-supplied
OS/360 Loader, reenterable GSP routines, and the PL/t shared library load module. The use
of a LINK, ATTACH, LOAD, or XCTL macro instruction causes the contents supervision
routines to find out whether the module is main storage resid.ent already. If it is, the module
already resident is used for that partition in which the macro instruction was used. If it is not,
the module is loaded from the Link library into the requesting partition.

IBM-supplied modules, except those of the OS/360 Loader, GSP routines, and the PL/t
shared library load module cannot be used with this option. Any user-written routine that is
reenterable may be used, for example, a user-written reader routine that is reenterable.

Adding the Resident Link Library Option

To add the option:

• Code RESIDNT=RENTCODE in your system generation statements to have the contents
supervision routines find out whether the load module is already resident in main storage.

• Code OPTION=COMM in your system generation statements to allow the operator to have
the modules preloaded at IPL time.

• Add to the Parameter library, a list or lists of names of reenterable modules to be
preloaded. Each module name must be followed by its alias names (separated by commas).

• Have the operator specify the list or lists in his RAM= reply at IPL time.

Code RESIDNT=RENTCODE and OPTION=COMM to include certain IBM supplied
coding in your system.

Name the list of reenterable Link library modules IEAIGGxx. The final two characters (xx)
of the name may be any· EBCDIC characters but should be different from any pair used to
name a list of modules for the resident access method modules option. (The lists for the latter
option are also named IEAIGG ..). Add the list, or lists, to the Parameter library as described
later in this section.

The modules are finally and actually preloaded if the operator includes the last two
characters of the list name in his answer RAM= at IPL time. (For example, the name of the
list of names of operator's reply must be of the form: RAM= .. , .. ,aa, ..) Since there is no
standard list for this option, no modules are loaded unless you have constructed a list of
names, added it to the Parameter library, and the operator refers to it (as described) in his
RAM= response.

Section IV: Modifying the System 125

The Resident SVC Routines Option

This option places any of the type 3 and 4 SVC routine load modules in main storage. Some,
or all, of the modules associated with a SVC service routine may be made resident. Placing the
most frequently used SVC load modules of a system service routine, such as OPEN, in main
storage improves system performance. For type 3 SVC load modules and initial type 4 SVC
load modules, the SVC table entries associated with these modules are adjusted to reflect an
entry point address rather than a relative track address. A resident SVC load list is used by the
XCTL macro instruction for transfer of control between resident type 4 SVC load modules.

List in a member of SYS l.PARMLIB, the type 3 and 4 SVC load modules to be made
resident. The member name for the standard list is IEARSVOO. Such a standard list (shown
below) is provided by IBM in SYSl.PARMLIB of the starter system. The creation of
parameter library lists is discussed later in this chapter.

If the system includes the Multiple Console Support (MCS) function, to improve MCS
performance add to the standard list (or include in a list of your own) IGC0007B, the name of
the first load module of the SVC 72 routine.

The Storage Estimates publication provides the byte requirements of type 3 and 4 SVC
routines eligible to be made resident. The byte requirement of the code supporting the option
is also provided.

List IEARSVOO

The content of the IBM-supplied standard list IEARSVOO is:

Module Name

IEG0193A

IEG0194E

IEG0195A

IFG0195J

IFG0196J

IFG0196L

IFG0196M

IFG0196V

IFG0196W

IFG0198N

IFG0200V

IFG0200W

IFG0200Y

IFG0202E

IFG0202J

IFG0202K

IFG0202L

IFG0551B

IGCOOOIF

IGCOOOI1

I GCOO02 *
IGC0002B

IGCOOO5E

IGG0191A

IGG0191B

Function

Open - Volume Serial Function

Open - Unit Selection and DSCB Read

Open - DSCB and JFCB Merge

Open - DSCB to JFCB Merge

Open - JFCB to DCB Merge

Open - Merge and DCB Exit Routine

Open - Merge DCB to JFCB

Open - Access Method Determination

Open - Access Method Executor

Open - Rewrite JFCB and Final Load

Close - Initialization and Read JFCB and DSCB

Close - Access Method Interface

Close - Access Method Interface and Write JFCB

Close - Write File Mark

Close - Restore System Function

Close - Restore User Function

Close - Final Load

EOV - Synad Executor

Purge Routine

Open - Initial Load

Close - Initial Load

Open/Glose Type=J - Alternate Initial Load for Open

EOV - Initial Load

Open - DEB Construction (First Load)

Open - Main Executor (First Load)

126 MFT Guide (Release 21.0)

(

IGG0191D

IGG01910

IGG01911

IGG01917

IGG0196A

IGG0196B

IGG0201Y

IGG0201Z

Open - Direct Access Executor

Open - Load Executor (First Load)

Open - lOB and Buffer Construction

Open - Load Executor (Second Load)

Open - DEB Construction (Second Load)

Open - Main Executor (Second Load)

Close - Release Work Areas and Buffers

Close - SAM Executor

*The last (eighth) character is a 12 and 0 punch. This character had no assigned graphic in
EBCDIC. This is b (the blank character). In BCD, graphic is ? (the question mark).

The Resident E"or Recovery Procedure Option

This option places error recovery procedures in main storage. Some, or all, of the modules
associated with the handling of an 110 error may be made resident. If an 110 device
frequently requires ERP processing, system performance improves if the error recovery
procedures are made resident. The list of those error recovery procedures that may be made
resident in main storage is contained in the Storage Estimates publication. An 110 supervisor
request for an error recovery procedure will result in a search of the resident error recovery
procedure list. If the error recovery procedure is resident, no fetch operation is required.

List in a member of SYSl.PARMLIB, the module names of error recovery procedures to be
made resident. The member name for the standard list is IEAIGEOO. After system generation,
there remains the option of indicating which error recovery procedures are to be made
resident. The error recovery procedures should be listed by expected frequency of use; the
least used module is first in the list. Note: The format of the IBM-supplied IEAIGEOO list
contains the required library name, SYS 1.SVCLIB, and no error recovery procedure names. After
system generation, IEAIGEOO can be updated to indicate which error recovery procedures are

to be made resident or an alternate list can be created. Until this update is performed, no error
recovery procedures will be made resident during the IPL process. The creation of parameter
library lists is discussed later in this chapter.

The Storage Estimates publication provides the byte requirements of error recovery procedures
that may be made resident. The byte requirement of the code supporting the option is also
provided.

Creating Parameter Library Lists

Use the IEBUPDTE utility program to construct the required lists of load module names in the
parameter library. Standard member names for these lists are:

IEABLDOO
IEAIGGOO
IEARSCOO
IEAIGEOO
LNKLSTOO

for the BLDL table option
for the access method option
for the SVC routine option
for the error recovery procedure option
for the link library list option

These are the member names that the nucleus initialization program recognizes at IPL time
in the absence of any other specification, i.e., when the operator communication facility is not
incorporated.

Note: The nucleus initialization program (NIP) will search the system catalog to locate the
SYS 1.P ARMLIB data set. If it is not found in the catalog, SYS 1.P ARM LIB is assumed to
reside on the IPL volume. If no VTOC entry can be found, the operator will receive message

Section IV: Modifying the System 127

IEA2111 "OBTAIN FAILED FOR SYSl.PARMLIB DATA SET". Message IEA2081 "fff
FUNCTION INOPERATIVE" will follow either of these messages. The fff parameter - RAM,
BLDL, RSVC, or RERP - shows which of the functions cannot be implemented. Processing
will continue; however, any resident functions dependent on parameter lists contained in the
parameter library will be omitted from the system nucleus.

Except for LNKLSTOO, the input format (to IEBUPDTE) for the lists is the same for all
three options, consisting of library identification followed by the load module names. Use
eighty character records with the initial or only record containing the library identification.
Continuation is indicated by placing a comma after the last name in a record and a nonblank
character'in column 72. Subsequent records must start in column 16.

The initial record format (with continuation) is:

SYS1.LINKLIB
[b ...] SYS1.SVCLIB b ... name1,name2,name3, ...

Subsequent records do not contain the library name.

SYS I.LINKLIB indicates that linkage library load module names follow.

SYSl.SVCLIB indicates that SVC library module names follow.

x

You may construct alternative lists for all but the LNKLSTOO option and place them in the
parameter library. Member names for these alternative lists are of the form:

IEABLDxx
IEAIGGxx
IEARSVxx
IEAIGExx
LNKLSTOO

for the BLDL option
for the resident access method option
for the resident SVC routine option
for the resident error recovery procedure option
for the link library list option

where xx can be any two alphameric characters.

Use of the alternative lists is indicated by the operator at IPL time and requires that the
communication facility be present. When the communication facility is present, the operator
must indicate that the standard list is to be used; that alternative lists are to be used; or that,
for this IPL, the option(s) will not be used. In the latter case, no r~sident BLDL table, access
method routines, SVC routines or error recovery procedures are placed in the nucleus.

Example

The following coding illustrates the format and content of a BLDL option list that might be
used to support the resident BLDL table option. The operator, at IPL time, would have to
indicate the member name, IEABLDAE to the system. The load module names listed are from
the Assembler (E), Linkage Editor, and scheduler components of the operating system. Note
that the module names are listed in ascending collating sequence as required for the resident
BLDL option. Resident access method or SVC modules should be listed in order of anticipated
frequency of use.

128 MFT Guide (Release 21.0)

(

/

//BLDLIST EXEC PGM=IEBUPDTE,APRM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.PARMLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=IEABLDAE,LIST=ALL
./ NUMBER NEW1=01,INCR=02
SYS1.LINK GO,IEEGSTO,IEEGK1GM,IEEICIPE,IEEIC2NQ,IEEIC3JF, X

IEEQOTOO,IEFINTQS,IEFK1IIEFSD008,IEFW21SD,IEFXA, X
IETASM,IETDI,IETE1,IETE2,IETE2A,IETE3,IETE3A,IETE4M, X
IETE4P,IETE4S,IETES,IETESA,IETESE,IETESP,IETINP,IETMAC, X
IETPP,IETRTA,IETRTB,IET07,IET071,IET08,IET09,IET09I, X
IET10,IET10B,IET21A,IET21B,IET21C,IET21D,IEWL,IEWSZOVR

./ ENDUP
/*

Note: During IPL the operator reply "L" may be used in conjunction with a list specification
and causes the content of the list to be printed. Use this feature initially (especially with
extensive lists) to easily identify format errors, e.g., a 9 character name, or incorrect name
specifications.

Example of the ERP Option List

The following coding illustrates the format and content of an ERP option list that may be used
to support the resident ERP option. The operator, at IPL time, would have to indicate the
member name, IEAIGEO 1, to the system. The load module names listed are the optical reader
ERPs, write-to-operator, statistics update, I/O purge, OBR and SDR/CCR modules. Note that
the standard resident ERP list (IEAIGEOO) contains no error routine member names and that
IEAIGEOI is an alternate list.

//ERPLIST EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.PARMLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=IEAIGE01,LIST=AL
./ NUMBER NEW1=01,INCR=02
SYS1.SVCLIB IGE0011B,IGE0011C,IGE0011D,

./ ENDUP
/*

IGE002SC,IGE012SC,IGE022SC,
IGE002SD,IGE002SE,IGE002SF,
IGE012SF,IGEOS2SF

X
X
X

Section IV: Modifying the System 129

Job Queue Format

The job queue format is specified when the system is generated and may be altered during
subsequent system start procedures. Formatting consists of specifying the number of queue'
records in a job queue logical track, reserving queue records for initiators, the
write-to-programmer routine, and reader/interpreters, and reserving queue records for job
cancellation.

The basic element of the system job queue (the data set SYSl.SYSJOBQE) is a 176-byte
record -- the queue record. The total number of queue records available is fixed by the space
allocated to the SYS 1.SYSJOBQE data set. Queue records contain the tables, control blocks,
and system messages developed by the reader/interpreter, write-to-programmer, and initiator
control program routines -- the information used to run a job.

Lack of queue records to work with is not critical for a reader/interpreter routine. In MFT,
the operator will receive a message if there is insufficient space for a reader/interpeter. He
may wait for space or cancel the reader. An initiator, however, must have sufficient queue records
available to complete the initiation and running of a job or the job is canceled. In addition queue
records must be reserved for use by initiators in the event job cancellation does take place. The
main function of job queue formatting is to reserve queue records for initiator use.

To format the job queue:

1. Designate the number of queue records to be contained in a job queue logical track. A
logical track consists of a header record (20 bytes) plus the designated number of queue
records. Reader/interpreters and initiators are assigned queue records in terms of logical
tracks.

2. Designate the number of queue records to be reserved for use by an initiator. Each initiator
is allocated this number of records.

3. Designate the number of queue records to be reserved for use in case of job cancellation. All
initiators that cancel use these queue records. If the allocation is insufficient, the initiator is
placed in aWAIT state and a message issued.

4. Designate the number of queue records to be reserved for write-to-programmer routine use
for each job that may be started by an initiator.

The balance of the queue (total queue records less the reservations in items 2, 3, and 4) is
available for use by the reader/interpreters.

Specify initial values for logical track size, queue record reservation for initators, and queue
record reservation for job cancellation, in the SCHEDULR macro instruction parameters
JOBQFMT, JOBQLMT, JOBQTMT, and JOBQWTP respectively. The System Generation
publication describes the procedure.

The. service aids program IMCJQDMP provides a formatted dump of the entire job queue,
or selected portions of it. The formatted dump includes the master queue control record
(QCR) which contains the physical parameters of the. job queue. For a complete description of
IMCJQDMP, see the publication Service Aids.

There are no comprehensive, foolproof formulas for calculating values of JOBQFMT,
JOBQLMT, JOBQTMT, and JOBQWTP. The values to be estimated are dependent upon the
requirements and structure of the jobs to be presented to the system, the number of job steps,
the number of I/O devices required, the number and type of data sets, the number of volumes,
and most unpredictable, the number of system messages issued during the initiation and

130 MFT Guide (Release 21.0)

(

/

\

)
running of a job. The rest of this topic provides some basic guidelines for your use in
determining these values.

Logical Track Size -- JOBQFMT

Logical track size -- the number of queue records in a logical track -- affects the efficient use
of queue records. Reader/interpreters and initiators are allocated queue records in terms of
logical tracks. Unused queue records in a logical track are not available for use by other
reader /interpreters or initiators. Therefore, an over-generous logical track size specification
results in wasted queue records and reduction of job queue capacity, i.e., the unused queue
records, if available, could contain the required information for another job.

Logical track size affects performance to some extent. Specification of a logical track size of
10 queue records or less can result in excessive execution of the track assignment routines,
etc., i.e., the "overhead" required to use very small logical track sizes impairs performance.

As a starting point, use the default value for JOBQFMT (12 queue records).

Logical track size (or multiples of it) may correspond to the physical track capacity of the
device on which the job queue is resident. For example, if the IBM 2301 Drum Storage unit is
to be used, 66 queue records may be contained in one physical track. Specify, in this case, a
logical track size of 22 queue records, thereby allocating 3 logical tracks to one physical track
(3 x 22 = 66 queue records). The 3 logical track header records (20 bytes each) use up the
remaining record.

Logical tracks can contain the same number of queue records as are reserved for initiator
use.

Reserving Initiator Queue Records -- JOBQLMT

The value specified for JOBQLMT must be large enough for the queue entries of any job that
enters the system. The following list shows the factors that affect the value of JOBQLMT:

• Number of entire generation data groups in a job
• Number of passed data sets in a job
• Number of devices required for passed data sets
• Number of volumes containing the data sets in a step
• Number of system messages issued during initiation of a step
• Use of automatic restart

The sum of the queue records required for each of these items provides a JOBQLMT value.

When a START initiator command is issued, a check is made to see if enough free logical
tracks are available to provide the required number of queue records for the initiator. If not,
the command is rejected.

Each time an initiator is started, the number of records reserved for an intiator is added to
the total number of records reserved for active initiators. For example, if the number of
records reserved for each initiator is 60, the number of records reserved for termination is 40,
and 4 initiators have been started, then the number of records reserved is 340. This total
mcludes 60 records reserved for each initiator, 40 records reserved for termination, and 60
records reserved as a basic threshold.

Section IV: Modifying the System 131

Number of Generation Data Groups

Each entire generation data group (GDG) used during a job increases the number of queue
records needed by an initiator. Two queue records should be reserved for every generation in
excess of the first in a GDG. One queue record should be reserved for every four GDGs used
in a job.

Thus, if a job uses two entire GDGs, one having 5 data sets (generations), and the other
having 24 data sets, 55 queue records must be reserved -- (4 + 23) x 2 + 1.

Number of Passed Data Sets

Two queue records are needed by an initiator for every three data sets passed during a job. If
the number of data sets passed is not a mUltiple of three, queue records mu~t be allocated as if
the number of data sets passed was a multiple of three. Thus if one, two, or three data sets are
passed, two queue records are allocated; if four, five, or six data sets are passed, 4 queue
records are allocated, and so on.

Number of I/O Devices for Passed Data Sets

When a data set being passed requires more than ten I/O devices, one queue record is
required by an initiator. This queue record accommodates 43 devices. If the number of
required devices exceeds 53, a second queue record is needed. Separate calculations must be
maje for each data set.

Number of Volumes

An initiator requires queue records for each data set that occupies more than five volumes, and
is located by a search of the catalog. (If a data set's location is specified in a DD statement,
the reader routines acquire the necessary records.) One queue record is needed if the data set
occupies between 6 and 20 volumes; two queue records if 21 to 35 volumes; three if 36 to 50
volumes; and so on. Separate calculations must be made for each data set.

Number of System Messages

An initiator requires queue records for system messages it issues. If you assume that each
message is 80 characters in length, each queue record holds two messages. Messages from
initiators are primarily device allocation, allocation recovery, data set disposition, SMF or
accounting messages, and the keep messages for tapes used in each step.

To cover most device allocation messages, allow one queue record for every three DD
statements. To cover data set disposition messages, allow one queue record for each DD
statement. As part of the data set disposition messages, count the SMF or accounting messages
as two lines per queue record. Also count two lines per queue record for tape messages.

Allocation recovery messages apply to devices that are offline. To cover most situations,
allocate queue records as follows:

• Determine the largest number of devices of a given class that will be offline at any given
time.

• Divide by seven .
• ' Add two.

132 MFT Guide (Release 21.0)

(

Since this calculation is for a job step, multiply the result by the number of steps in a large
job.

System messages are the least predictable of all the variables used in calculating initiator
queue record needs. The number of messages depends on the number of devices offline, the
number not available, and the number required at any given time.

The initiator needs queue space for a TIOT (task input/output table) for each step. The
space needed can be approximated by:

• Determining the number of DD statements in the largest step in a job
• Multipling the number of DD statements by 20
• Adding 24
• Dividing by 172 and rounding the dividend up
• Adding 1

This gives the largest amount of queue records required for a job.

Under certain conditions, the initiator may need additional space. Two specific conditions
are:

• VOLT (volume table) -- The initiator builds a VOLT, if one does not exit, for all
non-specific device requests. One queue record will hold 28 volume serial numbers.

• Mount CVOL (control volume) -- Five records will be created for each CVOL not
mounted. The initiator builds a JCT (job control table), a SCT (step control table), a SlOT
(step input/output table), a JFCB (job file control block) and a VOLT if a CVOL is not
mounted. The initiator writes these queue records into the jobqueue.

Use of Automatic Restart

To use automatic restart in the system, the number or records specified for the JOBQLMT
parameter must be substantially increased; In general, this is due to the fact that, while' the
first job is going through the restart process, a second job is initiated, and that before the
system can restart the first job, it must reread and reinterpret the job deck and then reinitiate
the job. More specifically:

• The initiator needs its normal set of queue records (described by the JOBQLMT parameter)
to initiate the job for the first time; it needs an additional set of records to start a second
job while the first job is going through the restart process.

• Since the restart process involves rereading, reinterpreting, and reinitiating the first job, an
additional set of reader/interpreter records is needed, together with a third set of initiator
records.

Finally, when checkpoint restart is being performed, a set or two of restart hous,ekeeping
records are needed. Altogether, the number of records to be specified for JOBQLMT when
automatic restart is being used is:

JOBQLMT + (3 x L) + R + (a x 12)

L -- Number of records normally specified for JOBQLMT (that is, when automatic restart is
not being used).

R -- Number of records normally needed by the reader/interpreter. (See the Storage
Estimates publication for guidance on how this number is established.)

Section IV: Modifying rhe System 133

a= 1 -- If jobs may be automatically restarted only once.

a=2 -- If jobs may be automatically restarted more than once.

12 -- Number of records needed for restart housekeeping.

If jobs with automatic restart may be held for operator restart, the initiator queue record
requirement is further increased, because the system must keep both the queue records for the
held jobs and their associated housekeeping records until the job is restarted. The formula then
becomes:

JOBQLMT = (3 x L) + R + (a x 12) + H (L + (a x12))

H -- Number of jobs that may be held.

Other terms

As explained previously.

Reserving Write-To-Programmer Queue Records - JOBQWTP

Unless specified otherwise, the system allocates two job queue records to the
write-to-programmer (WTP) function. Out of the 176 bytes in each of these records, 161 are
available for WTP messages. A record can hold as many messages as will fit into the available
spac(;, each message occupying 1 byte per character plus 1 byte per message for an initiator
assigned serial number.

To change the number of records available for this function, specify the number either with
the JOBQWTP operand of the SCHEDULR macro instruction in the system generation
statements or during initialization in reply to message IEA101A (but only if you used Q-F
with your set command). However, since both system and application tasks contend for the
space available to an initiator in the system job queue, and since WTP message may be created
faster than the writer may be writing them out, caution should be exercised in raising the
JOBQWTP value above 2.

Reserving Queue Records for Cancellation -- JOBQTMT

If an intiator's queue record requirements exceed the number of queue records reserved for it,
the job associated with that initiator is canceled. Queue records must be reserved for this
purpose. Enough queue records must be reserved to accommodate two (or more) initiators that
may be cancelling concurrently. The JOBQTMT value (like the value JOBQLMT) is
unpredictable because of factors such as the installation's configuration, the size of the job
being canceled, and the number of jobs that can be multiprogrammed.

The following guidelines should be used in calculating JOBQTMT:

• Number of devices used during a job.

• Number of jobs that might be concurrently canceled because of insufficient initiator queue
records.

• For any system task to be started, combined JCL from its associated catalogued procedure
and the START command must first be interpreted. This requires queue records, and the
system allows assignment of records for this purpose whenever any logical track are
available. During normal use of the queues, this space is always available. However, in order
to insure availability of queue records for system tasks when the reserves approach the

134 MFT Guide (Release 21.0)

(

(

\'1

)
critical state, the value of JOBQTMT should be increased over the above amount by the
number of records necessary to get tasks started. (This is especially true for writer and
initiator tasks, since they return queue records to the system.) This amount may be
estimated in a manner similar to calculating JOBQLMT, taking into consideration that each
valid START command generates one input and one output queue entry. Formulas for
estimating queue entry sizes are given in the Storage Estimates publications.

