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Abstract

Although considerable work has been done in recent

years to drive the state of the art in facial recognition to-

wards operation on fully unconstrained imagery, research

has always been restricted by a lack of datasets in the pub-

lic domain. In addition, traditional biometrics experiments

such as single image verification and closed set recogni-

tion do not adequately evaluate the ways in which uncon-

strained face recognition systems are used in practice. The

IARPA Janus Benchmark–C (IJB-C) face dataset advances

the goal of robust unconstrained face recognition, improv-

ing upon the previous public domain IJB-B dataset, by in-

creasing dataset size and variability, and by introducing

end-to-end protocols that more closely model operational

face recognition use cases.

IJB-C adds 1,661 new subjects to the 1,870 subjects re-

leased in IJB-B, with increased emphasis on occlusion and

diversity of subject occupation and geographic origin with

the goal of improving representation of the global popula-

tion. Annotations on IJB-C imagery have been expanded

to allow for further covariate analysis, including a spatial

occlusion grid to standardize analysis of occlusion. Due

to these enhancements, the IJB-C dataset is significantly

more challenging than other datasets in the public domain

and will advance the state of the art in unconstrained face

recognition.
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1. Introduction

Within the field of computer vision, one of the most

prominent and well-documented research goals is the de-

velopment of a system that can efficiently and accurately

recognize faces in a variety of environments. Though re-

search has shown vision systems are performing at near-

human levels of face recognition accuracy on constrained

face imagery, the performance of these systems still lags be-

hind human performance on unconstrained imagery [3] [4]

[15]. Because many practical applications of face recogni-

tion, e.g. surveillance, necessarily operate on unconstrained

imagery, it is critical to improve unconstrained face recog-

nition performance. A practical unconstrained face recogni-

tion system must successfully perform face detection, veri-

fication, and identification regardless of subject conditions

(pose, expression, occlusion) or acquisition conditions (il-

lumination, standoff, etc.).

In order to continue development and testing of these

systems, researchers must have access to large amounts

of relevant training and testing data as well as protocols

to properly design and evaluate their algorithms at opera-

tionally relevant assessment points (e.g., FAR of 0.001%).

While several large datasets have become available in the

public domain [13], few unconstrained datasets of suitable

size have been released alongside annotations and protocols

that can accurately evaluate end-to-end (e.g. joint detec-

tion and recognition) systems. To remedy this deficiency,

this paper introduces the IARPA Janus Benchmark–C (IJB-

C) dataset, which contains a corpus of annotated, uncon-

strained face imagery and operationally relevant protocols

to advance the state of the art in unconstrained face recog-

nition.

1.1. Unconstrained Face Imagery

With the advent of Labeled Faces in the Wild (LFW)

in 2007, research activity in unconstrained face recogni-

tion accelerated rapidly [7]. LFW was influential in the re-

lease of subsequent datasets such as PubFig, YouTube Faces

(YTF), and MegaFace [8] [10] [18]. Table 1 shows a sum-

mary of current public domain face datasets available. Cur-
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Dataset # subjects # images avg. # img/subj # videos avg. # vid/subj pose variation

IJB-C 3,531 31,334 6 11,779 3 full

IJB-B[17] 1,845 21,798 6 7,011 4 full

IJB-A [9] 500 5,712 11 2,085 4 full

LFW [7] 5,749 13,233 2 0 N/A limited

YTF [18] 1,595 0 N/A 3,425 2 limited

PubFig [10] 200 58,797 294 0 N/A limited

VGG [13] 2,622 982,803 375 0 N/A limited

MegaFace [8] N/A 1M N/A 0 N/A full

MF2[12] 672,057 4.7M 7 0 N/A limited

WIDER FACE [19] N/A 32,203 N/A 0 N/A full

CASIA Webface [20] 10,575 494,414 47 0 N/A limited

UMDFaces [2] 8,277 367,888 44 22,075 31 full

Table 1: A comparison of IJB-C to other unconstrained face benchmark datasets. Full pose variation is defined as -90 to +90 degrees of

yaw; anything less is regarded as limited pose variation. MegaFace and WIDER FACE are distractor and face detection sets, respectively,

and as such do not contain subject labels. Note that IJB-C is the only dataset listed in the table that includes end-to-end protocols.

rently, recognition performance on LFW has saturated, with

the best performance exceeding 99% true accept rate at a

1.0% false accept rate. Due to the limitations of the standard

LFW protocol, performance cannot be reliably estimated at

lower, operationally relevant FAR values.