Number of Devices

The devices currently assigned to a job are released when the job is canceled. Since messages
are issued when devices are released; you should reserve a number of queue records equal to
the largest number of devices assigned at anyone time to a job, multiplied by two. Thus if the
largest job (in terms of devices) has three steps requiring 4, 11, and 8 devices respectively, 22
queue records should be reserved.

Number of Jobs

The number of queue records reserved for cancellation must be large enough to fill the
requirements of all jobs being canceled at anyone time because of insufficient initiator queue·
records. If your estimate of initiator queue records was accurate, it is unlikely that you will
have more than one job (if any) cancelling at anyone time.

An initiator that runs out of queue records for cancellation is placed in the wait state and
an operator messages -- IEF426I QUEUE CRITICAL -- is issued. This can result in the
interlocking of all reader/interpreters, initiators, and sysout writers functioning at the moment.

Section IV: Modifying the System 135

Output Separation

The system output writer can use the output separator facility to write separation records prior
to writing the output of each job. These separation records make it easy to identify and
separate the various job outputs that are written contiguously on the same printer or card
punch device.

Characteristics 0/ an Output Separator

Both the system output writer and the direct SYSOUT writer may be used by a problem
program to channel its output eventually to a printer or punch. When this is done, however,
the system output stream goes uninterruptedly from one job to another, making it difficult to
separate the output of one job from that of another, unless output separation is provided for.

The output separator facility of the operating system provides a means of identifying and
separating the output of various jobs processed by the same output unit. To do this, the
separator writes separation records to the system output data set prior to the writing of each
job'soutput.

The IBM output separator or your own output separator can be used.

The output separator function operates under control of both the system output writer and
the c1.irect SYSOUT writer. The separator program must reside in the link library
(SYS1.LINKLIB). Its name, IEFSD094, must be included as a parameter in either of the
output writer procedures -- the second part of the P ARM field in the EXEC statement -- to
separate job output. (Cataloged procedures for both writers are fully described in in the
beginning of this section.) The type of separation provided by the separator depends on
whether the output is punch-destined or printer- destined.

Punch-destined Output: The IBM-supplied separator provides three specially punched cards
(deposited in stacker 1) prior to the punch card output of each job. Each of these separator
cards is punched in the following format:

Columns 1 to 35 -- blanks
Columns 36 to 43 -- jobname
Columns 44 to 45 -- blanks
Column 46 -- output classname
Columns 47 to 80--blanks

Printer-destined Output: The IBM-supplied separator provides three specially printed pages prior
to printing the output of each job. Each of these three separator pages is printed in the
following format:

• Beginning at the channell location (normally near the top of the page), the jobname is
printed in block character format over :t. 2 consecutive lines. The first block character of the
8-character jobname begins in column 11. Each block character is separated by 2 blank
columns.

• The next 2 lines are blank.

• The output class name is printed in block character format covering the next 12 lines. This is
a i-character name, and the block character begins in column 55.

• The remaining lines to the bottom of the page are blank.

136 MFT Guide (Release 21.0)

(

) In addition to the above; a full line of asterisks(*) is printed twice (overprinted) across the
folds of the paper. These lines are printed on the fold preceding each of the three separator
pages, and on the fold following the third page. This feature provides easy separation of job
output in a stack of printed pages.

For printer-destined output with the IBM-supplied separator, include a channel 9 punch in
addition to the channell punch on the carriage control tape or in the forms control buffer (FCB). The
channel 9 punch controls the location of the line of asterisks and should correspond to the
bottom of the page. To print the line of asterisks on the fold of the pages, offset the printer
re gistra tion.

Programming Conventions

When using the (asynchronous) system output writer, the separator program, if specified in the
output writer cataloged procedure, is brought in by a LINK macro instruction issued from
module IEFSD078 of the output writer. The separator program can be any size, but a progra'm
over 8K may affect the size requirement of the output writer. If the job falls into a job class
using the (synchronous) direct SYSOUT writer, the separator program (if specified in the
procedure) is brought into main storage by use of a LOAD macro instruction. After
performing separation on all devices required for the SYSOUT data sets in that step the
program is released by means of a DELETE macro instruction.

Caution: Since the separator program operates with the supervisor protection key, but in the
program mode, your separator program must insure data protection during its execution.

When writing a separator program, observe the following programming conventions:

• The program must conform to the standard linkage coventions. Tbis includes saving and
restoring the contents of registers 0 through 12, and 14. These registers can be preserved
with the SA VE and RETURN macro instructions. When the program receives control, the
address of a standard save area is in register 13.

• The program must use the PUT macro instruction in the locate mode to write separation
records on the output data set. (This method is required by the QSAM DCB that is open
for the output data set.)

• The program must establish its own synchronous error exit routine, and the address of this
routine must be placed into the DCBSYNAD field of the output DCB. This gives control to
the error exit routine in case an uncorrectable I/O error occurs while writing your program's
output.

• The program should use the RETURN macro instruction to return control to the output
writer. Before returning, the program must free any main storage'it obtained during its
operation, and the program must place a return code (binary) in register 15. The return
codes signify:

o -- Successful operation.

8 -- Unrecoverable output error (should be set if your error exit routine is entered).

Section IV: Modifying the System 137

Output From the Separator Program

The separator program can write any kind of separation identification. The jobname and the
output classname for each job are available through the parameter list for inclusion in the
output, if desired. You can use an IBM-supplied routine that constructs block characters
(explained later). As many separator cards can be punched or as many separator pages can be
printed as necessary.

The output from the separator program must conform to the attributes of the output data
set. These attributes, which can be determined from the open output DCB pointed to by the
parameter list, are:

• Record format (fixed, variable, or undefined length)
• Record length
• Type of carriage control characters (machine, USASI, or none)

For printer-destined output, begin the separation records on the same page as the previous
job output, or skip to any subsequent page. However, the separator program should skip at
least one line before writing any records, because in some cases the printer is still positioned
on the line last printed.

After completing the output of the separation records, the separator program should write
sufficient blank records to force out the last separation record. This also allows the error exit
routine to obtain control if an uncorrectable output error occurs while writing the last record. The
requirements are:

• One blank record for printer-destined output.
• Three blank records for punch-destined output.

Using the Block Character Routine

For printer-destined output, the separator program can use an IBM-supplied routine to
construct separation records in a block character format. This routine is a reenterable module
named IEFSD09S, and resides in the module library (SYSl.CISOS).

The block character routine constructs block letters (A to Z), block numbers (0 to 9), and a
blank. The program furnishes the desired character string and the construction area. The block
characters are constructed one line position at a time. Each complete character is contained in
12 lines and 12 columns; therefore, a block character area consists of 144 print positions. For
each position, the routine provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string. However, the
routine does not enter blanks between or within the block characters. The program must
prepare the construction area with blanks or other desired background before entering the
block character routine.

To use the IBM-supplied block character routine, the separator program executes the CALL
macro instruction with the entry point name of IEFSD09S. Since the block characters are
constructed one line position at a time, complete construction of a block character string
requires 12 entries to the routine. Each time, provide the address of a 4-word parameter list in
register 1. The parameter list must contain the following:

Bytes 0-3 -- This word is the address of a field containing the desired character string in
EBCDIC format.

138 MFT Guide (Release 2 t .0)

(

(
\~

) Bytes 4-7 -- This word is the address of a full word field containing the line count as a
binary integer from 1 to 12. This represents the line position to be
constructed on this call.

Bytes 8-11 -- This word is the address of a construction area in main storage where the
routine will construct a line of the block character string. The required
length in bytes of this construction area is 14n-2, where n represents the
number of characters in the string.

Bytes 12-15 -- This word is the address of a full word field containing, in binary, the
number of characters in the string.

Writing an Output Separator Program

Write the output separator program by using the information provided by either output writer
and by conforming to the requirements explained below. The separator program, when added
to the link library (SYSl.LINKLIB), is invoked by specifying its name as a parameter in the
EXEC statement of the output writer cataloged procedure.

Parameter List

Either output writer provides the separator program with a 4-word parameter list of needed
information. When the program receives control, register 1 contains the address of a 4-word
parameter list, and the parameter list contains the following:

Bytes 0-3 -- In this word, byte 0 contains switches that indicate the type of output unit,
and bytes 1-3 are reserved for future use.

Bytes 4-7 -- This word is the address of the output DeB (data control block).

Bytes 8-11 -- This word is the addres's of an 8-character field containing the jobname.

Bytes 12-15 -- This word is the address of a I-character field containing the output
classname.

In the parameter list, the three high-order bits of byte 0 are switches that your separator
program uses to determine the type of output unit. The first bit to the left is set to 1 if the
output unit is a 1442 punch device. The second bit is set to 1 if the output unit is a punch
device or a tape device with punch-destined output. The third bit is set to 1 if the output unit
is a printer or punch device. The resulting bit combinations indicate the following:

111.
OIl.
001.
010
000

1442 punch device
2520 or 2540 punch device
1403, 1404, 1443, or 3211 printer device
tape device with punch-destined output
tape device with printer-destined output

The parameter list also points to the DCB for the output data set. This DCB is established
for the queued sequential access method (QSAM), and is already open when the separator
program receives control.

The address of the jobname and the address of the output classname are provided in the
parameter list so that this information may be used in the separation records written by the
separator program.

Section IV: Modifying the System 139

Writing System Output Writer Routines

When a job is executing, system messages and data sets specifying the SYSOUT parameter
(e.g., in the DD statement) are recorded on direct access devices, unless the job falls into a job
class assigned to a . direct SYSOUT writer. In that case, both messages and data addressed to a
SYSOUT data set are written directly to the device for the direct SYSOUT writer for that job
class. (Messages for jobs canceled on the input queue and jobs failed by the
reader/interpreter, and data produced by system tasks cannot be processed by direct system
output writers.)

When the job completes (assuming it does not use a direct SYSOUT writer), entries are
made in system output class queues that represent the data sets and messages directed to the
output classes. Later system output writers remove these entries from the queues and process
the data they represent. Processing consists of writing system messages to the output device
and calling a data set writer routine for each data set encountered. The data set writer routine
used for a data set may be specified by name in a DD statement, otherwise, a standard
IBM-supplied writer routine is used. The standard routine transcribes the data set to the
specified output device, making only those data format and control character transformation
required to conform to the attributes specified for the output data set.

The following material describes how you may write a nonstandard data set writer routine.

Characteristics of the Output Writer

Before writing or modifying an output writer routine, be familiar with the functions performed
by the standard data set writer for Operating System/360. (For the remainder of this chapter,
the Operating System/360 data set writer is referred to as the standard writer.) In general,
these functions include opening the data set (referred to as an input data set) that contains the
processed information, obtaining the records of the data set, making any necessary
transformations in record format or control character attributes, and placing these (possibly
transformed) records in the output data set, which appears on a specified output device. The
standard writer also must close the input data set and restore system conditions to the state
they were in before the writer routine was invoked.

Programming Conventions

To use the output writer routine, specify the name of the routine as a parameter in the
SYSOUT operand of a DD statement (see the Job Control Language publication). (This
parameter is ignored if the job falls into a jobclass assigned to a direct SYSOUT writer.) The
routine must be in the system library (SYSl.LINKLIB). A writer routine is not limited in size
except that size may influence the region requirements of the system output writer (see the
Storage Estimates publication).

In MFT, the routine is linked (via the LINK macro instruction) when a data set requiring
the routine is to be processed. The standard linkage conventions for linking are used. Any
storage required for work areas and tables should be obtained by the GETMAIN macro
instruction and released by the FREEMAIN macro instruction. The output writer routines
must be reenterable.

When the routine is finished, it must return control to the standard writer by using.the
RETURN macro instruction.

After job management routines perform initialization requirements and open the output data
set into which the writer routine will put records, control is given to the routine via the

. 140MFT Guide (Release 21.0)

(

ATTACH macro instruction. At this time, general registers 1 and 13 contain information that
the program must use. Register 1 contains the storage address of a 12-byte list. Figure 30
describes the information in this parameter list.

Byte 0

Bytes 1-3
Byte 4-7

Bytes 8-11

Output Device Indicator.
Bit 0 (High-order bit): If this bit is on (set to 1), the output unit is a

1442 punch.
Bit 1 If this bit is on, the output unit is either a punch or a tape with a

punch as the final destination.
Bit 2 If this bit is on, the output unit is either a printer or a punch.
Bits 3-7 No significant information.
Not used, but must be present
This word contains the address of the data control block (DCB) for the opened output
data set to be referred to by the writer.
This word contains the DCB address for the input data set from which your writer will
obtain logical records. (At the time this 12-byte parameter list is given to your
writer, the input data set is not open.)

Figure 30. Parameter List Referred to by Register 1

The switches indicated by the three high-order bit settings in byte 0 should be used to
translate control character information from the input data set records to the form required by
the output data set records. Based on the indications given in Figure 30, the high-order three
bits of byte 0 signify the type of output device as follows:

111. 1442 punch unit
OIL 2520 punch unit or 2540 punch unit
001..... 1403 printer, 1404 printer, 1443 printer, or 3211 printer unit
010 tape unit with final punch destination
000..... tape unit with final printer destination

When the writer gets control, it must preserve the contents of register 0 through 12, and 14. Register
13 contains the address of a standard register save area that saves the contents of these
registers. Save the contents of register 13 by using the SAVE macro instruction.

An output writer routine must issue an OPEN macro instruction to open the desired input
data set residing on a direct access device as a result of the previous execution of a processing
program. (Note: The output data set used by a writer is opened by a job management routine
before control is given to the writer. This output data set must be given records by a PUT
macro instruction operating in the "locate" mode. The Data Management Macro Instructions
publication describes this macro instruction.)

If the processing program that produces a given data set (to be used as an input data set by
a writer) did not open the data set, the data set contains no records, and the DCBBLKSI and
DCBBUFL fields of the input DCB contains zero. The DCBBLKSI field may also be zero
even if the data set does contain records -- if the processing program did not put the block
size value for the input data set in the DCB. If both these DCB fields are zero, a value (the
standard writer uses the decimal value 18) is inserted in the DCBBLKSI field to permit the
open routine to continue. The standard writer does this via a routine pointed to by an entry in
the EXLIST parameter of the DCB. Since there is no data set, nothing is put on the output
device. The data set writer must provide a SYNAD routine to process errors associated with
the output as well as the input data set.

The Standard Data Set Writer also includes accounting support for the SMF Output Writer
Record (record type 6). If you require SYSOUT accounting information, refer to System
Management Facilities, for details.

Section· IV: . Modifying the System 141

Before the OPEN macro instruction is issued, the DCBD macro instruction can be used to
symbolically define the fields of the DCB, and the EXLIST and/or SYNAD routine addresses
can be inserted. Other than SYNAD, no modifications can be made to the output DCB.

After the routine finishes writing the output data set, it must close the input data set and
return using the RETURN macro instruction. A return code must be placed in register 15. This
code should indicate that an unrecoverable output error either has occurred (code of 8) or has
not occurred (code of 0).

3525 Note - Interpret Punch: The programming support for the 3525 includes an INTERPRET
PUNCH feature which is supported by BSAM and QSAM. The support for this feature
includes the punching and printing of graphically printable punched characters on print lines
one and three of the card. Line one includes the first 64 characters and line three includes the
last 16 characters (right justified). Extraneous characters are printed for non-graphic eight-bit
codes.

If the INTREPRET PUNCH function is designated via the new FUNC parameter in either
a DCB or DD statement, an existing output data set will be interpreted as well as punched.

Note: The output must be 80 bytes, or 81 bytes if first character control is being used.

Writing an Output Writer

This topic provides a general description of the procedures followed by the standard writer. (See
Figure 31.) When writing a writer routine, delete, modify, or add items to some of these
procedures, depending on the characteristics of the data set(s). However, the procedures must
be consistent with operating system conventions.

Saving Register Contents: Upon entering the writer program, the program must save the contents
) of the general registers, as previously discussed.

Obtaining Main Storage for Work Areas: In this work area, switches are established, record
lengths and control characters are saved, and space is reserved for other uses. Obtain storage
by a GETMAIN macro instruction.

Processing Input Data Set(s): To process a data set, the writer must get each record individually
from the input data set, transform (if necessary) the record format and the control characters
associated with the the record in accordance with the output data set requirements, and put the
record in the output data set. Data set processing by -the standard writer can be considered in
three aspects.

1. The first consideration is what must be done before actually obtaining records from an input
data set. If the output device is a printer, provision must be made to handle the two forms
of record control character that may accompany a record in an output data set. The printer
is designed so that if the output data set records contain machine control characters, a
record Oipe) is printed before the effect of its control character is considered. However, if
USASI control characters are used in the output data set records, the control character
effect is considered before the printer prints a record. See Appendix C.

Thus, if all the input data sets do not have the same type of control characters, it may be
desirable to avoid overprinting of the last line of one data set with the first line of the
following data set. If the records of the input data set have machine control characters
(mcc) and the output data set records are to have USASI control characters (acc), the
standard writer produces a control character that indicates one line should be skipped before
printing the first line of output data.

142 MFT Guide (Release 21.0)

(

If the input data set records have acc and the output data set records are to be written with
mcc, the standard writer prints a line of blanks before printing the first actual output data
set record. Following this line of blanks, a one-line space is generated before the first output
record is printed. The preceding "printer initialization" procedure (or a similar one based on
the characteristics of your data sets) is recommeded.

2. After an input data set is properly opened and any necessary printer initialization
completed, the writer obtains records from the input data set. The locate mode of the GET
macro instruction is used. As each record is obtained, its format and control character must
be adjusted, if necessary, to agree with that required for output.

Note: Check the MACRF field of the input data set DCB to see if GET in locate mode can
be used. If not the MACRF field must be overridden.

Since the output data set is previously opened by another routine (job management), a
writer routine must adhere to the established conventions. The data set is opened to receive
records from the PUT macro instruction operating in the locate mode. For fixed-length
record output, the length of the records in the output data set is obtained from the
DCBLRECL field of the DeB. If an input record length is greater than the length specified
for the records of the output data set, the standard writer truncates the necessary right-hand
bytes of the input record. If the input record length is smaller than the output record length,
the standard writer left-justifies the input record and adds blanks on the right end to give
the correct length.

When the output record length is variable and the input record length is fixed, the standard
writer constructs each output record by adding control character information (if necessary)
and variable record control information to the output.record. The record control information
is four bytes long and the control character information is one byte long. Both additions are
made to the left end of the record. If the output record is not at least 18 bytes long, it is
further modified by padding bytes (blanks) added to the right end of the record. If the
output record length does not agree with the length of the output buffer, the standard writer
makes the proper adjustment.

3. The third aspect to consider is an an end-of-input data set routine. The standard writer
handles output to either,a card punch unit or a printer unit, as required. Output to an
intermediate device such as a tape unit is considered in light of the ultimate destination
(e.g., punch or printer). If proper consideration is not given, all records from a given data
set may not be available on the output device until the output of records from the next data
set is started or until the output data set is closed. When the output data set is closed, the
standard writer automatically puts out the last record of its last input data set.

Punch Output: Normally, when the standard writer is using a card punch as the output device,
the last three output records are not in the collection pockets of the punch when the input
data set is closed. To put out these three records with the rest of the data set and with no
intervening pauses, the writer provides for three blank records following the actual data set
records.

Printer Output: When the standard writer uses a printer as an output device, the last record of
the input data set is not normally put in the output data set when the input data is closed. To
force out this last record, the writer generates a blank record that follows the last record of the
actual data set.

Section IV: Modifying the System 143

Entry From
Control Program
Module IEFSD070

Modi fy I nput Record
Length For Control

Character

Translate Control
Character For Output

If Required

Set Message If Invalid
Control Char

Figure 31. General Logic of Standard Output Writer

144 MFT Guide (Release 21.0)

No

If Printer, Adjust
Control Character

Attachment

Buffering For End Of
I nput Data Set (Put
Out Last Record)

Return To
Module IEFSD070

) The problem of overprinting the last line of one data set by the first line of the following
data set must also be considered. Depending on the combination of input record control
character and required output record control character, a line of blanks and a spacing control
character may be'used either individually or in combination to preclude overprinting. (Note: If
overprinting is desired for some reason, control characters in the data set records themselves
may be used to override the effect (but not the action) of the previously described solutions to
overprinting.)

Closing Input Data Set(s): After the standard writer finishes putting out the records of an input
data set, it closes the data set before returning control to the system output writer. All input
data sets must be closed.

Releasing Main Storage: The storage and buffer areas obtained for the writer must be released
to the system before the writer relinquishes control. The FREEMAIN macro instruction should
be used for this.

Restoring Register Contents: The original contents of general registers 0 through 12, and 14
must be restored. The RETURN macro instruction is used for this. To inform the operating
system of the results of the processing done by the writer, a return code is placed in general
register 15 before control is returned. If the writer routine terminates because of an
unrecoverable error on the output data set, the return code is 8; otherwise, the return code is
O. Unrecoverable input errors must be handled by the data set writer.

Section IV: Modifying the System 145

Adding SVC Routines to the Control Program

This chapter provides detailed information on how to write an SVC routine and insert it into
the control program portion of the System/360 Operating System. .

Characteristics 0/ SVC Routines

All SVC routines operate in the supervisor state. Keep the following characteristics in mind
when deciding what type of SVC routine to write:

• Location of the routine - The SVC routine can be either in main storage at all times as part
of the resident control program, or on a direct access device as part of the SVC library. Type
1 and 2 SVC routines are part of the resident control program, and types 3 and 4 are in the
SVC library.

• Size of the routine - Types 1, 2, and 4 SVC routines are not limited in size. However, a type
4 SVC routine must be divided into load modules of 1024 bytes or less. The size of a type
3 SVC routine must not exceed 1024 bytes.

• Design of the routine - Type 1 SVC routines must be reenterable or serially reusable; all
other types must be reenterable. To aid system facilities in recovering from machine
malfunctions, the SVC routines should be refreshable.

• Interruption of the routine - When the SVC routine receives control, the CPU is masked for
all mask able interruptions but the machine check interruption. All type 1 SVC routines must
execute in this masked state. To allow interruptions to occur during the execution of a type
2, 3, or 4 SVC routine, change the appropriate masks. When a type 2, 3, or 4 SVC routine
will run for an extended period of time, it is recommended to allow interruptions to be
processed where possible.

Programming Conventions lor SVC Routines

The programming conventions for the four types of SVC routines are summarized in Figure
32. Details about many of the conventions are in the reference notes that follow the figure. The
notes are referred to by the numbers in the last column of the figure. If a reference note for a
convention does not pertain to all types of SVC routines, and asterisk indicates the types to
which the note refers.

146 MFT Guide (Release 21.0)

(

\

)

•

Conventions

Part of resident
control P'r0gram

Size of routine

Reenterable
routine

May allow
interruptions

Entry point

Number of routine

Name of routine

Register contents
at entry time

May contain
relocatable data

Can supervisor
request block
(SVRB) be extended

May issue WAIT
macro instruction

May issue XCTL
macro instruction

May pass control
to what other types
of SVC routines

Type of linkage
with other SVC
routines

Exit from SVC
Routine

Method of
abnormal
termination

Type 1

Yes

Any

Optional,
but must
be serially
reusable

No

Type

Yes

Any

Yes

Yes

2 Type 3

No

S 1024
bytes

Yes

Yes

Type 4

No

Each
load
module
~ 1024
bytes

Yes

Yes

Must be the first byte of the routine or
load module, and must be on a doubleword
boundary

Numbers assigned to your SVC routines
should be in descending order from
255 through 200

IGCnnn IGCnnn IGCOOnnn IGCssnnn

Registers 3, 4, 5, and 14 contain
communication pointers; registers 0, 1,
and 15 are parameter registers

Yes

Not
applicable

No

No

None

Not
applicable

Yes No* No*

Yes* Yes* Yes*

Yes* Yes* Yes*

No No Yes*

Any Any Any

Issue supervisor call (SVC)
instruction

Branch using return register 14

Use resident
abnormal
termination
routine

Use ABEND macro instruction or
resident termination routine

Reference
Code

1

2

3

5

6

7

8

9

Figure 32. Programming Conventions for SVC Routines

Section IV: Modifying the System 147

Reference

Code

2

3

4

5

6

SVC Routine Reference Notes

Types

all

all

all

all

3,4

2,3,4

If the SVC routine is to be reenterable, macro instructions whose expansions store
information into an inline parameter list cannot be used.

Write SVC routines so that program interruptions cannot occur. If a program
interruption does occur during execution of an SVC routine, the routine loses control
and the task that called the routine terminates.

If a program interruption occurs and you are modifying a serially reusable SVC
routine, a system queue, control blocks, etc., the modification will never complete;
the next time the partially modified code is used, the results will be unpredictable.

Following these conventions when naming SVC routines:

· Types 1 and 2 must be named IGCnnn; nnn is the decimal number of the SVC
routine. You must specify this name in an ENTRY, CSECT, or START
instruction.

· Type 3 must be named IGCOOnnn; nnn is the signed decimal number of the SVC
routine. This name must be the name of a member of a partitioned data set.

· Type 4 must be named IGCssnnn; nnn is the signed decimal number of the SVC
routine, and ss is the number of the load module minus one, e.g., ss is 01 for the
second load module of the routine. This name must be the name of a member of
a partitioned data set.

Before the SVC routine receives control, the contents of all registers are saved. For
type 4 routines, this applies only to the first load module of the routine.

In general, the location of the register save area is unknown to the routine that is
called. When the SVC routine receives control, the status of the registers is as
follows:

Register 0 and 1 contain the same information as when the SVC routine was
called.

Register 2 contains unpredictable information.

Register 3 contains the starting address of the communication vector table.

Register 4 contains the address of the task control block (TCB) of the task that
called the SVC routine.

Register 5 contains the address of the supervisor request block (SVCB), if a type
2, 3, or 4 SVC routine is in control. If a type 1 SVC routine is in control, register
5 contains the address of the last active request block.

Register 6 through 12 contain unpredictable information.

Register 13 contains the same information as when the SVC routine was called.

Register 14 contains the return address.

Register 15 contains the same information as when the SVC routine was called.

Use registers 0, 1, and 15 to pass information to the calling program. The contents of
registers 2 through 14 .. are restored when control is returned to the calling program.

Because relocatable address constants are not relocated when a type 3 or 4 SVC
routine is loaded into main storage, do not use them in coding these routines. Do not
use macro instructions whose expansions contain relocatable address constants. Types
1 and 2 are not affected by this restriction since they are part of the resident control
program.

Users can extend the SVRB, in 8-byte increments, from 96 bytes up to 144 bytes. The
extended area is available as a work area during execution of the routine only by
specifying the extension during the system generation process. When the SVC routine

148 MFT Guide (Release 21.0)

(

/
I
\ -;,

~

~

)
7

8

9

receives control. register 5 contains the address of the SVRB to which the extended
save area is appended.

2,3,4 Do not issue the WAIT macro instruction unless you have changed the system mask
to allow I/O and external interruptions. If you have allowed these interruptions. you
can issue WAIT macro instructions that await either single or multiple events. The
event control block (ECB) for single-event waits or the ECB list and ECBs for
multiple-event waits must be in dynamic main storage.

4 When you issue an XCTL macro instruction in a routine under control of a type 4
SVRB, the new load module is brought into a transient area.

all

The contents of registers 2 through 13 are unchanged when control is passed to the
load module; register 15 contains the entry point of the called load module.

Type 1 SVC routines must use the resident abnormal termination routine to
terminate any task. The entry point to the abnormal termination routine is ill the
communication vector table (CVT). The symbolic name of the entry point is
CVTBTERM.

Type 2, 3, and 4 SVC routines must use the ABEND macro instruction to terminate
the current task, and must use the resident abnormal termination routine to
terminate a task other than the current task.

Before the resident abnormal termination routine is entered, the CPU must he
masked for all maskable interruptions but the machine check interruption, altJ
registers 0, I, and 14 must contain the following:

• Register 0 contains the address of theTCB of the task to be terminated.

• Register 1 contains the follow,ing information:

Bit 0 is a 1 if you want a dump taken.

Bit 1 is "a 1 if you want to terminate a job step.

Bits 2-7 are zero.

Bits 8-19 contain the error code.

Bits 20-31 ,arc zero.

• Register 14 contains the, return address. The resident ahnormal termination
routine exits hy hranching to the address contained in register 14.

The contents of register 15 are destroyed hy the ahnormal termination routine.

Writing S VC Routines

Because the SVC routine will be a part of the control prograrn,{6How the same programming
conventions used in SVC routines supplied with System!360//'Operating System.

Four types of SVC routines are supplied with System/360 Operating System, and the
programming conventions for each type differ. The general characteristics of the four types
have been described.

Adding SVC Routines Into the Control Program

Insert SVC routines into the control program during the system generation process.

Before the SVC routine can be inserted into the control program, the routine must be a
member of a cataloged partitioned data set. Name this data set SYS1.name.

Section IV: Modifring the Sy~tcm 149

The following text gives a description of the necessary information for the system
generation process. The publication System Generation, describes the system generation macro
instruction.

Specifying SVC Routines

Use the SVCTABLE macro instruction to specify the SVC number, the type of SVC routine,
and, for type 2, 3, or 4 routines, the number of double words in the extended save area ..

Inserting SVC Routines During .the System Generation Process

To insert a type 1 or 2 SVC routine into the resident control program, you use the RESMODS
macro instruction. Specify the name of the partitioned data set and the names of the members
to be inserted into the control program. Each member can contain more than one SVC
routine.

To insert a type 3 or 4 SVC routine into the SVC library, you use the SVCLIB macro
instruction. Specify the name of the partitioned data set and the names of members to be
included in the SVC library. The member names must conform to the conventions for naming
type 3 and 4 routines, i.e., IGCOOnnn and IGCssnnn.

150 MFT Guide (Release 21.0)

(

(

\

Message Routing Exit Routines

This topic provides detailed information on how to write user exit routines that modify the
routing and descriptor codes of WTO or WTOR messages for any MFT operating system that
has the multiple console support Option (MCS). Information is provided on inserting this exit
routine into the resident portion of the control program. In addition, a description of the
characteristics and configuration of MCS is supplied.

Characteristics of MCS

The multiple console support (MCS) option of the IBM System/360 Operating System routes
messages to different functional areas according to the type of information that the message
contains. In MCS, a functional area is defined as one or more operator's consoles that are
doing the same type of work. (Some examples of functional areas are: (1) the tape pool area,
(2) the disk pool area, and (3) the unit record pool area.) Each WTO and WTOR macro
instruction is assigned one or more routing codes which are used to determine the destination
of the message. There are sixteen routing codes that can be used. When the message is ready
to be routed, the routing codes assigned to the message are compared to the routing codes
assigned to each console. If any of the routing codes match, the message is sent to that
console. (For descriptions and definitions of the routing codes, see the publication Supervisor
Services and Macro Instructions.

If the standard routing codes provided on application and system messages do not cover a
special situation at an installation, the routing codes used on the message can be modified by
coding a user exit routine. The exit routine receives control prior to the routing of message so
users can examine the message text and modify the message's routing and descriptor codes. The
system will use the modified routing codes to route the message. Descriptor codes provide a
mechanism for message presentation and deletion and are explained later in this chapter.

Automatic console switching occurs when permanent hardware errors are detected. Command
initiated console switching is provided to permit restructuring of the system console
configuration and the hard copy log by system operators. Consoles can be moved into or out
of functional areas at any time during system operation.

A hard copy log option records messages, operator and system commands, and operator and
system responses to commands. The hard copy log can be a console device or it can be the
system log (SYSLOG). The number and type of messages recorded on the log is also optional. The
installation may wish to record a selected group of messages, or it may wish to record all
messages. If commands are recorded, the system automatically records command responses.

Programming Conventions For WTO/WTOR Routines

The programming conventions for the WTO/WTOR exit routine are summarized in Figure 33. Details
about many of the conventions are in the reference notes that follow that figure. The notes are
referred to by the numbers in the last column of the figure.

Section IV: Modifying the System 151

Conventions

Part of resident
control program

Size of routine

Reenterable routine

May allow interrup­
tions

Name of routine

Disposition of
general registers

Format of text
and codes

May issue WAIT,
XCTL, WTO or WTOR
macro instructions

Method of abnormal
termination

Exit from routine

Requirements

Yes

Any size

Optional, but must be serially
reusable

Yes

Must be IEECYXIT

Registers must be saved at entry
and restored prior to returning

Provided through the DSECT
IEECUCM

No

None

RETURN macro instruction

Figure 33. Programming Conventions for WTO/WTOR Routing

Reference
Code

Reference Notes

Reference
Code

2

3

4

If the exit routine is to be reenterable, do not use macro instructions whose expansions store
information into an inline parameter list.

2 Write the exit routine so that program interruptions cannot occur. If a program interruption
occurs during executi~n of the exit routiine, the routine loses control and the communications task
is terminated.

3 DSECT IEECUCM provides the format of the message text, routing codes and descriptor codes. The
pointer in register 1 points to the first word of the message text, UCMMSTXT. The format is:

UCMMSTXT

UCMROUTC

UCMDESCD

Message Text (128 Characters­
padded with blanks)

Routing codes (4 bytes)

Descriptor codes (4 bytes)

DSECT IEECUCM is contained in SYS1.MODGEN

System messages have a message code as the first seven characters of the
message text. This code may be examined to aid in identifying system messages, but
it must not be modified.

The UCMROUTC field contains the routing codes. A bit setting of "I" indicates
that the WTO or WTOR was assigned that particular routing code. Bit assignments
and their meanings are:

152 MFT Guide (Release 21.0)

I

I
"

)
Bit Assignment Meaning

Byte 0
Bit 0 Routing code I Master Console
Bit I Routing code 2 Master Console Informational
Bit 2 Routing code 3 Tape Pool
Bit)l Routing code 4 Direct Access Pool
Bit 4 Routing code 5 Tape Library
Bit 5 Routing code 6 Disk Library
Bit 6 Routing code 7 Unit Record Pool
Bit 7 Routing code 8 Teleprocessing Control

Byte 1
Bit 0 Routing code 9 System Security
Bit 1 Routing code 10 System Error/Maintenance
Bit 2 Routing code 11 Programmer Information
Bit 3 Routing code 12 Emulator Program (under OS)
Bit 4 Routing code 13 Available for Customer Usage
Bit 5 Routing code 14 Available for Customer Usage
Bit 6 Routing code 15 Available for Customer Usage
Bit 7 Routing code 16 Reserved

Byte 2
v

Reserved

Byte 3 Reserved

Reference Reference Notes
Code

• 3 The UCMDESCD field contains the descriptor codes. A bit
setting of "1" indicates that the WTO or WTOR was

assigned that particular descriptor code. Bit
assignments and their meanings are:

Bit Assignment
Byte 0
Bit 0 Descriptor code 1
Bit 1 Descriptor code 2
Bit 2 Descriptor code 3
Bit 3 Descriptor code 4
Bit 4 Descriptor code 5
Bit 5 Descriptor code 6
Bit 6 Descriptor code 7
Bit 7 Descriptor code 8

Byte 1

Bit 0 Descriptor Code 9
Descriptor codes
10 through 16

Byte 2

Byte 3

Meaning

System Failure
Immediate Action Required
Eventual Action Required
System Status
Immediate Command Response
Job Status
Application Program/Processor
Out-of-line Message

DISPLAY or MONITOR command response

Reserved
Reserved

Reserved

4 The exit routine is part of the communications task. Abnormal termination of the exit routine causes
the operating system to terminate abnormally.(code of F03).

Messages Not Using Routing Codes

There are certain messages that the exit routine does not see. These are messages that have the
MSGTYP operand in the WTO or WTOR macro instruction coded with the JOBNAMES,
STATUS, ACTIVE, or Y parameter, multiple-line WTOs (including status displays), and
messages that are being returned to the requesting console, Le., a response to a DISPLAY A
command. Routing of these messages is on criteria other than the routing codes, therefore, the
system bypasses the exit routine.

Section IV: Modifying the System 153

•

Writing a WTO/WTOR Exit Routine

To modify the standard routing codes and descriptor codes write a WTO !WTOR Exit Routine. This
routine will be part of the control program. If a message's routing code field is used by the
operating system to route the message, the routine will receive control prior to the .routing of
the message. ,when the routine reJeives control, register 1 contains a pointer to the first word
of the message text. The message text field is 128 bytes long; followed by a four-byte routing
code field and a four-byte descriptor code field. The exit routine may examine but not modify
the message text.

A message will be sent to only those locations specified in the modified routing codes. All
messages with modified routing codes are sent to the hard copy log when the log is included in
the operating system. When the log is not included, the exit routine must not suppress
messages that contain a routing code of 1, 2, 3, 4, 7, 8, or 10 since messages with these codes
are necessary for system maintenance. Message suppression is turning off all routing codes of a
message, causing the message to be discarded. WTO messages can be suppressed. If a WTOR
message is suppressed, it will be sent to the master console by the operating system.

Adding a WTO/WTOR Exit Routine to the Control Program

A system generation option is available to enable you to include a resident, user-written exit
routine into the communications task.

The CONOPTS operand of the SCHEDULR system generation macro instruction controls
the inclusion of the exit routine. A description of SCHEDULR is found in the pUblication
System Generation.

Task supervision must be performed for the exit routine when the routine is requested at
system generation. This supervision is performed every time a message is routed by its routing
codes, even if the exit routine is not present. To maintain optimum throughput, the exit routine
should not be specified at system generation unless it will be used.

Inserting the WTO !WTOR Exit Routine

To enter the exit ro'utine into the control program before system generation, use the Linkage
Editor to replace the dummy WTO!WTOR exit routine IEECVCTE in SYS1.CI505 with the
WTO /WOTR exit routine.

To enter the exit routine into the control program after system generation, use the Linkage
Editor to replace the dummy WTO/WTOR exit routine IEECVCTE in the SYS1.NUCLEUS
with your WTO /WTOR exit routine.

154 MFT Guide (Release 21.0)

)
Handling Accounting Routines

Accounting routines can be added to the control progarm. This topic describes the input
available to an accounting routine; the characteristics and requirements of an IBM-supplied
data set writer that may be used to log accounting information generated by an accounting
routine; and how to insert an accounting routine into the control program. Conventions to be
followed in preparing an accounting routine are also noted.

Programming Conventions lor Accounting Routines

User-written accounting routines can consist of more than one control section.

Attributes: A user-written accounting routines must be serially reusable.

CSECT Name and Entry Point: The control section containing the entry point of the accounting
routine, and the entry point, must be named IEFACTRT.

Register Saving and Restoring: The content of registers 0 through 14 must be saved upon entry
to the accounting routine and restored prior to exiting.

Entrances: Control is given to the accounting routine at the following times:

• Step Initiation
• Step Termination
• Job Termination

Exit: The RETURN macro instruction restores the content of the general registers and returns
control to the operating system.

Input Available to Accounting Routines

Register 0 contains an entrance code, indicating the time that the accounting routine gained
control.

Register 0 = 8: Step Initiation

= 12: Step Termination

= 16: Job Termination

Register 1 contains the starting address of a list of pointer to items of accounting
information. Each pointer is on a fullword boundary. The sequence of pointers in the list and
the items of information provided are described in the following diagram.

User accounting routines should only use pointers that are in the list addressed by register
1. Other pointers are subject to change in subsequent releases.

Section IV: Modifying the System 155

Byte The step name painter is zero at job termi-

Step Name
nation.

0 Job Name Pointer
Pointer

Job Name 8 Bytes Step Name 8 Bytes

A right justified binary number represents

Programmer Job Running
job running time in hundredths (0.01) of a
second.

Name Pointer Time Pointer
If a programmer deferred restart occurs, the
time used during the original execution is

Programmer Job Running Time omitted from the job time passed to a user

Name 20 Bytes 3 Bytes (MVT, MFT) routine.

Pointer + 3 The entry count byte contains the number of
job accounting entries picked up from the

Entry Count 1 Byte JOB statement. Commas used to denote
omitted entries are counted.

Byte

1 16 1 Job Accounti ng
Data Fields Pointer

Byte

or

Step Running
Time Pointer

Pointer + 3

~

00 I A byte of zeros indicates that the JOB statement , did not contain accounting information.

I
I I Byte Byte
I

Byte
I Data I Data I Datan 00

Count Count
I

... Count n
I !

These data-fields contain the accounting information that was specified in the JOB statement. The first byte of each
field contains the number of bytes of data that follow. The last data field is followed by a byte of zeros.

A data field - consisting only of the first, or count byte, is developed for an omitted accounting entry. The byte
contains zeros, indicating that no data is present for that field. In this case:

When (a, b" d) appears in the JOB statement

Byte l Byte I Byte I
I Data I Datab 00 I Datad 00

Count a Countb !
Countd I a

I I

Note: Use the entry-count byte (job running time painter + 3) to determine if you have processed all the accounting
data fields.

Step Running Time
3 Bytes (MVT, MFT)

Entry Count 1 Byte

The step running time painter is zero at job termination.

The step running time is not on a full word boundary. A binory numer, right justified,
represents step running time in hundredths (0.01) of a second.

If an automatic restart occurs, the system gives control to a user routine prior to restarting; step
time passed is the time used by the step. Upon successfu I completion of a step that was
automatically restarted, the step time passed to a user routine does not include the time used
by the step during its original execution. If a programmer deferred restart occurs, the time
used during the original execution is not included in the step time passed to a user routine.

Number of step accounting entries picked up from the EXEC statement. Commas used to denote
omitted entries are counted.

24 Step Accounting
Data Fields Pointer

This pointer is zero
at job termination

28 "Flags" and Step
Number Pointer

The step accounting data
fields conform to the same
specifications as the job
accounting data fields.

Pointer + 1

"Flags" Byte

Step Number Byte

Setting bit 7 of this byte to 1 effects job
cance lIation. -

This byte contains the number of the job
step currently being processed. The first
step in the job is 1.

Note: You can use the flag byte to cancel the execution of a E whose occounting information does not conform to your installation's
standards. You can equate step initiation for the first step in a job to job initiation, i.e., the step number byte contains 1.

Figure 34. Accounting Information Available to User

156 MFT Guide (Release 21.0)

(

Adding An Accoullting Routine

Accounting routines can be added to the control program in two ways. First, by placing the
routine on the SYS 1. CI505 data set used in system generation. Second, by. placing the routine
in the appropriate load module of the control program after system generation. The effect of
either is to replace the dummy accounting routine with the user-written routine.

At system generation, specify that an accounting routine is to be supplied. This is done
through the ACCTRTN=paramenter of the system generation SCHEDULR macro instruction.

This specification causes the linkage to the accounting routine to be installed in the
scheduler component of the system being generated, and makes usable the accounting data set
writer routine. When not installing accounting routines until after the system is generated, a
duiruny accounting routine, named IEFACTRT, is placed in the system at this time.

Add the size of the IEF ACTRT routine to the estimate of the minimum amount of storage
required to initiate a job. This storage requirement should be specified in the MINPART
parameter of the SCHEDULR macro instruction.

Insertion at System Generation Time

To insert the accounting routine into the control program during system generation, place the
routine. in the SYS 1. CI505 data set, prior to the start of the system generation, using the
linkage editor. The SYSl.CI505 data set (furnished with the starter operating system) contains
load modules which are combined during the system generation process to form the load
modules composing the control program. In response to the specification made in the system
generation SCHEDULR macro instruction, the accounting routine is incorporated in the
apporpriate load modules for the system being generated.

Place the accounting routine in the SYS1.CI505 data set under the name IEFACTRT. This
replaces the dummy accounting routine -- also named IEFACTRT.

Insertion after. System Generation

To insert the accounting routine into the control program after system generation, place the
routine in load modules of the scheduler component of the generated control porgrarn, using
the linkage editor. The scheduler load modules are in the linkage library (SYS1.LINKLIB data set)
of the generated system. The affected load modules of the MFT schedulers (30K, 44K) follows:

MFT Configurations

30K Scheduler:

• Load module IEFSD520 -- step initiation
• Load module IEFSD515 -- step/job termination
• Load module IEFZA -- step initiation

44K Scheduler:

• Load module IEFW21 SO -. step initiation
• Load module IEFSD510 -- step/job termination

An example of the input for a linkage editor to insert the accounting routine into any of the
job schedulers follows:

Section IV: Modifying the System 1 57

Page of GC27-6939-1O
Revised April 16, 1973
By TNL: GN28-2546

(parameters) //jobname
I / /stepname

//SYSPRINT
//SYSUTl

JOB
EXEC
DD.
DD
DD
DD

PGM=IEWL, (parameters)
SYSQUT=A

I / /SYSLMOD
//SYSLIN

UNIT=SYSD, \, SPACE=(parameters)
DSNAME=SY:; 1 . LINKLIB, DISP=OLD

*

(object code)

This sequence must be repeated
for each scheduler load module
which contains an inserted
accounting routine.

INCLUDE SYSLMOD(load module name)
ALAIS alias names
ENTRY entry point name
NAME load module name (R)

In this example, "load module name" represents the appropriate scheduler load module as
identified in the preceding text. To ensure accuracy in identifying the correct alias names and
entry point names for the load modules, obtain these names from the system generation listing
produced during generation of the system. These names are specified in the system generation
Stage II linkage editor outpu t execution that produced the load module.

Output From Accounting Routines

Output can be written in thrt. e ways:

• By issuing console messages
• By using standard system .mtput writers
• By using an IBM -supplied accounting data set writer

Console Messages: Use the Write to Operator (WTO) or Writer to Operator with Reply
(WTOR) macro instruction. Write-to-programmer (WTO with routing code 11) must not be
issued from accounting routines.

System Output: Assemble the following calling sequence in the accounting routine. The
contents of register 12 must be the same as when the accounting routine was entered, and
register 13 must contain the address of an area of 36 fullwords.

When writing an accounting routine for inclusion in the job scheduler, be aware that register
saving conventions within the control program are differe nt from those for problem programs.
In the job scheduler, registers are saved in the sequence 0-14 in a IS-word save area. There is
no place provided to save register 13; it can be saved in another register or in another save
area not known to the control program. This can be done by adding a word to the end of the
save area that is provided and is addressed as SAVE + 60.