One of the key limitations of the above datasets is that

commodity face detectors such as Viola-Jones (V-J) [16]

were used to collect the faces in the dataset. The V-J face

detector was not designed to detect faces with significant

degrees of roll, pitch, or yaw, so using such a detector to

construct a dataset excludes truly unconstrained imagery

from it, reducing the dataset’s relevance in solving the un-

constrained face recognition problem. Fig. 1 shows ex-

amples of images with constrained, frontal faces and un-

constrained, non-frontal faces with V-J detections superim-

posed over the ground truth bounding boxes included in the

IJB-C release. Note that the V-J detector misses the vast

majority of faces in the right-hand image.

The MegaFace and MF2 datasets were constructed using

the HeadHunter algorithm to detect faces within potential

media [8] [12]. MegaFace includes one million faces and is

intended to be used only as a distractor set, whereas MF2

has 672K unique identities but is intended to be used only

as a training set. The identity labels in MF2 are noisy, and

no evaluation protocols are included.

WIDER FACE, a large scale face detection dataset re-

leased in 2016, made significant strides towards addressing

the data quantity problem associated with evaluation of face

detection algorithms [19]. However, utility of this dataset

is limited to advancing face detection only, since subject

identity labels are not provided. Similarly, the UMDFaces

dataset, which includes images and frames for 8,277 sub-

jects, only includes face verification protocols and could not

be used for a full evaluation pipeline [2]. UMDFaces also

has no clear authority for redistribution.

The release of the NIST Face Challenge and the IARPA

1UMDFaces does not guarantee a video for every subject, and the aver-

age listed above is the average number of videos across all subjects within

the dataset.

Janus Benchmark–A (IJB-A) dataset in 2015 marked a

milestone in unconstrained face recognition research [6][9].

When released, results from multiple submissions to the

challenge showed significantly worse recognition perfor-

mance compared to the previously mentioned datasets. As

of 2017, performance on IJB-A is approaching saturation,

with a top true accept rate of 96.1% at a 1.0% false accept

rate [6].

The successive dataset, IARPA Janus Benchmark–B

(IJB-B), released in 2017, continued to push the state of

the art in unconstrained face recognition [17]. It included

1,845 subjects and protocols supporting face detection, ver-

ification, recognition, and clustering. While this dataset al-

lowed for evaluation at more operationally relevant points

at low ends of the ROC curve (e.g. FAR at 0.01% and

0.001%), the dataset did not support the evaluation of end-

to-end systems. To allow evaluation of such an end-to-end

system, a dataset is needed to support more operationally

relevant protocols. We present the IJB-C dataset to address

this need.

1.2. Paper Organization

The remainder of this paper is organized as follows: Sec-

tion 2 descibes the IJB-C dataset and the collection method-

ology used to curate it, in detail. Section 2.2 describes the

protocols released with IJB-C and the performance metrics

to be reported on each. Section 3 reports benchmark re-

sults from multiple algorithms on the provided protocols.

Finally, discussion and conclusions are provided in Section

4.

2. IJB-C Dataset

The IARPA Janus Benchmark–C (IJB-C) dataset con-

tains Creative Commons2 licensed face imagery and video

2Creative Commons licenses allow for free distribution of content, pro-

vided all attributions and licensing conditions are met. Images within this

paper are listed with the image author’s name, in accordance with the Cre-

ative Commons licenses. Full attributions are listed in the supplementary

material.
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Figure 1: Example detections from Viola-Jones shown in purple, and ground truth detections from the IJB-C dataset shown in green on an

image with frontal faces (left) and non-frontal faces (right).

for 3,531subjects, an addition of 1,661 subjects to IJB-B3.