Accounting Data Set writer: This writer places accounting records in the accounting routine in a
data set named SYSl.ACCT. The data set must reside on a permanently resident direct access
device. The accounting routine must provide linkage to the writer. Pass the beginning address
of the record to be written to the writer.

A sample accounting routine, showing the use of console messages, output to the system
output writer, and the data set writer is stored under the name SAMACTRT in the
SYS I.SAMPLIB data set furnished with the starter operating system.

158 MFT Guide (Release 21.7)

Adding the Accounting Data Set Writer

The accounting data set writer (module IEFW AD) is generated in the appropriate scheduler
load modules during system generation after specifing the accounting routine in the
SCHEDULR macro. These are the same modules that contain the user-written accounting
routine. Scheduler storage requirements are increased by the amount of storage needed by the
accounting routine plus 2600 bytes. The writer places accounting records developed by the
routine in a data set named SYSl.ACCT.

Linkage

The accounting routines link to the writer via the following code:

L R15,VCON
BALR 14,15

VCON DC V(IEFWAD)

Input

The accounting routine passes in register 1 the address of the accounting record to be written.

The record format is:

DS3 H -- space used by the data set writer

DC H ' __ ' -- contains the number of bytes of data being passed. This number cannot

DC

exceed the capacity of 1 track on the direct access volume being written
on.

-- the data to be written in SYSl.ACCT.

Registers 13,14, and 15 are used as specified by operating system conventions (14 and 15
are used for linkage as above; 13 must point to an 18-word save area).

Specifying the SYS1.ACCT Data Set

The SYS l.ACCT data set must be pre-allocated on a direct access volume that will be
permanently resident. The data set must by named SYSl.ACCT, have no secondary extents,
and be allocated contiguous space. Do not catalog the data set.

If the installation has two permamently resident volumes available for accounting routines,
create two SYS I.ACCT data sets and utilize the console messages and replies to notify the
system as to which data set is to be written to.

Output

If the IEFW AD routine successfully writes the record in the SYS I.ACCT data set, the routine
returns control to the accounting routine immediately. If the routine fails to write the record, it
uses message IEF507D to bring the error condidtion to the attention of the operator. (See the
Messages and Codes publication (GC28-6631) for the text of, and answers to, the message.) Depending
upon the answer, the routine may try again to write your record in the SYS1.ACCT data set.

Section IV: Modifying the System 159

In any case, a code is returned to the routine indicating either that the record was written
successfully, or, if it was not written successfully, the cause of the failure. The return codes are
described in the follwing table.

Contents Type* Meaning

Register 15

0 D The record was written to the data set.

4 D The record was not written to the data set because the
record exceeds the length of one track.

8 D The record was not written to the data set because there
is no more space in the data set.

12 D The record was not written to the data set because no
space had been allocated to the data set.

16 D The record was not written to the data set because a
permanent I/O error was encountered while trying to
write it.

20 D The record was not written to the data set because the
previously last record could not be found.

24 D Operator gave invalid device address.

Register 0

n B Number of tracks still available in the data set.
(Valid only if register 15 is zero.)

*Type -- Type of number. D -- Decimal, B -- Binary

Use of ENQ/DEQ

IEFW AD enqueues on the major Q name SYSIEFAR and the minor Q name WD.

160 MFT Guide (Release 21.0)

) The Must Complete Function

System routines (routines operating under a storage protection key of zero) often engage in
updating and/or manipulation of system resources such as system data sets, control blocks,
queues, etc. These resources contain information critical to continued operation of the system
and they must complete their operations on the resource. Otherwise, the resource may be left
incomplete or may contain erroneous information -- either condition leads to unpredictable
results. .

The ENQ service routine provides the must complete function and ensures that a routine
queued on a critical resource(s) can complete processing of the resource(s) without

lit interruptions leading to termination. The must complete function places other routines (tasks)
in a wait state until the requesting task -- the task (routine) issuing a ENQ macro instruction
with the set-must-complete (SMC) operand -- has completed its operations on the resource. The
requesting task releases the resource and terminates the must complete condition through
issuance of a DEQ macro instruction with the reset-must-complete (RMC) operand.

Realize that, for the time it is in effect, the must complete function serializes operations to
some extent in the computing system. Therefore, its use should be minimized -- use the
function only in a routine that processes system data whose validity must be ensured.

As an example, in multitask environments, the integrity of the volume table of contents
(VTOC) must be preserved during an updating process so that all future users may have
access to the latest, correct, version of the VTOC. Thus, in this case, enqueue on the VTOC
and use the must complete function (to suspend processing .of other tasks) when updating a
VTOC.

Just as the ENQ function serializes use of a resource requested by many different tasks, the
must complete function serialize execution of tasks.

Characteristics 01 the Must Complete Function

When the must complete function is requested the requesting task is marked as being in the
must complete mode and all asynchronous exits from the requesting task are deferred. Other
tasks in the system (except the allowed tasks at the system level) or associated with the
requesting task in a job step (step level) are placed in a wait state. Thus, tasks external to the
requesting task are prevented from initiating procedures that will cause termination of the
requesting task. Other external events, such as a CANCEL command issued by an operator, or
a job step timer expiration are also prevented from terminating the requesting task.

The must complete mode of operation is not entered until the resource(s) queued upon are
available.

At the system or step level, the requesting task can cause its own abnormal termination. If
the requesting task does come to an abnormal termination before a reset condition has been
effected, the operating system is stopped at the point of error to permit investigation of the
trouble. It is then necessary to restart the system with the initial-pro gram-load (IPL)
procedure.

Levels 01 Use 01 the Must Complete Function

The must complete function can be applied at two levels:

The System Level: Only the requesting task, and system tasks included during system
generation, are allowed to execute. All other tasks in the system are placed in a wait state.

Section IV: Modifying the System 161

The Step Level: In a partition, only the requesting task is allowed to execute. All other tasks in
the partition, including the initiator task, are placed in a wait state.

CAUTION: Use of the must complete function at the system level should not be attempted
until all aternatives have been exhausted. Except for extremely unusual conditions the system
level of must complete should never be used.

Requesting the Must Complete Function

Request the must compplete function by coding the set-must-complete (SM(GC) operand in
an ENQ macro insturction. The format is:

Name Operation Operand

[symbol] ENQ ... ,SMC= SYSTEM
STEP

Two parameters, SYSTEM and STEP, indicate the level to which the must complete
function is to apply. The Supervisor Services and Macro Instructions publication describes the
other operands of the ENQ macro.

Because of the properties of the TEST and USE parameters of the RET operand of the
ENQmacro insturction,· the SMC operand should be used only if the RET operand is to use
the parameters HAVE, or NONE (in the E-form of ENQ), or if the RET operand is not used
at all.

Request the must complete function only in routines operating under a protection key of
zero. If the protect key is not zero, the task using the routine requesting "must complete" is
abnormally ended.

Programming Notes

1. All data used by a routine that is to operate in the must complete mode should be checked
for validity to ensure against a program-check interruption.

2. A routine that is already in the must complete mode should avoid calling another routine
which also operates in the must complete mode. However, one level of nesting is permitted,
when necessary, with the following cautions:

a. A task may set the must complete mode for both the system and the step. If multiple
settings are made for either the system or the step, only the first setting of each is
effective -- the others are treated as no operation.

b. The same is true for reset-must-complete. The first RMC for the system will reset the
status of the system, the first RMC for the step will reset the status of the step, and all
others will be treated as no operation.

3. Interlock conditions that can arise with the use of the ENQ function are discussed in the
Supervisor Services and Macro Instructions publication.

Additionally, an interlock may occur if a routine issues an ENQ macro instruction while in
the must complete mode. The wanted resource may already be queued on by a task placed
in the wait state due to the must complete request already made. Since the resource cannot
be released, all tasks wait.

162 MFT Guide (Release 21.0)

(

/

\

)
4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be used, unless

extreme care is taken, by a routine operating in the must complete mode. An interlock
condition will result if a serially-reusable routine requested by one of these macro
instructions has been requested by one of the tasks made non-dispatchable by the use of the
SMC operand or was requested by another task and has been only partially fetched.

For example, suppose routine "b" in task B has requested and is using subroutine "c". Subsequently
routine "a" in task A (of a higher priority than task B) receives control of the processing
before routine "b" finishes with subroutine "c". If routine "a" issues 'an ENQ macro
instruction with the SMC operand and puts task B (and, thus, routine "b") in a
non-dispatchable condition, subroutine "c" remains assigned, to routine "b". Now, if routine
"a" issues a request (via a LINK, LOAD, etc. macro instruction) for subroutine "c", an
interlock will occur between tasks A and B: task A cannot continue since subroutine "c" is
still assigned to task B, and task B cannot continue (and thus release subroutine "c")
because task A in the must complete mode has made task B nondispatchable.

5. The time a routine is in the must complete mode should be kept as short as possible -- enter
at the last moment and leave as soon as possible. One suggested way is to:

a. ENQ (on desired resource(s»

b. ENQ (on same resource(s»,RET=HAVE,SMC= SYSTEM
STEP

Item a gets the resource(s) without putting the routine into the must complete mode.

Later, when appropriate, issue the ENQ with the must complete request (Item b). Issue a
DEQ macro instruction to terminate the must complete mode as soon as processing is
finished.

Terminating the Must Complete Function

Terminate the must complete function and release the resource queued upon by coding the
reset-must-complete (RMC) operand in a DEQ macro instruction. The format is:

Name Operation Operand

[symbol] DEQ ... ,RMC= SYSTEM
STEP

The parameter (SYSTEM or STEP) must agree with the parameter specified in the SMC
operand of the corresponding ENQ macro instruction.

Tasks placed in the wait state by the corresponding ENQ macro instruction are made
dispatchable and asynchronous exits from the requesting task are enabled.

,

Section IV: Modifying the System 163

The PRESRES Volume Characteristics List

This chapter describes the creation and use of a direct access volume characteristics list that is
placed in the system parameter library under the member name PRESRES (permanently
resident and reserved).

Characteristics of the PRESRES Volume Characteristics List

The PRESRES volume characteristics list defines the mount and allocation characteristics of
direct access device volumes used at an installation. Using the list predefines mount
characteristics (permanently resident, reserved) and allocation characteristics (storage, public,
private) for any, or all, direct access device volumes used by the installation. The Job Control
Language publication describes volume characteristcs and the operating system's response to the
various designations.

The scheduler compares the volume serial numbers in the PRESRES characteristics list with
those of currently mounted direct access volumes after receiving control from the nucleus
initialization program (NIP). Each equal comparison results in the assignment to the mounted
volume of the characteristics noted in the PRESRES entry. (Fields in the unit control block for
the device on which the volume is mounted are set to reflect the desired characteristics.) If the
volume is: the IPL volume; the volume containing the data sets SYS 1.LINKLIB,
SYS1.PROCLIB, SYS1.SYSJOBQE; or a physically nondemountable volume (such as a 2301
Drum Storage Unit) the mount characteristic (permanently resident) has already been assigned
and only the allocation characterist.ic is set.

A mounting list is issued for the volumes in the PRESRES characteristics list tl}at are not
currently mounted (except those for which mounting messages have been suppressed) and the
operator is given the option of mounting none, some, or all of the volumes listed. The mount
and allocation characterisitics for the volumes mounted by the operator are set according to
the PRESRES list entry for the volume. The operator mounts the unit on the volume he
selects.

The Messages and Codes publication describes the operator messages and responses
associated with the use of the PRESRES volume characteristics list.

After the scheduler has finished PRESRES processing, reading of the job input stream
begins, and the PRESRES list is not referred to again until the next IPL.

Note:

1. A PRES RES entry identifying a physically nondemountable volume will appear in the mount
list issued to the operator if the volume (device) is OFFLINE or is not present in the
system.

2. Use of the PRESRES list can only be suppressed by deleting the member from the
parameter library (SYS1.PARMLIB).

3. Only the first 102 volumes on the PRESRES list can be placed on the mount list.

Users can use a PRESRES characteristic list entry or refer to the volume in the input stream
to assign an allocation characteristic other than "public" to volumes whose mount
characteristic is "permanently resident".

Selection of the volumes for which PRESRES entries are to be created should be done so
that critical volumes are protected. Since the combination of mount and allocation

164 MFT Guide (Release 21.0)

(

/

\

characteristics assigned to a specific volume determine the types of data sets that can be placed
on the volume and its usage, you can exercise effective control over the volume through a
PRESRES list entry.

Writing the PRESRES Entry Format

Each PRESRES entry is an 80-byte record, consisting of a 6-byte volume serial number field,
a I-byte mount characteristic field, a I-byte allocation chara.cteristics field, a 4-byte device
type field, a I-byte mount-priority field, and an optional information field. Commas are used
to delimit the fields, except the optional information field is aiways preceded by a blank. All
character-representation is EBCDIC. This format is shown below.

Volume Serial
Number 6 Bytes , L LDeVice Type , l ~Ptional 4 Bytes Information

Blank--1 Byte
Mount Priority--1 Byte

Allocation Characteristic--1 Byte
Mount Characteristic--1 Byte

The volume serial number consists of up to six characters, left justified.

Mount characteristics are defined by:

o to denote permanently resident
1 to denote reserved

The default characteristic is "permanently resident" and is assigned if any character other than
o or 1 is present in the field.

Allocation characteristics are defined by:

o to denote storage
1 to denote public
2 to denote private

The default characteristics is "pUblic" and is assigned if any character other than 0, 1, or 2 is
present in the field.

The device type is defined by: A four-digit number designating the type of direct access device
on which the volume resides) e.g. the IBM 2311 Disk Storage Drive is indicated by the
notation 2311. Note that is field only indicates the basic device type for the associated volume. Advise
the operator if the device requires special features (such as track overflow) to process the data on the
designated volume.

The mount priority field is used to suppress mount messages at IPL time for a volume; the
alphabetic· character N should be inserted in this field to suppress the mount message. This
field allows the user to list seldom used volumes in the PRESRES list without having a mount
message issued at each IPL. When these volumes are required, they may be mounted and
attributes will be set from the PRESRES list entry. If the user does not wish to have the
mount message suppressed, he may omit the mount priority field and the preceding comma.

The optional information field contains: Any descriptive information about the volume. This
information is not used by. the system, but will be available to the .user on a printout of the
list. If necessary, comments may start in the second byte' after the mount priority field or if the
mount priority field is omitted, in the second byte following the comma after the device type
field.

Section IV: Modifying the System 165

Embedded blanks are not permitted in the volume serial, mount, allocation, or device type
fields.

Adding the List

The IEBUPDTE utility program places the list (under the member name PRESRES) in the
system parameter library, SYS l.P ARMLIB. This utility is also used to maintain the list.

166 MFT Guide (Release 21.0)

!
I

'"

Section V: Logic Summary

This section contains two parts. Part I describes the overall logic of the MFT control program
with diagrams. This part gives special emphasis to the master scheduler, communications task,
readers, writers, and the supervisor. Part II describes the initialization of the control program,
showing how main storage is segmented. Planning personnel and others who need to know the
logic and learn the internal processing of the control program can look at this section.

Part I: Theory of Operation

Figures 35 through 39 describe the overall processing flow through each job cycle. These
figures describe the processing performed by various components of the control program as it
loads the nucleus, reads control statements, initiates the job step, causes processing to begin or
end in other partitions, and terminates the job step.

Section V: Logic Summary 167

0-
X

3:
~
o
c:
c:
r. ,.,
r.
;::;
~
~ r.
N

s

jIfii~

LOAD Button .. The operator sets the LOAD UNIT switches to the device on which the
system residence volume is mounted, and presses the LOAD button on
the operator control panel.

1.

2.

3.

1. Initial program loading (lPU program locates and loads the
nuc leus.

/" , ~lr' N"oie"' Add, I
VOL LABEL

I'-.. _ .-"

'- VTOC

2 Nucleus initialization program (NIP) performs required
• and optional initialization.

3. Master scheduler task (MST) initializes main storage.

4. Operation enters SET command.

An I "L record is read and given control. This record causes the second I Pl record
to be read, which in turn, enables the rest of the IPL program to be read into main
storage. The IPL program searches the volume label of the system residence volume
to locate the volume table of contents (VTOc). The VTOC is then searched for the
address of the nuclues data set (SYS1. NUCLEUS).

The nucleus is brought into the system area, and NIP is brought into the dynamic
area. NIP receives control from the IPL program. It performs both required and
optional initialization for control program operation, including initializing the
communication vector table (CVT) and general system initialization, such as
determining user options and opening system data sets. After completing its
processing. NIP passes control to the master scheduler task (MST), which
initializes main storage.

The MST gives control to the communications task, which communicates with the
operator to request partition changes. The MST then initializes partitions by placing
a copy of the initiator Iterminator into each scheduler-sized partition; a copy of the
small partition (SMALLGO) is placed in each small partition.

Figure 35. System Initialization

A-"

4.

10 (16)

" I CVT Address I
'-----v---'

4 bytes in
Main Storage

..

.- Items initialized by the MST are:

l. Partitions-as specified in the
system generati on.

2. The initiator Iterminator, in each
scheduler-sized partition.

3. Small partition module (SMALLGO),
in small partition.

" Messages to the Operator, such as
0- ''SPECIFY SYSTEM PARAMETERS".

When the required SET command is entered, the communications task calls the
master scheduler command scheduling routine to have the command executed. An
automatic START reader command or a subsequent operator entered START reader
command causes a copy of the reader 1nterpreter (reader) to be brought into its
appropriate partition. If a START writer command is entered, a copy of a writer is
also brought into the specified partition (s).

~

CIl
('II

!l o·
::l

~
r
o

(JCl
(i.

CIl = 3
3
Pol
-s
'<

0\
~

~ ~

START RDR Command---, ----------,
The Reader:

F=l~ Control Tables

r

~
1. Reads and Interprets Control Statements.

The Interpreter:

2. Interprets the JCL and places this
information in control tables.

...1'-

v

1. JCT
2. SCT
3. JFCB
4. DSENQ
5. SlOT
6. VOLT

m .. st;·j
1. Data Set Control Block (DSCB)

2. Data Control Block (DCB)

.3. Volume Labels

A START command, whether an
automatic reader command or
operator-initiated, brings a
copy of the Reader into a partiton.

3.

1 The reader gets control and reads control statements and data from
• the input job stream. It passes the control statements and data to

the interpreter.

2 The interpreter analyzes the JOB, EXEC, and DO statements and
• places this information in the following tables:

• A job control table (JCT) for each job being read.

• A step control table (SCT) for each step being read.
This is chained to the JCT.

• A job file control block (JFCB) and step I/O table
(SlOT) for each DO statement. These are chained
to the SCT.

Figure 36. Reader/Interpreter

Writes data from the input stream
onto a direct access storage device. "

v

• A data set enqueue table (DSENQ) is made from every
JFCB used by the job.

• A volume table (VOLT) for each volume serial number
used by the job.

3 The interpreter then places these updated control blocks into the
• SYS1.SYSJOBQE corresponding to the CLASS and PRTY parameters

on the JOB statement.

Input Data Sets

Data sets in the input stream are written onto a direct access storage
device for later use by the problem program. The address of the data
is placed in the JFCB of the SYSI N DO statement.

u

--.J
o

~

~
o c:
0:
o

~
o

'0
~
Vl o
N

8

START INIT

.. .---, --------a
The Initiator: v

Messages to Operator
"M add, ser"

SYS1.SYSJOBQE 1.
2.

locates Input Data Sets.

Job Fi Ie Control Block --v
y

Job Fi Ie Control Block
(JFCB) or Catalog 3.

4.

Allocates I/O Devices and makes requests to
operator for additional devices.

Allocates auxilliary storage space.

~

CJ
....

Messages
y

Writes tables and control blocks.
Control Tables (See Figure 38 for Problem Program processing)

1.

2.

3.

4.

1. JCT
2. SCT The Terminator:
3. TlOT

f-------' ~ r-v Output Work Queues

5.
6.

Disposes of data sets and writes messages.
"

Enqueues work for output writes on output work
queue.

The allocation routine, running as a subroutine of the initiator, determines
the volume containing a given input data set (SYSI N) by examining the
JFCB, or by searching the catalog. A catalog managel11~nt routine is used
to perform this search.

A job step cannot be initiated unless there ore enough I/O devices to fill
its needs. Allocation determines whether the required I/O devices are
available, and makes specific assignments. If necessary~, messages are
issued to the operator to request the mounting of volumes.

Working under the control of the allocation routine, dire,ct access device
space management (DADSM) routines acquire direct access volume space
needed for output data sets, new data sets, and work data sets for jobs
not using direct system output (DSO).

The JFCBs are updated by the open routines with information concerning the
data sets to be 'used by step execution, and are written back into SYS 1.SYSJOBQE.
This information ,is used later when a data set is closed" when EOV conditions
occur, and when the job step is term i nated •

5.

6.

The terminator releases the I/O devices, and disposes of data sets used by the
job step. The tables prepared during initiation (JCT, SCT, TlOT, etc.) contain
the information used to release the I/O devices. These tables include information
such as disposition of data sets. It then executes an installation accounting
routines if one is provided.

At termination of a job not using direct system output processing, an entry is
made on the user-specified output work queue; later the problem program output
data can be written from a system direct access storage device to a user-specified
by a system output writer. The initiator then initiates the next job step.

Figure 37. Initiator/Terminator

~ ~-" ~

en
~

!l o·
::l

<
r o

(JQ ;:;.
en
c:
3
3
III ...,
'<

.....

""'II!!!!!!II

"r---, -------------.
1. The initiator brings the problem program into a small

partition, or replaces itself with the problem program.

~

Output Data Set

Input Data Set u v l

1.

2.

3.

2. Data sets are opened with the OPEN macro instruction.
DSO (Direct System Output)

3.

4.

Data sets are written to output data sets (SYSOUT), or
to direct system output (DSO).

Data sets are closed and, if necessary, end-of-volume
(EOV) processing is done.

bU
--v

v

1. Printer

2. Tape

3. Punch

h:J o
D

5. DUMP of main storage is done for abnormal termination.
DUMP for Abnormal Termination

6. Terminator finishes terminating the Problem Program.

(See Figure 37 for termination processing.)

The initiator causes itself to be replaced by the problem program it is
initiating (if the problem program is a large partition), or initiates
the job in a small partition. The problem program can be an IBM­
supplied processor, such as COBOL, linkage editor, or a user­
written program. The problem program uses control program
services for operations such as loading other programs and performing
I/O operations.

The OPEN macro instruction gives control to the OPEN/CLOSE/EOV
routines. These routines open the data set's DCB and bring the access
method routines into the problem program partition. The problem
program now processes unti I it terminates normally or abnormally,
though it may not retain exclusive control of the CPU. Control always
is received by the highest priority task ready to execute.

Output is written to the output data set (SYSOUT) or to the direct
system output (DSO) data sets.

4.

5.

6.

When the problem program terminates, the supervisor receives control.
The supervisor uses the OPEN/CLOSE/EOV routines to close any open
data control blocks.

Under abnormal termination conditions, the supervisor moy also provide
special termination procedures, such as a storage dump if a SYSABEND DD
statement is in the input streom.

The supervisor then passes control to the terminator, which is either
brought into the partition in which termination is to occur, or is
brought into a large partition to terminate a small partition.

Figure 38. Processing a Problem Program

-...J
N

::
~
o c: a:
(1)

~
(1)

(;"

~
(1)

N

8

Output Work Queue

Output Data Sets U

Figure 39. System Output Writer

~

START WTR Command ..
~

v

"-

y

1.

2.

3.

J-. User Data, on
The System· Output Writer: r--v' a Specified Device

1. Printer c=J
1. Dequeues entry from appropriate

2. Tape 0 SYSOUT queue (the output work
queue).

D 3. Punch
I----'

2. Writes data onto user-specified Il~ device and writes any messages. -v
Messages

0 -
3. Deletes entry from output work

queue ·and dequeues the next
entry.

An output writer operates concurrently with readers, problem programs,
and other writers. When the START command is issued for a writer, the
writer dequeues the first entry in the specified output (SYSOUT) queue.

If no requests have been enqueued in that output queue from the problem
programs, the writer is placed in a wait condition until a job is terminated
that has system messages or output data sets. After the entry is dequeued
from the output queue, the writer transmits the data sets to the specified
card punch, magnetic tape unit, or printer.

When the last record has been processed, the writer deletes the queue
entry before dequeui ng the next entry.

.?-." ~ .

I Part II: Initialization of the Operating System

When the system is loaded, routines perform required and optional initialization of functions
needed for control program operation. When the Nucleus Initialization Program (NIP) has
defined the fixed area, it then assigns the rest of main storage to the master scheduler task to
be prepared as the dynamic area for control program operation.

Main Storage Preparation

When NIP completes its functions it constructs a request block (RB) and an XCTL macro
instruction (specifying master scheduler initialization routine IEFSD569) at the low address of
the temporary master scheduler area. NIP places the address of this RB in master scheduler
task TCB field TCBRBP. (The original contents of TCBRBP are saved and passed to
IEFSD569 in a parameter list along with the original master scheduler task boundary box
contents.) NIP sets master scheduler task TCB field TCBFLGS to make the master scheduler
task dispatchable, and then branches to the dispatcher.

The dispatcher gives control to the master scheduler task causing execution of the XCTL
instruction which NIP placed in the temporary master scheduler area. The master scheduler
initialization routine is brought into the temporary master scheduler area and begins executing.
Figure 40, excluding the medium shaded area, illustrates main storage at completion of NIP
before branching to the dispatcher. Figure 40, excluding the light shaded area, illustrates main
storage when the master scheduler initialization routine receives control from the dispatcher.

Figure 41 illustrates main storage (four partition example) at completion of master scheduler
initialization. When the initialization routine completes processing, it branches to the
dispatcher.

Initializing the Partitions

During master scheduler initialization the operator must accept automatic START commands
or enter START commands manually. When a START command is processed, the partition
number specified in the command is determined, and a command scheduling control block
(CSCB) is built. The CSCB is used for communication between the command scheduling
routines (SVC 34) and the command execution routines. The address of the CSCB is placed in
the partition information block (PIB) of the specified partition, and the partition is posted. The
PIB for each partition contains information used by command processing and scheduler
routines.

After the initialization routine completes processing, the dispatcher gives control to the
master scheduler router routine. When this routine completes processing, it returns to the
dispatcher which begins searching the TCB queue. The highest priority task posted through
START command precessing receives control. The XCTL macro instruction addressed by the
partition's RB is executed and the Job Select module (IEFSD510) or Small Partition module
(IEFSD599) is brought into the partition. When an interruption occurs and the partition can
no longer retain control, the dispatcher gives control to the next posted partition. This process
continues, enabling all posted partitions to receive control and to execute the XCTL
instruction placed in them by the initialization routine~ .

Section V: Logic Summary 173

Temporary
Master
Scheduler
Area

8LDL
RSVC
Resident
Reenterable
Routines

Syst.,.
Queue Area

High Address

0000 FQE

Communications Task Master Scheduler

MSTCB
TCBRBP

Nucleus

Legend:

RB

MS BBOX ---
HI
LO

Contents of the Dynami c Area During IPL and NIP.

Contents of the Dynamic Area After The Master Scheduler Task
Receives Control on Completion of NIP.

_ Optional Features

Figure 40. Main Storage During Execution of NIP

174 MFT Guide (Release 21.0)

Dynamic
Area

Fixed
Area

I

\

Partition
0

Partition
J

Partition
2

Partition
3

BLDL
RSVC
Resident
Reenterable
Routines

System
Queue
Area

Nucleus

High Address

RB XCTLIEFSD510 0000 FQE

RB XCTLIEFSD510 0000 FQE

(Small Partition)

RB XCTLIEFSD599 0000 FQE

Master Scheduler

-+--~RB

SQA BBOX MS BBOX
HI
LO

Figure 41. Main Storage at Termination of Master Scheduler Initialization

Section V: Logic Summary 175

Dynamic
Area

Fixed
Area

\

176 MFT Guide (Release 21.0)

)
Appendix A: Recovery Management

When a machine malfunction occurs, recovery management routines record critical machine
and program data, and (in some cases) attempt to recover from the error. Depending on the
specific routine and type of error, recovery takes place at one of four levels:

1. Functional recovery -- resumption of the task at the point where the error occurred.
Machine or recovery management facilities cQrrect storage errors, retry unsuccessful
instructions and I/O operations.

2. System recovery -- termination of the task affected by the error, permitting system
operation to continue.

3. System-supported restart -- re-IPL using system job and data queues preserved by system
restart facilities.

4. System repair -- total system halt for manual repairs, aided by recovery management
records.

Recovery management records are written in SYSl.LOGREC, a dedicated data set on the
system residence volume. They can be edited and printed by use of the IFCEREPO utility
program, described in the Utilities publication.

Recovery management facilities fall into two general categories: facilities for CPU error
recovery, and facilities for I/O error recovery.

CPU Recovery Facilities

Three facilities provide recovery from CPU and main storage errors:

• System Environment Recording, Option 0 (SERO)
• System Environment Recording, Option 1 (SERl)
• Machine-Check Handler (MCH)

These facilities are model-dependent and mutually exclusive. One of them, and only one, must
be included in every operating system with MFT.

System Environment Recording, Option 0 (SERO)

SERO is the least complex of the CPU recovery management facilities. When a machine-check
occurs, SERO determines the type of malfunction, collects data about the error, and writes the
data as a record in SYSl.LOGREC.

Model-dependent versions of SERO are provided for System/360 Models 40, 50, 65, and
75. One or more versions of SERO can be included in SYS 1.LINKLIB during system
generation. During nucleus initialization, resident routines of the appropriate version are loaded
as part of the nucleus.

When a machine-check occurs, resident SERO routines save machine and program data, and
halt all I/O operations. They then load other SERO routines into the dynamic area of main
storage. These routines save additional data, and write all saved data as a record in
SYS1.LOGREC. SERO then asks the operator to reload the operating system, and places the
computing system in the wait state.

Appendix A: Recovery Managementl77

If I/O errors prevent the writing of a record in SYS I.LOGREC, SERO asks the operator to
run SEREP (the stand-alone system environment recording, editing, and printing program). It
then places the system in the wait state. After running SEREP, the operator must run the IPL
program to reload the system.

SERO is, described in more detail in the MFf Supervisor PLM.

System Environment Recording, Option 1 (SERl)

SERI performs the same data collection functions as SERO. In addition, it analyzes each
machine error, and permits system operation to continue when the error affects only a single
noncritical task.

Model-dependent versions of SERI are provided for System/360 Models 40, 50, 65, and 75
(and with MVT, for certain other models, not supported by MFT). One or more versions can
be included in SYS I.LINKLIB during system generation. During nucleus initialization, the
appropriate version is loaded as part of the nucleus.

When a machine-check occurs, SER 1 determines the type of malfunction, collects data
about the error, and writes the data as a record in SYSl.LOGREC. If only one task is
affected, that task is abnormally terminated, and system operation is allowed to continue. If
more than one task is affected, SERI asks the operator to reload the operating system, then
places the computing system in the wait state.

If I/O errors prevent the writing of a record in SYSl.LOGREC, SERI asks. the operator to
run SEREP; it then places the computing system in the wait state. After running SEREP, the
operator must run the IPL' program to reload the operating system.

SERI is described in more detail in the MFf Supervisor PLM.

Machine-Check Handler

MCH is the most complex of the CPU recovery management facilities. The goal of MCH is
total recovery from machine errors: when it achieves this goal, MCH permits a program
interrupted by a machine-check to continue processing. When total recovery is not possible,
MCH performs essentially the same functions as SERl.

Model-dependent versions of MCH are provided for System/360 Models 65 and 85, and
I for System/370 Models 135, 145, 155, and 165.

MeH for Model 65

When a machine-check occurs, M CH determines' the type of malfunction, collects data about
the error, and writes the data as a record in SYSl.LOGREC. MCH retries the interrupted
instruction (that is, tries to re-execute the instruction), provided the error has not made retry
impossible. Retry normally is impossible if the error involves damage to the interrupted
program; however, if the program is refreshable, MCH tries to repair the damage by loading a
fresh copy of the program.

When instruction retry is successful, MCH permits the interrupted program to continue
processing. When retry is not successful (or not possible), MCH analyzes the error and tries to
associate it with a specific task. If the error affects a problem program task or noncritical
system task, that task is abnormally terminated and system operation is allowed to continue. If
the error affects a critical component of the control program, MCH informs the operator and

c

places the computing system in the wait state.

178 MFT Guide (Release 21.0)

(

/

) MCH is described in more detail in the Machine-Check Handler for System/360 Model 65
PLM.

I

MeH for Models 85, 135, 145, 155, and 165

MCH programs for Models 85, 135, 145, 155, and 165 differ from MCH for Model 65 in that
machine recovery facilities handle instruction retry. If the interrupted instruction is retried
successfully, MCH is entered only to collect and analyze data about the error, and to write the
data as a record in SYS I.LOGREC.

If the instruction is not retried successfully, MCH perfornis essentially the same functions as
in the case of the Model 65: error identification and analysis, program repair or task

Itermination and error recording in SYS1.LOGREC. (Exception: For Models 135 and 145,
MCH does not attempt to repair program damage; the task is always terminated. For Models
155 and 165, MCH repairs damage to the control program only; in most cases, it does this by
a checksumming technique rather than by loading a fresh copy of a load module.)

Through the MODE command, the operator can control the method of error recording and
certain other aspects of recovery management. The exact function of the MODE command
depends on the CPU model, and is described in the Operator's Reference publication.

MCH is described in more detail in the following program logic manuals:

• Machine-Check Handler for System/360 Model 85 PLM. I. Machine-Check Handler for System/370 Models 135 and 145 PLM.
• Machine-Check Handler for System/370 Models 155 and 165 PLM.

Input/Output Recovery Facilities

Four facilities aid recovery from I/O errors:

• Channel-Check Handler (CCH).
• Error Recovery Procedures (ERPs).
• Alternate Path Retry (APR).
• Dynamic Device Reconfiguration (DDR).

Any or all of these facilities can be included in the same system. ERPs are required for all
systems, while APR and DDR are optional. CCH is required or optional, depending on the
CPU model.

When a system does not include CCH, channel checks are handled by the sysytem's CPU
recovery management routine (SERO, SERl, or MCH). This routine writes an error record in
SYS1.LOGREC, informs the operator of the error, and places the computing system in the
wait state.

Channel-Check Handler (CCH)

When a channel-check occurs, CCH prepares for a retry of the unsuccessful I/O operation by
an error recovery procedure (ERP). It also collects data about the error, and places this data
in a record to be written in SYSl.LOGREC.

CCH supports IBM 2860, 2870, and 2880 channels, and the integrated channels of
I System/370 Models 135, 145 and 155. CCH is required for System/360 Model 85 and for
System/370 Models 145, 155, and 165; it is optional for System/360 Models 65 and 75. (With
MVT, CCH is required or optional for certain other models, which are not supported by

Appendix A: Recovery Management 179

MFT.) If the operating system includes APR, it must also include CCH for APR to function
properly.

CCH consists of a central module that is channel-independent, and separate error-analysis I modules for the IBM 2860, 2870, 2880, Models 135 and 145, and Model 155 channels.
During nucleus initialization, the central module is made part of the nucleus, along with the
error analysis modules for all online channels.

I

When a channel-check occurs, CCH receives control from the I/O supervisor. It collects
information about the error, and formats a record for SYS I.LOGREC. If the error does not
impair system integrity, CCH constructs an error recovery procedure interface block (ERPIB),
and returns control to the I/O supervisor.

The I/O supervisor writes the channel error record into SYSl.LOGREC, and informs the
operator that an error has occurred. It then passes the ERPIB to the appropriate error
recovery procedure (device-dependent ERP), which uses the ERPIB to retry the unsuccessful
I/O operation. (Exception: CCH does not produce an ERPIB for a channel data check: the
ERP is able to retry the operation without it.)

If CCH finds that a channel error affects system integrity, it passes control to the system's
CPU recovery management routine (SERO, SERl, or MCH). This routine informs the operator
of the error, and places the computing system in the wait state. If the routine is MCH, it also
writes the channel error record in SYS I.LOGREC.

For a more detailed description of CCH, refer to the Input/Output Supervisor PLM.

En-or Recovery Procedures (ERPs)

ERPs are standard procedures performed by routines that attempt recovery from errors on I/O
devices. They ensure that the routines, which are device-dependent, provide a uniform type
and quality of information. For convenience, the routines themselves are generally referred to
as ERPs.

When an error occurs during a read, write, or control operation, the appropriate ERP
determines the type of error, and (when possible) retries the unsuccessful operation. The
routine also determines the number of retries to be performed before the error is considered
permanent. At completion of error-processing, the routine causes termination of the I/O
request, and notifies the user of completion (successful or unsuccessful).

IBM supplies ERPs for all IBM devices. At system generation, the user selects (or provides
his own) ERPs for devices included in his system. The selected ERPs are placed in
SYSl.SVCLIB; they are loaded into main storage when they are needed, except for a portion
of the direct access ERP, which is permanently resident in main storage. The resident direct
access ERP handles errors on the system residence device, and exceptional conditions such as
end-of -cylinder, head-switching, and alternate track procedures.

For a more detailed description of ERPs, refer to the Input/Output Supervisor PLM.

Alternate Path Retry (APR)

When an I/O operation is to be retried because of a channel check, APR ensures that an
alternate path (channel or selector subchannel) is used whenever possible. In addition, APR
enables the operator to vary a path online or offline.

180 MFT Guide (Release 21.0)

\

For APR to be effective, however, CCH must be included in the same system; CCH is not
available for System/360 Models 40 and 50. APR consists of two routines: the selective retry
routine (part of the I/O supervisor) and the vary path processor (part of SVC 34). The
selective retry function of APR is optional for MFT. The VARY PATH function of APR is
standard for MFT.

Selective Retry Routine: After a channel-check, the unsuccessful I/O operation is retried by an
error recovery procedure (ERP). The ERP retries the I/O operation some standard number of
times before the error is considered permanent. Before each retry, APR ensures the use of an
alternate path to the device by marking the previously used path offline. When only one path
remains, APR restores all of the original paths, and the process is repeated until the I/O
operation is successful or the standard number of retries is performed. (The standard number
of retries is determined by the ERP, which is provided either by IBM or by the installation.)

By placing failing paths offline, APR ensures the use of an alternate path whenever one is
available. The chance of a successful retry is thereby increased. When retry succeeds, APR
restores all of the original channel paths, and normal system operation is resumed.

Vary Path Processor: The vary path processor enables the operator to vary a channel path
online or offline. For example, the operator can vary a path offline when intermittant channel
errors begin to degrade system performance.

For a more detailed description of APR, refer to the Input/Output Supervisor PLM.

Dynamic Device Reconfiguration (DDR)

DDR enables the operator to swap I/O devices that are allocated and in use. The operator can
substitute one device for another, or simply interrupt processing on a device to carry out
cleaning procedures. A device swap can be requested by the system (after a permanent I/O
error) or by the operator (through the SWAP command).

In its basic form, DDR supports unit record devices, magnetic tape units (for standard-label
or no-label tapes), and direct access devices with demountable storage volumes (except devices
used for system residence). Options of DDR support tapes with nonstandard labels and direct
access devices used for system residence.

DDR is optional for all systems supported by MFT. DDR consists of the SWAP command
processor, which is part of SVC 34, and other routines, which are part of the I/O supervisor.
Basic DDR is partly resident in main storage, while DDR with the system residence option is
entirely resident (except for the command processor).

System-Requested DDR: When a permanent I/O error occurs on a device with a demountable
storage volume (tape or direct access), the system requests a device swap to permit retry of
the unsuccessful I/O operation. The operator can demount the volume and move it to another
device (which may be on a different channel), or he can carry out cleaning procedures and
remount the volume on the same device. (If the device is a shared DASD, the volume must be
remounted on the same device.) If the volume is a tape reel, DDR repositions the volume after
it has been remounted.

For system residence devices, DDR receives control from the supervisor FINCH routine or
the resident DASD error recovery procedure. For other devices (tape and direct access), DDR
receives control from the outboard recorder (OBR) or statistical data recorder (SDR) routine
of the I/O supervisor.

Operator-Requested DDR: The operator can request a device swap at any time by entering a
SWAP command at the console. Before entering the SWAP command, however, the operator

Appendix A: Recovery Management 181

must complete (or cancel) any swap requested by the system. As an example, the operator can
request a device swap when a unit record device requires intervention, but cannot be made
ready due to a permanent error condition. (The system does not request a device swap after an
error on a unit record device.)

For a more detailed description of DDR, refer to the Input/Output Supervisor PLM.

182 MFT Guide (Release 21.0)

Appendix B: System Macro Instructions

This chapter contains the description and formats of macro instructions that allow you either
to modify control blocks or to obtain information from control blocks and system tables.

CIRB - Create IRB for Asynchronous Exit Processing

The CIRB macro instruction is included in SYSl.MACLIB and must be included in a system
at system generation time to be used. The issuing of this macro instruction causes a supervisor
routine (called the exit effector routine) to create an interruption request block (IRB). In
addition, other operands of this macro instruction may specify the building of a register save
area and/or a work area to contain interruption queue elements, which are used by supervisor
routines in the scheduling of the execution of user exit routines.

Name Operation Operand

[symbol] CIRB

EP

{EP=addrx}, KEY={PP }, MODE={ PP }, [STAB=code,]
SUPR SUPR

{
SVAREA= NO}, [WKAREA=value]

YES

specifies the entry point address of the user's asynchronous exit routine.

KEY
~pecifies whether the user's asynchronous routine will operate with a CPU protection key
established by the supervisory program (SUPR) or with a protection key obtained from the
task control block of the task for which the macro instruction is issued (PP).

MODE
specifies whether the user asynchronous routine will be executed in the problem program
(PP) state or in a supervisory (SUPR) state.

STAB
indicates the status condition of the interruption request block. The "code" parameter may
be either of the following:

(RE) to indicate that the IRB is reusable in it current form.

(DYN) to indicate that the storage area assigned to the IRB is to be made available (Le.,
freed) for other uses whe'n the asynchronous exit routine is completed.

SVAREA
specifies whether a register save area (of 72 bytes) is to be obtained from the main storage
assigned to the problem program. If it is, the address of this save area is placed in the IRB. The
asynchronous exit routine then follows the system register saving convention of using the
SAVE and RETURN macro instructions. In this manner, a generalized subroutine can be
used as an asynchronous exit routine. '

WKAREA
specifies the number of doublewords (given as a decimal·value) required for an area in
which the routine issuing the macro instruction can construct interruption queue elements.

Appendix B: System Macro Instructions 183

SYNCH - Synchronous Exits to Processing Program

The SYNCH macro instruction is a system macro instruction that permits control program
supervisor call (SVC) routines to make synchronous exits to a processing program.

Name Operation Operand

[symbol] SYNCH

entry-point

{
entry-point}

(15)

specifies the address of the entry point for the processing program that is to be given
control.

If (15) is specified, the entry-point address of the processing program must have been
pre-loaded into parameter register 15 before execution of this macro instruction.

SYNCH Macro Definition

MACRO
&.NAME SYNCH

AIF
AIF

&.NAME LA
AGO

. REG AIF
&.NAME LR
.SVC SVC

MEXIT
.NAMEIT ANOP
&.NAME SVC

MEXIT

&.EP
(, &'EP' EQ "). E 1
(, &'EP' (1 , 1) EQ '('). REG
15,&.EP LOAD ENTRY POINT ADDRESS.
.SVC
('&'EP' EQ '(15').NAMEIT
15,&.EP(1) LOAD ENTRY POINT ADDRESS.
12 ISSUE SYNCH SVC

12 ISSUE SYNCH SVC

.E1 IHBERMAC 27,405
MEND

Programming Notes: In general, use the SYNCH macro instruction when a control program in
the supervisor state is to give temporary control to a processing program routine, and when
expecting the processing program to return control to the supervisor state. The program to
which control is given must be in main storage when the macro instruction is issued. The use
of this macro instruction is similar to that of the BALR instruction in that register 15 is used
for the entry point address. When the processing program returns control, the supervisor state
bit, the storage protection key bits, the system mask bits and the program mask bits of the
program status word are restored to the settings they had before execution of the SYNCH
macro instruction.

Example: As a result of an OPEN macro instruction, label processing may be carried out to a
point at which a user's processing program indicates that private processing is desired (or
necessary). The control program's open routine then will issue a SYNCH macro instruction
giving the entry point of the subroutine required for the user's private label processing.

ST AE - Specify Task Asynchronous Exit

The ST AE macro instruction permits control to be returned to a user exit routine when a task
is scheduled for ABEND. When issuing the ST AE macro instruction, a ST AE control block
(SCB) is created and initialized with the address of your exit routine. When issuing multiple
ST AE requests within the same program, the SCB associated with the last issued ST AE
request becomes the active SCB: it will be the first to gain control when an ABEND is

184 MFT Guide (Release 21.0)

!

\

scheduled. If the active SCB is canceled, the preceding SCB, if there is one, will become the
active SCB.

Notes:

• Do not cancel or overlay an SCB not created by a user program.

• The execution of a LINK macro instruction does not cancel the active SCB for the program
in control.

Execute and Standard Form of STAE

Name Operation Operand

[symbol] STAE

exit address

{exitOaddress} ,{::f [,PARAM=list address]

[XCTL=~::SD [PURGE= {ErCEf] [ASYNCH= {~~s}J
,MF=(E, remote list address

(1)

specifies the address of a ST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the last SCB created is canceled and the
previously created SCB becomes current. The address may be loaded into one of the general
registers (r1) 2 through 12.

Note: If you use the Execute form of the macro and specify a zero, the exit address in the
parameter list will be zeroed.

OV
indicates that the parameters passed in this ST AE macro instruction are to overlay the data
currently in the SCB.

CT
indicates the creation of a new active SCB.

PARAM=
specifies the address of a parameter list containing data to be used by the ST AE exit
routine when it is scheduled for execution. The address may be loaded into one of the
general registers (r2) 2 through 12.

XCTL=YES
indicates that the ST AE macro instruction will not be canceled if an XCTL macro
instruction is issued.

XCTL=NO
indicates that the ST AE macro instruction will be canceled if an XCTL is issued.

PURGE = QUIESCE
indicates that all active input/output operations will be purged with the quiesce option. If
this fails, active input/output operations will be purged with the halt option.

Appendix B: System Macro Instructions 185

Note: If you use the execute form of the ST AE macro instruction and omit the PURGE
parameter, QUIESCE will not be the default~ the option specified for the preceding use of
ST AE will be used.

PURGE = HALT
indicates that all active input/output operation will be purged with the halt option.

PURGE=NONE
indicates that all active input/output operations will not be purged.

ASYNCH=NO
indicates that asynchronous exit processing will be prohibited while ST AE exit processing is
being done.

ASYNCH=YES
indicates that asynchronous exit processing will be allowed while ST AE exit processing is
being done.

MF=(E,[remote list adress][(1)])
indicates the execute from of the ST AE macro instruction using a remote parameter list. The
address of the remote parameter list can be loaded into register 1, in which case
MF = (E, (1 » should be coded.

Note: When using the Execute form of the ST AE macro instruction and omitting the
ASYNCH parameter, the option specified for the preceding use of STAE will be used.

List Form of STAE

Use the List form of the STAE macro instruction to construct program parameter lists. The
description of the Standard and Execute forms describes the List form with the following
exceptions:

Name Operation Operand

[symbol] STAE {exit address} [,PARAM=list address]

[
, PURGE= ~~~~SCE lJ [ASYNCH= {~~S}]

NONE ~
,MF=L

exit address
any address that may be written in an A-type address constant.

MF=L
indicates the List form of the ST AE macro instruction.

There are several conditions that you should be aware of when you use the PURGE and
ASYNCH parameters of the ST AE macro instruction.

• If the user exit routine requests a supervisor service that requires asynchronous interruptions
to complete its normal processing, you must specify ASYNCH= YES.

• Specify ASYNCH= YES if you use an access method that requires asynchronous
interruptions to complete its normal processing and you have specified PURGE=QUIESCE.

186 MFT Guide (Release 21.0)

(
I

'"

Page of GC27-6939-tO
Revised April) 6, 1973
By TNL: GN28-2546

• When using the Indexed Sequential Access Method (ISAM) and specifying
PURGE=HALT, only the I/O event for which the PURGE is done will be posted.
Subsequent ECBs will not be posted; this causes the ISAM CHECK routine to treat purged
input/ output operations as waiting input/output operations and you will never get past the
CHECK in your program.

• Specify ASYNCH= YES when you have the following combination of conditions: an access
method tha t requires asynchronous interruptions to complete its normal processing, a
specificatio IS of PURGE= NONE, and a request of CHECK in your user exit routine.

• When specifying PURGE=HAL T and an ISAM data set is being updated when a failure
occurs, part of the data set may be destroyed.

• If quiesced input/output operations are not restored when using ISAM, the ISAM CHECK
routine will treat purged input/output operations as waiting input/output operations and
part of the ISAM data set may be destroyed if it is being updated when a failure occurs.

• If input/output operations are allowed to complete while the exit routine is in progress and
there is a failure in the I/O processing, an ABEND recursion will be encountered when the
II 0 interrupt occurs. This can be misleading because it will appear that your exit routine
failed while the actual cause of the failure was in the I/O processing.

Programming Notes

When control is returned to the user after the ST AE macro instruction has been issued,
register 15 contains one of the following return codes:

Code Meaning

00 An SCB is successfully created, overlaid, or cancelled.

04 Storage for an SCB is not available.

08 The user is attempting to cancel or overlay a non-existent SCB, or is issuing a STAE in his

ST AE exit routine.

OC The exit routine or parameter li"t address is invalid.

to The user is attempting to cancel or overlay an sea not associated with his level of control.

When a program with an active STAE environment encounters and ABEND situation,
control is returned to the user through the ABEND/STAE interface routine at the STAE exit
routine address. The register contents are as follows:

• Register 0:

Code Indication

o Active I/O at time of ABEND was qlliesced and j" restorable.

4 Active 1/0 at time of ABEND was halted and is not restorable.

8 No 1/0 was active at the time of the ABEND.

12 No work area was obtained.

16 No 1/0 processing was requested.

Appendix B: System Macro Instructions 187

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

• Register 1 :Address of a 104-byte work area:

ST AE exit routine parameter I ABEND completion code list ~ddr or 0
o

8
PSW at time of ABEND

16 Last P /P PSW before ABEND

24
Registers 0-15 at time of ABEND (64 bytes)

If problem program issued ST AE:
88

Name of ABENDing program or 0

% Entry point addr of

88

96

ABENDing program

If supervisor program issued ST AE:

Request Block addr of
ABENDing program

• Register 2-12: Unpredictable.

I
o

o

o

• Register 13: Address of a supervisor-provided register save area.
• Register 14: Address of an SVC 3 instruction.
• Register 15: Address of the ST AE exit routine.

Register 13 and 14, if used by the ST AE exit routine, must be saved and restored prior to
returning to the calling program. Standard subroutine conventions are employed.

If storage was not availal,le for the work area, the register contents upon entry to the ST AE
exit routine are as follows:

• Register 0: 12 (decimal).
• Register 1: Flags and completion code.
• Register 2: Address of ST AE exit parameter list.
• Register 3-13: Unpredictable.
• Register 14: Return address.
• Register 15: Exit routine address.

The ST AE exit routine may contain an ABEND, but must not contain either a ST AE or an
A TT ACH macro instruction. At the time the ABEND is scheduled, the ST AE exit routine
must be re~ident as part of the program issuing STAE, or brought into storage via the LOAD
macro instruction.

188 MFT Guide (Release 21.7)

Page of GC27-6939-10
Revised April 16, 1973
By TNL: GN28-2546

Scheduling of ST AE and ST AI Exit and Retry Routines

Each STAE exit routine is represented by one or more STAE control blocks (SCBs). Each
ST AE control block is queued in a last-in, first-out order to the TCB (TCBNS1' AE field) of
the task within which they were created. ST AI control blocks also represent exit roudnes, but
are created when the ST AI operand is specified in an A IT ACH macro instruction. ST Al
control blocks are always placed at the top of the queue (ahead of the ST AE control blocks)
in a last-in, first-out order and are propagated (a duplicate S1' AI control block is created and
queued) to all lower-level subtasks of the sub task created with the STAI operand. Thus, if task
A attached subtask B specifying the ST AI operand, and subtask B attached subtask C which,
in turn, attached subtask D, a ST AI control block would be created and queued to the TCB
for subtask B, and could be propagated to the queues originating at the TCBs for subta~k C
and subtask D. If a STAI control block were created for subtask C (the ATTACH macro
instruction issued by subtask B specified the ST AI operand), this ST AI control block would be
placed at the top of subtask C's SCB queue ahead of the ST AI control block created for
subtask B. In this case, both ST AI control blocks would be propagated to the TeB for sllbtask
D. All ST AI control blocks precede all ST AE control blocks on the SCB queue.

I Appendix B: System Macro Instructions 188.1

188.2 MFT Guide (Release 21.7)

If a task is scheduled for abnormal termination, the exit routine specified by the most
recently issued ST AE macro instruction (represented by the highest ST AE control block on the
queue) is given control and executes under a program request block created by the SYNCH
service routine. The ST AE exit routine must specify, by a return code in register 15, whether a
retry routine is to be scheduled. If no retry routine is to be scheduled (return code=O) and this
is a subtask with a ST AI contro~ block on the SCB queue, the exit routine specified in the
ST AI control block is given control. If there is no ST AI control block on the queue, abnormal
termination continues.

If the STAE exit routine indicates that a retry routine has been provided (return code=4),
register 0 must contain the address of the retry routine and register 1 must contain the address
of the same work area passed to the exit routine. (The first word of the work area may be
modified by the exit routine to point to another parameter list in his region.) The ST AE
control block is freed and the request block terminated up to, but not including, the RB of the
program that issued the STAE macro instruction. This is done by placing an SVC 3 instruction
in the old PSW field of each RB to be purged. In addition, open DCBs which can be
associated with the purged RBs are closed and queued I/O requests associated with these
DCBs being closed are deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed programs that are at
a lower level in the program hierarchy than the program under which the retry will occur. However,
certain effects on the system will not be canceled by this RB purge. Examples of these effects
are as follows: ('

• Subtasks created by a program to be purged.
• Resources allocated by the ENQ macro instructions.
• DCBs that exist in dynamically acquired main storage.

When your ST AE exit routine gains control, it can examine the code in register 0 to
determine if there were active input/ output operations at the time of the ABEND and if the
input/ output operations are restorable. If there are quiesced restorable input/output
operations, you can restore them, in the ST AE retry routine, by using word 26 in the work
area. Word 26 contains the link field passed as a parameter to SVC Restore. SVC Restore is
used to have the system restore all I/O requests on the I/O restore chain.

Users can selectively restore specific I/O requests on the I/O restore chain by using word 2
in the work area. Word 2 contains the address the first I/O block on the I/O restore chain. This
address can be used as a starting point for issuing EXCP for the I/O requests that you want
to restore.

In supervisor mode, users may want the failing task to remain in its present status and not
be reestablished. A retry routine may be scheduled without a purge of the RB chain by
returning to the ABEND/STAE interface routine with an 8 in register 15, and registers 0 and
1 initialized as described above. If the ST AE retry routine is scheduled. the system
automatically cancels the active SCB and the preceding SCB, if there is one, will become the
active SCB. Users wanting to maintain within the retry routine must reestablish an active SCB
within the retry routine, or must issue multiple ST AE requests prior to the time that the retry
routine gains control. Also, if a STAT had been issued for this task, it must be reissued by the
retry routine to be made effective again.

A STAI exit routine, if specified in a previous ATTACH macro instruction, will receive
control if a ST AE exit routine is not specified, if a ST AE exit routine is specified but indicates
that a retry routine is not provided, if a ST AE exit routine terminates abnormally. or if a
ST AE or a ST AI retry routine abnormally terminates. The ST AI exit routine must specify by a
return code in register 15 one of the following:

Appendix B: System Macro Instructions IR9

Return Code Action to be Taken

o

16

4 or 12

8

No retry provided. The next STAI exit routine is to be given control or, if there is

not another ST AI exit routine, abnormal termination is to continue.

No further STAI processing is to occur. Abnormal termination processing is to continue.

A retry routine is to be scheduled and the request block queue is to be purged.

A retry routine is to be scheduled but the request block queue is not to be purged (if the

user is not in supervisor mode, this return code will be ignored and abnormal

termination processing continues).

When the RB queue is not to be purged, a new PRE- is created for the retry routine and
placed on the RB queue immediately after the SVRB for the ABEND routine, so that when
the ABEND routine returns via an SVC 3 instruction the retry routine will receive control.

If the RB queue is to be purged, the ST AI retry routine is executed under the PRB for the
last STAE or STAI exit routine or, if no PRB for an exit routine exists on the queue, under
the most recently created PRB that is pointed to by the oldest (first created) non-PRB on the
queue (the oldest non-PRB will be the last RB purged).

Like the ST AB/ST AI exit routine, the ST AE/ST AI retry routine must be in storage when
the exit routine determinco that retry is to be attempted. If not already resident within your
program, the retry routine may be brought into storage via the LOAD macro instruction by
either the user's program or exit routine.

Upon entry to the STAE/STAI retry routine, register contents are as follows:

• Register 0:

• Register 1:

o

Address of the work area, as previously described, except that word 2 now
contains the address of the first I/O Block and word 26 now contains the
address of the 110 restore chain.

• Register 2-13: Unpredictable.

• Register 14: Address of an SVC 3 instruction.

• Register 15: Address of the STAB/STAI retry routine.

The retry routine should use the FREEMAIN macro instruction to free the 104 bytes of
storage occupied by the work area when the storage is no longer needed. This storage should
be freed from subpool 0 which is the defualt subpool for the FREEMAIN macro instruction.

Again, if the ABEND/STAB interface routine was not able to obtain storage for the work
area, register 0 contains a 12; register 1, the ABEND completion code upon entry to the
ST AE retry routine; and register 2, the address of the first I/O Block on the restore chain, or
o if I/O is not restorable.

Note: If the program using the ST AE macro instruction terminates via the EXIT macro
instruction, the EXIT routine cancels all SCBs related to the terminating program. If the
program terminates via the XCTL macro instruction, the EXIT routine cancels all SCBs
related to the terminating program except those SCBs that were created with the XCTL= YES
option. If the program terminates by any other means, the terminating program must reinstate
the previous SCB by cancelling all SCBs related to the terminating program.

190 MFT Guide (Release 21.0)

(

\

ATTACH--Create a New Task

This explicit form of A TT ACH permits greater flexibility in both the use and the result of use
of the ATTACH macro instruction. This form of the macro instruction differs from the implicit
form by the addition of six keyword parameters to those described for the implicit form in the
Supervisor Services and Macro Instructions publication. Only the added six parameters are shown
and explained in this description.

These six parameters can be used only with tasks whose protection key is zero. If they are
used with other tasks, the default values are used.

Name Operation Operand

[symbol] ATTACH ... ,JSTCB= {~~S} ,SM= {S~~~B} ,SVAREA= {~~S}

,KEY= {~~~~} ,GIVEJPQ= {~~S} ,JSCB=jscbaddr

Ordinary ATTACH macro instruction parameters. See the description in the Supervisor
Services and Macro Instruction publication (GC28-6646).

JSTCB
Address to be placed in the TCBJSTCB field of the TCB of the newly created task. The
address determines whether the attached task is a new job step or a task in the present job
step. A new job step is required if the ownership of programs is to pass from the attaching
to the attached task, that is, if you are coding GIVEJPQ= YES in the macro instruction. (Also,
see note below.)

YES - Address of the TCB of the newly created task, that is, this TCB points to itself,
thus creating a new job step. A new job step is required if ownership of programs is
being transferred from the attaching to the attached task, that is, if you are coding
GIVEJPQ= YES in the macro instruction.

NO - Address of the TCB of the task using the ATTACH, that is, the attached task is to
be a task in the present job step.

,SM
Operating state of the machine when executing the attached task.

SUPV -Supervisor mode.
PROB -Problem progr-am mode.

,SVAREA
Need for save area.

YES - A save area is needed for the attaching task. The ATTACH routine will obtain a 72
byte save area. If both attaching and attached task share subpool zero, the save
area is obtained there, otherwise it is obtained from a new 2K byte block.

NO - This option is not available in MFT. The save area will be provided if
SV AREA=NO is specified.

,KEY
Protection/Key of the newly created (attached) task.

Appendix B: System Macro Instructions 191

ZERO -Zero.

PROP - Copy the key from the TCBPKF field of the TCB for the task using the ATTACH.

,GIVEJPQ
Ownership of programs used by the attaching task. If ownership is to pass to the attached
task, the attached task must be a new job step, that is, you must use JSTCB= YES. (Also
see note below.)

YES - Pass ownership to the newly created task. On completion of the new task all
programs, both those passed to the new task by the old and those acquired by it,
are freed.

NO - Ownership of programs used by the attaching task remain with that task; programs
acquired by the attached task remain with it. The attached task shares use of the
programs of the attaching task during their common existence. At the conclusion of
the attached task, the programs it acquired are freed; when the attaching task
terminates, its programs are freed.

,JSCB
Job step control block address.

If specified, that job step control block is used for the new task. If not specified, the job
step control block of the attaching task is also used for the new task.

Note: If the task to be attached is to be a separate step (JSTCB= YES), ownership of programs
may be passed (GIVEJPQ= YES) or retained (GIVEJPQ=NO). If the newly attached task is
not to be a separate step (JSTCB=NO), ownership of programs cannot be passed but must be
retained (GIVEJPQ=NO). The following table summarizes these combinations.

GIVEPJQ= YES

NO

YES
Valid

Valid

JSTCB=

NO
Invalid

Valid

IMGLIB -- Open or Close SYSl.lMAGELIB

The IMGLIB macro instruction is used to open or close SYSl.lMAGELIB. When issued to
open the Image Library, it is usually followed by a BLDL macro instruction and a LOAD '!J

macro instruction which, respectively, search the library for the image and load it into storage.

Name Operation Operand

[symbol] IMGLIB

OPEN

OPEN,deb addr
CLOSE

specifies that SYSl.lMAGELIB is to be opened and the address of the DCB returned in
register one.

CLOSE
specifies that IMAGELIB is to be closed.

192 MFT Guide (Release 21.0)

Page of GC27-6939-1O
Revised April 16, 1973
By TNL: GN28-2546

deb addr
is either the address of the IMAGELIB DCB or is a register containing the IMAGELIB
DCB address.

Inter-Partition POST -- Post a Nonresident Routine

The inter-pal ition POST macro instruction is primarily for MVT systems with TSO. (In those
systems, the ;lacro provides a way for programs to issue POST requests for TSO tasks that are
currently swapped out of main storage.) However, you may use the list and execute forms of
the macro in MFT systems also, in addition to the standard form of the regular POST macro.
The MFT systems simply ignore the TJID and the TCB operands that are outlined below.

The Supervisor Services and Macro Instructions manual outlines the use of the standard form
of the regular POST macro instrw'lion, and tells generally how to use the list and execute
forms of macro instructions. An C Jtline for the use of the list and execute forms of the
inter-partition POST macro appea s below.

List Form 0/ the Inter·Pal tition POST Macro Instruction

The list form of the inter-partition POST macro instruction constructs a parameter list that can
be passed to the control program.

Name Operation Operand

[symbol] POST

ecb address

[ecb address] [,TJID=address]
, TCB=O
,TCB=address ,MF=L

The address of the ECB representing the event to be posted.

MF=L
Indicates the list form of this macro instruction.

Note: This list form is valid only for inter-partition POST requests; also, you must use a-type
address constants for all address operands that you specify.

Execute Form 0/ the Inter·Partition POST Macro Inst11lction

The execute form of the inter-partition POST macro instruction allows the user to issue
inter-partition POST macro instructions for a nonresident control program routine by using a
parameter list. The list form of the macro constructs the parameter list.

Name Operation Operand

[symbol] POST ,TJID=address
,TJID=address,TCB=O
,TJID=address,TCB=address
,MF=(E,control program list address)
, MF= (E, (1)) ~ ..

MF=(E,control program list address)
Indicates the execute form of the macro instruction, and specifies the address of the remote
parameter list specified for the control program by the list form of the inter-partition POST
macro instruction. You may load this address into any of the general registers, 2-12.

Appendix 8: System Macro Instructions 193

Page of GC27-6939-10
Revised April 16,1973
By TNL: GN28-2S46

MF=(E,(l»
Indicates the execute form of the macro instruction, and specifies that register 1 must
contain the address of the parameter list.

Note: The execute form of the inter-partition macro instruction is valid only for inter-partition
POST requests.

QEDIT -- Linkage to SVC 34

The QEDIT macro instruction generates the required entry parameters and the linkage to SVC
34 for the following uses:

• Dechaining and freeing of a cm (command input buffer) from the cm chain for a task.

• Setting a limit for the number of cms that may be simultaneously chained for a task.

The format of the QEDIT macro instruction and an explan~.tion of the operands are as
follows:

Name Operation Operand

[symbol] QEDIT

ORIGIN

ORIGIN=address [,BLOCK=address]
[,CIBCTR=number]

The address of the pointer to the first cm on the CIB chain for the task. This address is
obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter
specified, the entire CIB chain will be freed.

,BLOCK
The address of the CIB that is to be freed from the CIB chain for a task. .

,CIBCTR
An integer (from 0 to 255) to be used as a limit for the number of cms to be chained at
any. time for a task.

address
Any address valid in an RX instruction or one of the geueral registers (2-12) previously
loaded wittt the indicated address. The register must be designated by a number or symbol
added within the parentheses.

WTO/WTOR - Write-to-Operator and Wrlte-to-Operator with Reply

The write- to-operator (WTO) and write-to-operator with reply (WTOR) macro instructions
have two special operands, MSGTYP and MCSFLAG. Only operators familiar with the
mUltiple console support (MCS) communications task should use these operands, since using
them improperly could impede the entire message routing scheme. These operands set flags to
indicate that certain system functions must be performed, or that a certain type of information
is being presented by the WTO or WTOR macro instruction.

The MSGTYP and MCSFLAG operands may be specified in either the standard or list form
of the WTO and WTOR macro instruction. The standard form of the WTO macro instruction
is shown below.

194 MFT Guide (Release 21.7)

Page of GC27-6939- to
Revised April 16, 1973
By TNL: GN28-2546

Name Operation Operand

[symbol] WTO 'message' [ROUTCDE=(number [number], ...)]
[, DESC=number]

STATU.S
[,MSGTYP= I~OBNAMES
[,MCSFLAG=(name [, name], ...)]

'message'
specifies that the message text is to be placed between the first and second apostrophes.

ROUTCODE=
specifies routing codes assigned to the message.

DESC=
specifies the descriptor codes assigned to the messag~.

MSGTYPE=JOBNAMES or MSGTYP=STATUS
specifies routing the message to the console which issued the DISPLAY JOBNAMES or
DISPLA Y STATUS command, respecityely. When the operating system identifies the
message type, the message will be routed only to those consoles that requested the
information. If ommitted, messages routed as specified in the ROUTCDE parameter.

MSGTYP=Y or MSGTYP=N
specifies that two bytes are to be reserved in the WTO or WTOR macro expansion so flags
can be set to describe the MSGTYP functions desired. Y specifies that two bytes of zeros
are to included in the macro exp lnsion at displacement WTO+4 plus the total length of the
message text, descriptor code, and routing code fields. N, or ommission of the MSGTYP
parameter, specifies that the two bytes are not needed, and that the message is to be routed
as specified in the ROUTCDE parameter. If an invalid MSGTYP value is encountered, a
value of N is assumed, and a diagnostic message is produced with a severity code of 8.

The bit definitions for MSGTYP= Y follow:

Bit 0: DISPLAY JOBNAMES

Bit 1.: DISPLAY STATUS

. Bits 2-15: Reserved for future system use. Must be zeros.

When specifying MSGTYP= Y, set the appropriate message identifier bit in the MSGTYP
field of the macro expansion. Prior to executing the WTO or WTOR SVC (SVC35), also
set byte 0 of the MSGFLAG field in the macro expansion t hexadecimal 10. This value
indicates that the message routing criteria will use the MSGTYP field. When the system
identifies the message type, the message will be routed to all the consoles that requested
that particular type of information. Routing codes, if present, will be ignored.

MCSFLAG
specifies that the macro instruction should set bits in the MSCFLAG filed as indicated by
each name coded. .

I Appendix B: System Macro Instructions 194.1

194.2 MFT Guide (Release 21.7)

) Appendix C: Control Character Transformations

To help determine what can be done with a writer routine, this appendix describes the control
character transformation features of the standard writer.

Effectively there are nine control character combinations that can occur between input data
set records and output data set records. Both data sets may have records whose control
characters are either USASI type (acc) or machine type (mcc), or the records may not contain
any control characters. However, within any given data set, the records all must contain the
same form of control character. The standard writer has procedures to handle control character
transformations for both an output to a card punch unit and an output to a printer unit.

Card Punch Unit

If an input data set record does not have a control character, the standard writer produces one
that indicates output into pocket 1 of the punch. If the output unit is a tape unit and the
ultimate destination is a punch unit, the standard writer assumes that the punch unit is either a
2540, 3525, or a 2520 unit and sets a control character accordingly. The standard writer
translation of punch-type control characters is given in Table 41. In this table, the first three
columns of figures are machine control character codes, and the right hand column of figures
represent USASI control character codes. Each record that requires a control character has one
of these 8-bit codes attached to it. Input records whose control characters are mcc and are
shown in horizontal rows 1, 2, 5, and 6 are given the acc code of "V" if they are placed in an
output data set that has acc. An mcc given in rows 3 or 4 is changed to an acc code of "W". However,
if translation is from an acc input to an mcc output, the standard writer translates the control
character into the appropriate mcc on the same horizontal row.

Stacker Unit

1. PI

2. PI
Column Binary

3. P2

4. P2
Column Binary

5. RP3

6. RP3
Column Binary

Machine Control Characters
3525/ USASI
2540 Punch 2520 Punch 1442 Punch Control Characters

00000oo 1 00000oo 1 10000001 11100101 (V)

00100001 00100001 10100001

01000001 01000001 11000001 11100110 (W)

01100001 01100001 11100001

10000001

10100001

Figure 42. Control Character Translation for Punch Unit Output

Appendix C: Control Character Transformations 195

Printer Unit

When the output unit is a printer, the standard writer prevents overprinting between data sets. If
the successive data sets contain records with the same type of control character, there is no
overprinting problem. If the control characters vary from one data set to the next, the standard
writer solutions are applications of the technique illustrated by Figure 43. In this figure, the
possible forms of the input record control characters are given in the left hand column. The
three right hand columns (containing cases 1-9) represent the possible forms of the output
record control characters. Within each of the 12 main sections of the figure is shown a
symbolic representation of a data set whose records possess the indicated form of control
character. Each record consists of a print line representation and a control character
representation (where appropriate). For records with acc, the control character is shown
preceding the print line, since the effect of the control character occurs before the line is
printed. For records with mcc, the converse is shown. An input record with no control
character is treated as if it had an acc. Because of this variance in the printer's mechanical
action, whenever there is a control character transformation, the standard writer places a
transformed control character with an output data set record other than the record to which
the 'character was attached in the input data set.

In Figure 43, case 1 and 5 represent situations in which there is the same type of control
character in the output as there is in the input. Thus, for records 1 through n, there is no
change in the record format. However, there is a provision to allow for the possibility that two
consecutive input data sets may have different control characters. In this case, a minimum
separation between the data sets as they appear in the output data set is provided as indicated
by the printing of blanks and suppressing the spacing of the printer to allow another control
character to take effect. The "extra" record (S B or B S) provides the more important function
of forcing out the last record of the currenV data set before the writer's processing of that data
set is done.

INPUT DATA SET OUTPUT DATA SET RECORD FORMATS
RECORD FORMATS

Machine

Machine C0 01 .; .;

I PICII P2C21 I PnCnl I PICIl P2C21 I PnCn I BoSc I I SIPI I CIP21

ASA 8 CD '1 I I .;

I CIPI I C2P21 I cnPnl I Bocll Plc21 lPn-I Cn I PnSI I BoSc I ICIPIIC2P21

No Control Character* CD 0.
I .; I .; .; I .; 7 .;

I S1 PI I SIP21 I SIPn I I BoSn I PIS I I lPn-I S1 I PnSI I BoSc I I SnP1 I S1 P21

= Writer generated.
* = No control character on input causes the standard writer to generate an ASA

control character as indicated.
Bo = A print line of blanks.

C1-<;' = Control characters of records I-N of a given data set.

PI-P n = Print lines of a given data set.

SI = A control character causing a I-line space.

Sc = A control character causing spacing to be suppressed.

Sn =.A control character causing a ski p to channel I.

Figure 43. Symbolic Representation of Record Formats

196 MFT Guide (Release 21.0)

ASA

.;

I Cn_1 P n I CnBo I

.; .;

I CnPn I ScBo I

.; I .;

I
SIPn I ScBo I

No Control Character

CD .;

I PI
I

P2 I I
Pn I Bo I

CD .;

I PI
I

P2
I I

Pn I Bo I

0 .;

I P1 I P2
I I Pn I Bo I

(

/

In cases 2 and 4 of Figure 43, the output data sets records have different control characters
than the input data set records. Case 2 shows that the standard writer generates a I-line space
control character to precede the first print line of the output. When the output is written, each
control character of an input record is then attached to the next record. The last input record
control character (Cn) is attached to a line of blanks (B). In case 4, the first input record
control character is attached to a line of blanks, and each of the other control characters is
attached to a preceding record, as indicated. The last input record (P n) has a writer-generated
space I-line control character attached to it before the buffering and forcing record (B S)
generated by the writer is put out.

Cases 7 and 8 show that the standard writer first generates a "skip to channell" control
character and then generates "1 line space" and then generates "1 line space" control
characters for all but the last control character. The last control character is the space
suppression character shown as part of the buffering or forcing record generated.

Cases 3, 6, and 9 show that if no control characters are required in the output data set, the
records are printed consecutively and a line of blanks generated by the writer is printed after
the final record in a data set. Any control character appearing in the input data set are
dropped in the output data set.

Notice that in all cases involving control characters in the output data set, the standard
writer allows for (1) an output record to force the printing of the last record of an input data
set and (2) a means of minimum buffering between data sets by using generated control
characters and print lines in conjunction with the actual data set control characters.

The standard writer translation of printer-type control characters is given in Figure 44; In
this table, the type of action indicated is given in the left-hand column. The middle column
and the right-hand column show, respectively, the bit settings of the control character byte for
machine type and USASI type control characters corresponding to the entries in the left-hand
column. A control character transformation is effected by changing the bit-configuration of the
control character byte as indicated in the table.

Action Desired

Write space 0
Write space 1
Write space 2
Write space 3
Write skip to channell
Write skip to channel 2
Write skip to channel 3
Write skip to channel 4
Write skip to channel 5
Write skip to channel 6
Write skip to channel 7
Write skip to channel 8
Write skip to channel 9
Write skip to channel 10
Write skip to channel 11
Write skip to channel 12

Machine Type Control
(1403; 1404, 1443, 3211 USASI

Printers)

00000001
00001001
00010001
00011001
10001001
10010001
10011001
10100001
10101001
10110001
10111001
11000001
11001001
11010001
11011001
11100001

Type Control

01001110
01000000
11110000
01100000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11000001
11000010
11000011

Figure 44. Control Character Translation for Printer Unit Output

Appendix C: Control Character Transformations 197

When machine control characters are used which indicate spacing or skipping without
writing (bit 6 set to 1, e.g., write and space 0-00000011) the standard writer generates the
indicated USASI control character and also generates a blank record of the proper type and
length.

198 MFT Guide (Release 21.0)

) Appendix D: RESERVE Macro Instruction Used with the Shared
DASD Option

The RESERVE macro instruction is used to reserve a device for use by a particular system; it
must be issued by each task needing device reservation. The RESERVE macro instruction
protects the issuing task from interference by other tasks in the system. Each task issuing the
RESERVE macro instruction must also use the DEQ macro instruction to release the device;
two RESERVE instructions for the same resource without an intervening DEQ will result in an
abnormal termination unless the second one specifies the keyword parameter RET =. (If a
restart occurs when a RESERVE is in effect for devices, the system will not r~tore the
RESERVE; the user's program must reissue the RESERVE.) Even if a DEQ is not issued for
a particular device, termination routines will release devices reserved by a terminating task.

RESERVE Macro Instruction

The use of the RESERVE macro instruction is explained below:

Name Operation Operand

(symbol) RESERVE (qname ad~ress,rname address,[~],

[rname length] ,SYSTEMS) [RET=~~!~~JUCB=pointer address

qname
the address in main storage of an eight-character name. Every task (within the system)
issuing RESERVE against the same resource (data and device) must use the same
qname-mame combination to represent the resource. The qname should not start with SYS.

rname address
the address in main storage of a name used in conjunction with the qname to represent the
resource. The rname can be qualified, and may be 1 to 255 bytes in length.

[E or S]
specify either exclusive cQntrol of the resource (E); or shared control with other tasks in the
system (S). Default to E.

marne length
the length, in bytes, of rname. If omitted, the assembled length of marne is used. If zero (0)
specified, the length of mame must be contained in the first byte of the field designated by
the marne address.

SYSTEMS
specifies that the resource represented by qname-mame is known across systems as will as
within the system whose task is issuing RESERVE, i. e., the resource is shared between
systems.

RET =
specifies a conditional request for all of the resources narned in the RESERVE macro
instruction. If the operand is omitted, the request is unconditional. The types of conditional
requests are a~ follows:

,
Appendix 0: RESERVE Macro Instruction Used with the Shared DASD Option 199

TEST -- tests the availability status of the resources but does not request control of the
resources.

USE -- specifies that control of the resources be ~ssigne.d to the active task only if the
resources are immediately available. If any of the resources are not avialable, the active
task is not placed in a wait condition.

HA VB -- specifies that control of the resources is requested only if a request has not
been made previously for the same task.

Return codes are provided by the control program only is RET = TEST, RET = USE, or
RET=HA VB is designated; otherwise, return of the task to the active condition indicates
that control of the resource has been assigned to the task. Return codes are identical to
those.suppliea by the ENQ macro instruction (see the Data Management Macro Instructions
publication) .

UCB=pointer address
the keyword specifies either:

1. The address of a fullword that contains the address of the unit control block (UCB) for the
device to be reserved.

2. A general register (2-12) that points to a fullword containing the address of the unit contol
block for the device to be reserved.

To use the Shared DASD option in higher level languages, write an assembler language
subroutine to issue the RESERVE macro instruction. Pass the following information to this
routine: ddname, qname address, rname address, rname length, and RET parameter.

The EXTRACT Macro Instruction

The EXTRACT macro instruction is used to obtain the address of the task input/output table
(TIOT) from which the UCB address can be obtained. The topic "Finding the UCB Address"
explains this procedure.

Releasing Devices

The DEQ macro instruction is used in conjunction with RESERVE just as it is used with
ENQ. It must describe the same resource and its scope must be stated as SYSTEMS; however,
the UCB=pointer address parameter is not required. If the DEQ macro instruction is not
issued by a task which has previously reserved a device, the system will free the device when
the task is terminated.

Preventing Interlocks

Certain precautions must be taken to avoid system interlocks when the RESERVE macro
instruction is used. The more often device reservations occur in each sharing system, the
greater the chance of interlocks occurring. Allowing each task to reserve only one device
minimizes the exposure to interlock. The system cannot detect interlocks caused by program
use of the RESERVE macro instruction and enabled wait states will occur on the system or
systems.

200 MFT Guide (Release 21.0)

(

(

\

Volume Assignment

Since exclusive control is by device, not by data set, consider which data sets reside on the
same volume. In this environment it is quite possible for two tasks in two different systems -­
processing four different data sets on two shared volumes -- to become interlocked. For
example, data sets A and B reside on device C, and data sets D and E reside on device F. Task
X in system X reserves device C in order to use data set A; task Y in system Y tries to
reserve device F in order to use data set D. Now task X in system X tries to reserve device F
in order to use data set E and task Y in system Y tries to reserve device C in order to use
data set B. Neither can ever regain. control, and neither will complete normally. The job or
jobs will be canceled. Moreover, an interlock could mushroom, encompassing new tasks as
these tasks try to reserve the devices involved in the existing interlock.

Program Libraries

When assigning program libraries to shared volumes, precaution must be taken to avoid
interlock. For example, SVCLIB for system A resides on volume X, while SVCLIB for system
B resides on volume Y. Task A in system A invokes a direct access device space management
function for volume Y, resulting in that device being reserved. Task B in system B invokes a
similar function for volume X, reserving that device. However, since the DADSM functions are
transient SVCs, each load module transfers to another load module via XCTL. Since the
SVCLIB for each system resides on a volume reserved by the other system, the XCTL marco
instruction cannot complete the operation, therfore an interlock occurs in this particular case,
since no access to SVCLIB is possible, both systems will eventually enter an enabled wait
state.

Finding the UCB Address

This explains procedures for finding the UCB address for use the RESERVE macro
instruction; it also shows a sample assembler language subroutine which issues the RESERVE
and DEQ macro instructions and can be called by higher level languages.

Providing the Unit Control Block Address to RESERVE

The EXTRACT macro instruction is used to obtain information from the Task Control Block.
(TCB). The address of the TIOT can be obtained from the TCB in response to an
EXTRACT. Prior to issuing an EXTRACT macro instruction, the user sets up an answer area
in main storage which is to receive the requested information. One full word is required for
each item to be provided by the control program. If the user wishes to obtain the TIOT
address, he must issue the following form of the macro instruction:

EXTRACT answer-area address, FIELDS=TIOT

The address of the TIOT is then returned by the control program, right adjusted, in the full
work answer area.

The TIOT is constructed by job management routines and resides in main storage during
step execution. The TIOT consists of one or more DD entries, each of which represents a data
set defined by a DD statement for the jobstep. Each entry includes the DD name. Associated
with each DD entry is the UCB address of the associated device. In order to find the UCB
address, the user must locate the DD entry in the TIOT corresponding to the DD name of the
data set for whcih he intends to issue the RESERVE macro instruction.

Appendix D: RESERVE Macro Instruction Used with the Shared DASD Option 201

The DCB address can be obtained via the DEB and the DCB. The data control block
(DCB) is the block within which data pertinent to the current use of the data set is stored. The
address of the data extent block (DEB) is contained at offset 44 decimal after the DCB has
been opened. The DEB contains an extension of the information in the DCB. Each DEB is
associated with a DCB, and the two point to each other.

The DEB contains information concerning the physical characteristics of the data set and
other information that is used by the controJ program. A device dependent section for each
extent is included as part of the DEB. Each such extent entry contains the DCB address of the
device to which that portion of the data set has been allocated. In order to find the UCB
address, the user must locate the extent entry in the DEB for which he intends to issue the
RESERVE macro instruction. (In disk addresses of the form MBBCCHHR, the M indicates
the extent number starting with 0).

Procedures for Finding the UCB Address of a Reserved Device

If the data set is a multivolume sequential data set, it must be assumed that all jobs will
process that data set in a sequential manner starting with the first volume of the data set. In
this case, by issuing a RESERVE for the first volume only, the user effectively reserves all the
volumes of the data set.

For data sets using the queued access methods in the update mode or for unopened data
sets:

1. Extract the TIOT from the TCB.
2. Search the TIOT for the DD name associated with the shared data set.
3. Add 16 to the address of the DD entry found in step 2. This results in a pointer to the

DCB address obtained in step the TIOT.
4. Issue the RESERVE macro specifying the address obtained in step 3 as the operand of the

DCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.
2. Load the address of the the field labeled DEBDVMOD in the DEB obtained in step 1. The

result is a pointer to the UCB address in the DEB.
3. Issue the RESERVE macro specifying the address obtained in step 2 as the operand of the

DCB keyword.

For BDAM data sets the user may reserve the device at any point in the processing in the
following manner:

1. Open the data set successfully.
2. Convert the block address used in the READ/WRITE macro to an actual device address of

the form MBBCCHHR. The publication Data Management for System Programmers shows
how convert addresses into the form MBBCCHHR.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

202 MFT Guide (Release 21.0)

4. Load the address of the field labeled DEBDVMOD in the DEB.
5. Multiply the "M" of the direct access address by 16.
6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the next

READ/WRITE operation. The sum is also a pointer to the UCB address for this extent.
7. Issue the RESERVE macro specifying the address obtained in step 6 as the operand .of the

UCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should by used only at system
update time. Further, if it is a multivolume ISAM data set, it must be assumed that all jobs will
access the data set through the highest level index. The indexes should never reside in main
storage when the data set is being shared. In this case, by issuing a RESERVE macro for the
volume on which the highest level index resides, the user effectively reserves the volumes on
which the prime data and independent overflow areas reside. The following procedures can by
used to achieve this:

1. Open the data set successfully.
2. Locate the actual device address (MBBCCHHR) of the highest level index. This address

can be obtained from the DCB.
3. Load the DEB address from the DCB field labeled DCBDEBAD.
4. Load the address of the field labeled DEBDVMOD in the DEB.
5. Multiply the "M" of the actual device address located in step 2 by 16.
6. The sum of steps 4 and 5 is the address of the correct extent entry in the DEB for the next

READ/WRITE operation. The sum is also a pointer to the UCB address for this extent.
7. Issue the RESERVE macro specifying the address obtained in step 6 as the operand of the

UCB keyword.

RES and DEQ Subroutines

The following assembler language subroutine can be used by FORTRAN, COBOL, or
assembler language programs to issue the RESERVE and DEQ macro instructions. Parameters
that must by passed to the RESDEQ routine, if the RESERVE macro instruction is to be
issued, are:

DDNAME
the eight character name of the DDCARD for the device to be reserved.

QNAME
an eight character name.

RNAME LENGTH
one byte (a binary integer) that contains the RNAME length value.

RNAME
a name from 1 to 255 charcters in length.

The DEQ macro instruction does not require the UCB=pointer address as a parameter. If the
DEQ macro is to be issued, a fullword of binary zeros must be placed in the DDNAME field
before control is passed.

Appendix D: RESERVE Macro Instruction Used with the Shared DASD Option 203

RESDEQ

*PROCESS

NEXTDD

FINDUCB

*
*PROCESS
WANTDEQ

*PROCESS

*
*

CSECT
SAVE (1 4, ; 2) , T
BALR 2,0
USING *,2
ST 13,SAVE+4
LA 11,SAVE
ST 11 , 8(13)
LR 13,11
LR 9,1
L 3,0(9)
CLC 0(4,3),=F'0'
BE WANTDEQ

SAVE REGISTERS
SET UP ADDRESSABILITY

ADDRESS OF MY SAVE AREA IS STORED
IN THIRD WORD OF CALLER'S SAVE AREA
ADDRESS OF MY SAVE AREA
ADDRESS OF PARAMETER LIST
DDNAME PARAMETER OR WORD OF ZEROS
WORD OF ZEROS IF DEQ IS REQUESTED

FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE
LA 7 , 24 (7) ADDRESS OF FIRST DD ENTRY
CLC 0(8,3),4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7) LENGTH OF DD ENTRY
LA 7,0(7,11) ADDRESS OF NEXT DD ENTRY
CLC 0(4,7),=F'0' CHECK FOR END OF TIOT
BNE NEXTDD
ABEND 200,DUMP
LA 8,16(7)

DDNAME IS NOT IN TIOT, ERROR
ADDRESS OF WORD IN TIOT THAT
CONTAINS ADDRESS OF UCB

FOR
L
MVC
FOR
L
MVC
L
STC

DETERMINING THE QNAME REQUESTED
7,4(9) ADDRESS OF QNAME LENGTH
QNAME(8),0(7) MOVE IN QNAME

DETERMINING THE RNAME AND THE LENGTH OF RNAME
7,8(9) ADDRESS OF RNAME LENGTH
RNLEN+3(1),0(7) MOVE BYTE CONTAINING LENGTH
7,RNLEN
7,RNAME

L 6,12(9)
BCTR 7,0
EX 7,MOVERNAM
CLC 0(4,3),=F'0'
BE ISSUEDEQ

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH
MOVE IN RNAME

RESERVE (QNAME,RNAME,E,0,SYSTEMS),UCB=(8)
B RETURN

ISSUEDEQ'DEQ (QNAME,RNAME,O,SYSTEMS)
RETURN L 13,SAVE+4 RESTORE REGISTERS AND RETURN

MGVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

RETURN (14,12),T
BCR 15, 14
MVC RNAME+1(0),0(6)
DC F'O'
DS 18F
DS 2F
DS CL256
DC F'O'
END

204 MFT Guide (Release 21.0)

Indexes to systems reference library manuals are
consolidated in the publication IBM System/36~
Operating System: Systems Reference Library Master
Index, GC28-6644. For additional information
about any subject listed below, refer to other
publications listed for the same subject in the
Master Index.

Where more than one page reference is given,
the first page number indicates the major reference.

ABDUMP
used with G TF 50

ABEND
asynchronous exit from (ST AE) 187

access methods 20
accounting information

available to user 155
how to process 155-160

accounting routines
conventions 155
data sets 157
IEFACTRT CSECT name 157
libraries 158-159
output 159-160
SCHEDULR macro instruction 157

ACCTRTN parameter 83

I ALIGN parameter 111,113
allocation characteristic 164
allocation, device 41.61
AL TCONS parameter 83
alternate path retry (APR)

device configuration 51
recovery management 180-181
selective retry 181

asynchronous exit processing
CIRB system macro instruction 183
ST AE system macro instruction 184

ATTACH facility 17
ATTACH macro instruction 191-192
attributes for cataloged procedures 99-118

Ibasic direct access method (BDAM) 52
batch processing 86-88

assigning job classes 87
choosing partitions 86
configurations 91-94
small partitions 86
SYSO UT classes 87 -88

BLDL 20
considerations when resident 121
IEABLDOO 52,120
resident BLDL table 120
resident in SYS1.LINKLIB 52

BLDL table operation 120
blocked input 78
blocked output 79

Index

block-character routine 138
blocking

of data for processors 118
of procedure library 118

boundary box 27
I bpptttooommmiiicccrlssssssssaaaaef parameter 101-104

CANCEL command 97
considerations in assigning job names
use in assigning partitions to job classes
use in combining partitions 31,33
use in redefining partitions 33

canceling a job 31
catalog management 18
cataloged procedures 99-118
channel 73
channel-check handler (CCH) 179-180

analysis of environment 52
device dependent error routines 52
error record 52
error recovery procedure 179
system termination 52
SYS1.LOGREC 180
used with APR 52

CHAP facility 49
CHAP macro instruction 64
characteristics of volumes

PRES RES list 165
shared DASD 60

checkpoint/ restart 48
ABEND 52
checkpoint data set 53
CHKPT macro instruction 52
consideration for initiator queue records

(JOBQLMT) 131-134
consideration for RAM list 122
deferred restart 53
IEFREINT cataloged procedure 53
operator message 53
RD parameter 52
REST ART parameter of JOB statement
restrictions 52-53
SUPRVSOR macro instr~ction 53
system restart 44-46
SYS1.PROCLIB 53

CIRB macro instruction
libraries 183
used with supervisor 183
parameters 183

CLASS parameter
(see also job class)
used to enqueue jobs 38
used to schedule partitions 15

classes
job (see j<;>b class)
output

changing
choosing
processing

96
86-88,39-42

80-81

77
89

52

Index 205

command processing 20,18
I comman? sc.heduling control blocks (CSCBs)

commumcatIons task 20
composite console consideration for RAM list
concurrent operation 17
concurrent peripheral operation (CPO) 54

(see also spooling)
assigning job classes. 91
choosing partitions. 9 t

configurations, system
calculating 71
128K batch processing 91-92
128K small partition 86
128K telecommunications 89
256K batch processing 87,92,93
256K graphics-oriented 90
256K telecommunications, batch, and CPO
512K batch processing 94

CONOPTS parameter 83
console options

active console 53
multiple console support 53-54
master console 54
primary console 53
secondary consoles 54

CONSOLE parameter 83
contents supervision 19
control blocks

command scheduling control block (CSCB)
data control block (DCB) 81
dequeue control block (DEQ) 22
enqueue control block (ENQ) 22

I
control characters

printer 197
punch 195

CONTROL command 97
control program 16-18

nonresident portion 20-21
organization 19
resident portion 19-20

control statements
command 36
data definition (D D) 81
end-of-data set (EOF) 35
JOB 27

conversational remote job entry (CRJE)
BT AM routines 55
CHECKER macro instruction 55
CRJEUSER macro instruction 55
CRJELINE 55
CRJETABL 55
CRJEUSER 55
CTRLPROG macro instruction 56
SYS1.MACLIB 55
SYS 1. TELCMLIB 56
USERID macro instruction 55

CPO 91

22

122

91

22

I CPP (Concurrent periphereal processing) (see spooling)
CPU

recovery management facilities 177-179
timing 48

I create IRB for asynchronous exit (see CIRB macro
instruction)

206 ME'!,. Guide (Release 21.0)

CSCB 22
CTRLPROG macro instruction 82,22

I data blocking 118
data control block (DCB) 81
data definition (DD) cQntrol statement 81

I data events 50
data management 18-1 9
data sets

deallocation 39
disposition 39
in input stream 35
multiple 35
output 41

DCB 81
DD statement 81
deallocation of data sets 39

I deferred restart 52
DEFINE command 31
DEQ control blocks 22

I DEQ macro instruciton 163
DESIGN parameter 83
DETACH facility 49
device allocation 39
device codes

control characters 195,197
used by SYSOUT writer 139
used in PRES RES volume characteristics list

device swap 181
devices

input 35
output 41
system residence 15

direct access device space management (DADSM)
direct access storage devices

shared 60,61
used fOT system input 48
used for system libraries 73
used for system output 41
used for system residence 15

direct access volume serial number verification
FETCH routines 57
SUPRVSOR macro instruction 56,57
SWAP command 56
volume serial number 57

direct SYSOUT writer (see DSO)
direct system output writers

cataloged procedure 109
choosing a direct system output writer 80
function 49
job class restrictions 41
modifying direct system output writers
starting a direct system output writer

disk SYSIN 48
dispatching priority 38
DISPLAY command

40-41
40'

considerations in assigning jobnames 77
use in partition definition 95

disposition of data sets 38
DOM macro instruction 72

I DS~fect on separator 136
procedure 111-114

165

19

(

\

dynamic device reconfiguration (DDR) 181-185
abnormal termination 56
device types 56
error condition 56
FETCH operation 57
operator action 56
restrictions 57
SUPRVSOR 57
SWAP command 56

EDIT control verb 50
end-of-data set (EOF) 35
ENQ control blocks 22
ENQ macro instruction 161,163
ENQ, DEQ macro instructions

must complete function (SMC, RMC) 161,163
use by IEFW AD accounting data set writer 160
use to share DASD 203

enqueuing jobs 38
EOF 35
error recovery procedure (ERP)

resident error recovery routines 177-129,180
used with CCH 180

error recovery procedure interface block (ERPIB) 180
event classes 50
extract function

EXTRACT macro instruction 57 .
made resident 57
TCB 57

EXTRACT macro instruction 200,57

FCB (see forms control buffer)
FETCH parameter 82
forms control buffer (FCB) 111,113
functional recovery 177

generalized trace facility 49-50
generalized trace function 49-50
generating a system 70-85

choosing the scheduler 74
CTRLPROG macro instruction
P ARTITNS macro instruction
SCHEDULR macro instruction

generation data set

82
84-85

83-84

consideration in initiator queue records 132
graphics 89-90

assigning job classes 90
choosing the partitions 90
description 58
devices used 58
system configuration 90

HALT command 97
hard copy log 83,84
HARDCPY parameter 83,84
HIARCHY parameter 83
hierarchy support 25-27

specified at system generation 82,85
use by system output writer 43
use by transient reader 36

HOLD command 97
hold queue 46

IBM 2050 processor storage 25
IBM 2065 processor storage 25
IBM 2075 processor storage 25
IBM 2250 Display Unit with console option 58
IBM. 2301 drum storage unit 15,70
IBM 2302 disk storage unit 15,70
IBM 2303 drum storage unit 15,70
IBM 2305 fixed head storage facility

shared 15
used for system input 48
used for system output 42
used for system residence 15

IBM 2311 disk storage drive
shared 15
used for system input 48
used for system libraries 73
used for system output 42
used for system residence 15

IBM 2314 dir~ct access storage facility
shared. 15
used with APR 51
used for system input 48
used for system libraries 73
used for system output 42
used for system residence 15

IBM 2319 direct access storage facility
used for system input 48
used for system libraries 73
used for system output 42
used for system residence 15

IBM 2321 data cell drive 15
IBM 2361 core storage

as extension of processor storage 25
effect on system configuration 94
specified at system generation 85

IBM 2841 storage control unit 70
IBM 2844 auxiliary storage control unit 70
IBM 3210 console printer keyboard 70
IBM 3215 console printer keyboard 70
IBM 3330 disk storage drive

shared 15
48 used for system input

used for system libraries
used for system output
used for system residence
identity function 58

IEABLDOO 120
IEAIGGOO

RAM list
RERP list

IEARSVOO

124
127

127
IEBUPDTE utility program
IEECUCM 152
IEECVCTE 154
IEECVXIT 152
IEFACTRT 155
IEFDATA 100
IEFDATA DO statement

73
42

15

restart CPP data set 106
SYSIN output (CPP) data set 106

Index 207

IEFIRC
IEFPDSI

99,101
100

IEFPDSI DO statement
restart procedure library tOO
SYSIN procedure library tOS

IEFPROC tOO, tOI
IEFPROC EXEC statement

restart procedure 101.,
SYSIN procedure tOO:tOl

IEFRDER 100
IEFRDER DO statement

restart procedure 107
SYSIN proceeJure 100,101
SYSOUT procedure 109

IEFREINT 107
lEi ~.:)080 1'09
ILFVMA· 99
IEFVRRC 107
IEFWAD 159
IEFYS 158
IEFZA 157
IEWL 157
IFCEREPO utility program 177
1M GLIB macro instruction 192
IMDPRDMP 50
IMDSAOMP 50
independent job scheduling 39

small partitions 39
indexed sequential access method (ISAM) 58
initial program loading (lPL)
initialization, nucleus 173
initialization, system 17
initiation, job 39
initiator 39
input devices 35
input readers (see reader/interpreter)
input stream data sets 35
input work queues

use in job initiation 39
use in system restart 46

input/ output devices 48
input/output recovery management facilities
input/ output supervisor 19
instruction retry 178
interlock, system 81

I inter-partition POST macro instruction 193
interruption handling 19,18,50
IPL 173,168
I/O devices using APR 51
in-stream procedures testing 99
IRB used with CIRB macro instruction 183

JCL 35
job

characteristics 75
initiation 39
management 18
processing 18
function 39
sequence of operation 27-28
size 75
termination 39

208 MFf Guide (Release 11.· ,

179-182

Page of GC27-6939-10
Revised April 16, 1971
By TNL: GN28-2S46

job class
assigning job classes to jobs

batch processing 86
graphics 89
telecommunications 88

assigning job classes to partitions
batch processing 86
graphics , 89
telecommunications 88
changing 32
choosing appropriate job classes 75

CLASS parameter
default job class 76
invalid 76
partition job class facility 29
used to enqueue jobs 18
used to schedule partitions 1 S

job names
assigning 77
with GTF SO

job step 59
job step timing

time limits enforced S9
time recorded 59

JOBQFMT parameter
JOBQLMT parameter
JOBQRES parameter
JOBQTMT parameter
JOBQWTP 134
job queue format

83,131
83,131

83
83,134

cancellation records 134
effect on reader/interpreter 130
initiator queue records 131
logical track size 131
operator message 134
to format 13~135

WTO queue records 134
job queue logical track (see job queue format)
job queues

hold 46
input

use in job initiation
use in system restart

output

39
44,49

use in job termination 39
use iq system restart 44,49
used by system output writers 42

job step CPU time limiting 48
job/step CPU timing 48

keys, storage protection 31

large partitions 24,80
libraries, system 73

LlNKLIB 73
MACLIB 73
PARMLIB 73
PROCLIB 73
SVCLlB 73
SYSJOBQE 73

link library
BLDL feature 119
made resident 125
library modules 125
nucleus resident modules 125-1 27

linkage to SVC 34 (see QEDIT macro instruction)
LINKLIB partitioned data set 73

I list IEAIGGOO 124
nucleus resident modules 125-1 26

machine-check handler (MCH) 178
machine requirements 15
main storage hierarchy support

hierarchy 0 58
hierarchy 1 58
IBM 2361 core storage 58
PCI 58

MACLIB partitioned data set 73
macro instructions

CTRLPROG 82,21
PARTITNS 84
SCHEDULR 83
SUPRVSOR 73
WAIT 47
WAITR 47
WTO 193,20
WTOR 193,20

main storage
hierarchy support 58,25
organization 21-27
preparation
requirements 15,70
specified at system generation 82
use by' system output writer 42
use by transient reader 35

master command routine (communications task)
master console 71,73
master scheduler task

function 20
operation 20

MAXIO parameter 82
MCH

description 178
instruction retry 178

MCS (Multiple Console Support)
characteristics 151
consideration for RSVC list
message routing exit routines
SYSIN control of commands

message processing 39-40
message routing

exit routines 151-154
routing codes 153
use of MCS 151

126
151-154
102

use of WTO/WTOR macro instructions
messages 69
MFT with subtasking (see subtasking)
minimum system 15
MINP ART parameter 83
MODE command 179,97

152

Model 50 with IBM 2361 core storage 25
reader overrun 25,38
writer overrun 25,38

MODIFY command 97,41,96
MOUNT command 97

I
mount characteristic 164
MSGCLASS default value 104
MSGLEVEL default value 103
multi-job initiation 39
mUltiple console support (MCS) 151

I (see also MCH)
multiple data sets 35
multiple readers 79
multiple writers 81
multiprogramming

advantages 47
definition 17

must complete function
DEQ macro instruction 163
resources 161
restrictions 161
RMC operand of DEQ 163
SMC operand of ENQ 162
when used 161

MVT 15
(see also MVT Guide, GC28-6720)

NIP (nucleus initialization program)
description 173
operator messages

for BLDL table 52
for CCH 52
for console options 53

non-resident writer 80
non-setup jobs 75
nucleus 19-21
nucleus initialization program (NIP) 173

OLDWTOR parameter 83
open or close SYSl.IMAGELIB (see 1M GLIB macro

instruction)

I

operator-
considerations 94-97
starting G TF 50

operator commands
groups used with reader/interpreter
used in MFT 97

operator communication 20
problem program messages
system messages

as system output 81
reference 69

operator ,messages
for BLDL table 52

69

for checkpoint/restart facility 52
with console options 53

OPTIONS parameter 83
output class

changing 96
choosing 87
processing 80-81

output data sets 42
output devices 42

103

Index 209

output format specifications 80
output separation

block-character routine 138
device types 136
libraries 136
output type 136
separator records 136

output work queues 39-45
output writers (see writers, system output)
OVERLAY parameter 82
overlay supervision 19
overrun

reader 25,38
writer 25,38

I parameter field of SYSIN reader procedure 101-104
P ARM LIB partitioned data set 73
partition definition 31-33,95

after system initialization 31
at system initialization 31
changing identity 32
combining partitions 32
invoking the procedure 31
operating considerations 95
recovering partitions 32

partitions 17
assigning partitions to job classes 24-25
batch processing 86
CPO 91
graphics 90
job class facility 30
number 75
priority 17
problem program 24
reader 24
redefinition (see partition definition)
storage keys 31
telecommunications 88-89
writer 25

PARTITNS macro instruction 83,24
PCI (see program controlled interrupt)
PRES RES characteristic list

defining mount characteristics 164
IEBUPDTE utility program 166
libraries 164
mount characteristics 164
record type 165
volume characteristics 164

primary console 71
priority

default 76
dispatching 38
PRTY parameter 38,77
scheduling (initiation) 77

problem program
messages 77,39
output '39
partitions 25

procedures
cataloged 99-118
operating 94-97
reader 99-109

210 MFT Guide (Release 21.0)

processing
batch 86-88
command 18,20
CPO 91
graphics 89-90
operator-system communication (see operator

communication)
special forms 86
telecommunications 88-89

PROCLIB partitioned data. set 73
PROCRES parameter 84
program controlled interrupt (PCI)

altering the program 59
1/ 0 interrupt 59
PCI fetch 59
WAIT macro instruction 59

protection of main storage
fixed area 22
partitions 31
system queue area 22

PRTY parameter 38,77
PUT macro instruction 111
PURGE parameter in STAE macro instruction 185,186

I QEDIT 193
QSAM 20
queues, job

hold 46
input

use in job initiation 39
use in system restart 44

output
use in job termination 39
use in system restart 44
used by system output writers 41

QUIESCE parameter 185

I RAM list 121-123
. reader/interpreter (system input ·reader)

blocked input . 78
cataloged procedures 99-118
comparison with transient reader 79
disk SYSIN 48-49
enqueuing jobs 38
mUltiple 79
partition for 24
RDR, RDR400, RDR3200 100-101
resident 35
system-assigned transient 35,79
user-assigned transient 35,79
with spooling data set 105

recovery management 177-182,19
reenterable routines 21,73

made resident 59
module libraries 59
operator messages 59

refreshable program 178
RELEASE command 97,77

I
remote job entry (RJE)

macro instructions 60
module libraries 60

REPLY command 97
REPLY parameter 84

RESET command 97,77
reset-must-complete 161
resident access method routines

altering the list 122
considerations when resident 122-123
LOAD macro instruction 121
module libraries 60
operator messages 60
required modules 122
storage space 122

resident BLDL table
BLDL operation 120
modules containing 120
restrictions 120

resident link library 125
resident error recovery routines

example of option list 127-129
IEBUPDTE utility program l27
library names 127
modules required 128
operator messages 128
storage space 127

resident reenterable routines 121,73,20
resident routines

BLDL table 120
communications task 20
control program 19
data management 19
error recovery routines 127-129
I/O supervision 19
interruption handling 19
job management 18
main storage superVISIon 21
master scheduler task 20
QSAM 20
system queue area 22
SVC routines 66-67
task management 18
time supervision 19

I resident SYC routines 126
restarting the system

operation 44-46
operator procedure 97

ROUTCDE parameter 84
routing codes 72

scheduler, job
function 39
sequence of operation 27-29

scheduler, master 20
scheduling, independent 39
SCHEDULR macro instruction

with console options 53
secondary console 71
SECONSLE macro instruction
selective retry routine 181

I part of APR 181
sequence of operation 27-29
SET command 97.

~ I
shared DASD

considerations 60
devices 60
ENQ macro instruction 62
handling volumes 61

83

53

operator actions 62
RESER YE macro instruction 62
restrictions 61-62
system requirements 60-61

I VARY OFFLINE command 62
SHIFT command 97
small partitions 48

batch 86
CPO 91
scheduling 39
size 48
telecommunications 88
writer 25

SPIE routines 62
spooling data set

in reader/interpreter 105
IEFDATA DO statement 106-107

ST AE macro instruction
considerations for use 187
execute form 185
function 184
list form 186
ST AI exit routines 188-190
standard form 185

ST AI macro instruction 188-190
ST ART command 97

automatic 84
use, general 28
use in cataloged procedure 99
use in changing output classes 96
use in partition definition 96
use with direct system output writer 41
use with symbolic parameters 115
use with system input reader 35
use with system output writer 42-43,96

ST ARTI parameter 84
STARTR parameter 84
ST ARTW parameter 84
statements, control (see control statements)
step initiation 39
step termination 39
STOP command

use with system input reader 35
use with system output writer 42,96

storage, main (see main storage)
storage protection

size 62
storage keys 31

I validity checking 62
storage requirements (see Storage Estimates, GC28-6551)
subtasking

ATTACH facility 17
description 17
maximum number of tasks 17
system queue area requirement 24

I subtasks 51-52
supervisor call instruction (SYC) (see SYC)
supervisor, I/O 19
SUPRYSOR macro instruction

for BLDL table 52
for checkpoint/restart facility 53

Index 211

SVC
characteristics 146
conventions 147 -149
libraries 149
made resident 126
user added 146-150

SVC 32 (see CIRB macro instruction)
SVCLIB partitioned data set 73
SVCT ABLE macro instruction 66
SW AP command 56
symbolic parameters 115-116
SYNCH macro instruction 184
synchronous exits to processing program (see SYNCH

macro instruction)
SYSABEND data set 114
SYSABEND dump 100
SYSIN data sets

card 35
disk 35
tape 35

SYSJOBQE partitioned data set 73-74
SYSOUT class

changing 96
choosing 79
processing 80

SYSOUT data sets
printer 41
punch 41
tape 41

SYSOUT queue 51
SYSQUE parameter 82,22
system

area 19
configurations (see configurations, system)
environment recording

option 0 (SERO) 177-178
option 1 (SER 1) 178
recording, editing, and printing program

(SEREP) 178
initialization 17
input readers (see reader/interpreter)
interlock 81
libraries (see libraries, system)

.log 72
management facilities (SMF) 63,48
messages·

as system output 81
reference 69

nucleus 19-22
operation 27
output writer (see writers, system output)
queue area (SQA) 22
queue area for MFT with subtasking 17,22
queue area for SMF 70
recovery 177
repair 177
residence device 15
restart 44,96

system log with console options 53
system management facilities (SMF)

exits provided 63
SCHEDULR macro instruction 63
SUPRVSOR macro instruction 63

212 MFT Guide (Release 21.0)

SYS I.MANX 63
SYS1.MANY 63

system output writer
ALIGN parameter
cataloged procedure
devices used 110
FCB 111

111
109-114

PUT macro instruction 111
VERIFY parameter 111,113

system-assigned reader 36,78
system-assigned writer 41,80
system-supported restart 177
SYS1.ACCT 158
SYS1.LINKLIB, contains BLDL table
SYS1.MANX 63,67
SYS1.MANY 63,67
SYS 1. P ARMLIB 50
SYS1.PROCLIB 114
SYSl.SAMPLIB 158
SYS I.SVCLIB 66
SYS1.SYSVLOGX 54
SYS1.SYSVLOGY 54

task
communications task 20
management 18
master scheduler 20
supervision 18
switching 17

task control block (TCB) 201
task input/output block 200
TCB, TIOT, UCB referenced by EXTRACT macro

instruction 200
telecommunications 88

assigning job classes 89
choosing partitions 88
communications lines 88
configurations 89,91
message processing 89
small partitions 88

termination 39
job 39
step 39

time slicing
I A TT ACH macro instruction 64

changing attributes 64

I CHAP. macro instruction 64
DEFINE command 64
dispatching priority 64
graphics use of 64
job class- restriction 64
JOB statement 64
response time 63
time-slice group 63-64

time supervision 18,19
I timestamping 50

timing jobs/steps 48
timing options

INTER V AL option 65
JOB STEP option 65
STIMER macro instruction 65
TIME macro instruction 65

TIME option 65
TTIMER macro instruction

TMSLICE parameter 82

I TRACE keyword 50
trace option 66
transient reader 36

I transient SVC table 66
TYPE parameter 82,83
type 3 and 4 SVC routines 66
types of jobs

batch 86
CPO 91
graphics 90
input/output-limited 75
short-duration 92
telecommunications 88

UCB (unit control block)

65

in RESERVE macro instruction 199
referenced in TIOT with EXTRACT macro

instruction 200
UNLOAD command 97
user-assigned transient reader 36

valid devices (see devices)

I
validity check option

modules supporting 67
SUPRVSOR macro instruction 67

VARY command 97,72,51

I VARY PATH command 181
VARY path function 181
vary path processor 181
VERIFY parameter 111,113
volume statistics facility

data sets 67
EVA 67
ESV 67
IFASMPDP dump program 67
IFHST A TR utility program 68
SMF 68
SVC 91 68
UCBs constructed 68

WAIT macro instruction 47
WAIT time limiting 47
W AITR macro instruction 47
work queues

hold 46
input

use in job initiation 39
use in system restart 46

output
use in job termination 39
use in system restart 46
used by system output writers

WRITELOG command 97
write-to-operator (WTO)

macro instruction 20,72,193

I
parameters 194
with console options 54

write-to-operator with reply (WTOR)
macro instruction 20, 193
parameters 194
with console options 54

writers, system output 41-43
characteristics 140
conventions 140
devices 141
direct 39
multiple 81
non-resident 80
partition 25
resident 25-80
RETURN macro 140
selection 80
SMF 63
system-assigned 41

41

SYSOUT paramater of DD statement 140
user-written 43

I writing routines 142
WTLBFRS parameter 84
WTLCLSS parameter 84
WTOBFRS parameter 84

I WTP (Write to programmer)
record requirements in job queue 134

Index 213

GC27 -6939-10

International Business Machines Corporation
Data Processing Division
113"3 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

VI

~/

~\
~
o
o
VI

G')
()

~
I
0-
-0 w
-0
I

o

Technical Newsletter This Newsletter No. GN28-2546 -Date April 16, 1973

Base Publication No. GC27-6939-10
File No. S360-36 (aS Release 21.7)

Previous Newsletters None

IBM System/360 Operating System:
MFT Guide

(c) IBM Corp. 1967,1968,1969,1970,1971,1912

This Technical Newsletter, a part of release 21.7 of IBM System/360 Operating System,
provides replacement pages for the subject publication. These replacement pages remain in
effect for subsequent releases unless specifically altered. Pages to be inserted and/or removed
are:

Cover, 2
9-12, 12.1
21, 22
51, 52
57, 58
99, 100
111,112

117,118
123, 124
157,158'
187,188,188.1
193,194,194.1
207,208

A change to the text or to an illustration is indicated by a vertical line to the left of the
change.

Summary of Amendments

The following topics are new or include changes for as release 21.7:

Main Storage Organization Change
Job Step Timing
EXEC Statement
SYSIN and SYSOUT Data Blocking
The Resident Access Method Modules Option
ST AE - Specify Task Asynchronous Exit
Inter-Partition POST - Post a Nonresident Routine

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications Development, Department 058, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

READER'S COMMENT FORM

IBM System/360 Operating System:
MFT Guide Order No. GC27-6939-10

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

• Please indicate your occupation:

• How did you use this publication?

D Frequently for reference in my work.

D As an introduction to the subject.

D As a textbook in a course.

D For specific information on one or two subjects.

• Comments (Please include page numbers and give examples.):

• Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC 27 -6939-10

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

~: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications
Department DS8

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y.

Fold

I
I
I
I
I
I
I

~
(')

S.
»
0'
:l co
c:
:l
CD