All subjects in the dataset are ensured to appear in at least

two still images and one video. The bounding boxes and

metadata labels were all labeled using the crowdsourcing

platform Amazon Mechanical Turk (AMT). Subject names

were deconflicted using fuzzy matching to ensure that sub-

jects in IJB-C are disjoint from those included in the VGG-

Face and CASIA datasets [13][20].

IJB-C includes a total of 31,334 (21,294 face and 10,040

non-face) still images, averaging to ∼6 images per subject,

and 117,542 frames from 11,779 full-motion videos, aver-

aging to ∼33 frames per subject and ∼3 videos per subject.

The contributions of the IJB-C dataset to face recognition

and biometrics communities are the following:

• Subjects with full variation in pose.

• Subjects with diverse occupations, avoiding one pitfall

of “celebrity-only” media, as people in occupations

strongly associated with physical appearance, such as

actors and performers, may be less representative of

the global population.

• Image- and frame-specific metadata annotations, in-

cluding detailed information about occluded areas of

the face.

• Protocols for face detection, 1:1 verification, 1:N iden-

tification (supporting open- and closed-set evaluation),

clustering, and end-to-end system evaluation.

• Benchmark accuracy measures from a Government-

Off-The-Shelf (GOTS) algorithm and state-of-the-art

face recognition algorithms that utilize deep neural

networks.

• Stable download of images which remains consistent

over time, unlike datasets consisting of links which are

subject to change.

• Clear authority for redistribution through several Cre-

ative Commons licensing variants.

Sample imagery from IJB-C and other datasets can be

seen in Fig. 2, and example imagery for each geographic

region represented in IJB-C is presented in Fig. 3.

3Similar to IJB-A and IJB-B, IJB-C will be made available in the public

domain.
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Figure 2: Sample imagery included within (a) IJB-C; (b) IJB-B;

(c) IJB-A; and (d) LFW datasets. Note the greater variations in

IJB-C imagery, especially occlusions.

2.1. Collection Methodology

Collection for the dataset began by identifying Creative

Commons subject videos, which are often more scarce than

Creative Commons subject images. Search terms that re-

sulted in large quantities of person-centric videos (e.g. “in-

terview”) were generated and translated into numerous lan-

guages including Arabic, Korean, Swahili, and Hindi to in-

crease diversity of the subject pool. Certain YouTube users

who upload well-labeled, person-centric videos, such as the

World Economic Forum and the International University

Sports Federation were also identified. Titles of videos per-

taining to these search terms and usernames were scraped

using the YouTube Data API and translated into English us-

ing the Yandex Translate API4. Pattern matching was per-

formed to extract potential names of subjects from the trans-

lated titles, and these names were searched using the Wiki-

data API to verify the subject’s existence and status as a

4http://translate.yandex.com/
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Figure 3: Examples of subjects included in IJB-C from various geographic regions.

public figure, and to check for Wikimedia Commons im-

agery. Age, gender, and geographic region were collected

using the Wikipedia API.

Using the candidate subject names, Creative Commons

images were scraped from Google and Wikimedia Com-

mons, and Creative Commons videos were scraped from

YouTube. After images and videos of the candidate subject

were identified, AMT Workers were tasked with validat-

ing the subject’s presence throughout the video. The AMT

Workers marked segments of the video in which the subject

was present, and key frames were then extracted with this

information using FFmpeg5.

AMT Workers were tasked with annotating bounding

box locations for all faces in the imagery, after which the

person of interest was identified. Metadata attributes were

labeled by the AMT Workers on a per-media or per-subject

basis. For more information about this process, see [17].

A new grid-based annotation approach to occlusion was

introduced in IJB-C to allow for more fine-grained occlu-

sion analysis. AMT Workers were tasked with labeling spe-

cific regions of the face that were fully occluded by objects

such as glasses or microphones. Fig. 4 shows an example

image and grid the AMT Workers were responsible for la-

beling based on the subject of interest’s face. For a full list

of metadata labels included within IJB-C, see Fig. 5.

To address the fact that crowd-sourced bounding boxes

are often somewhat noisy, IJB-C also introduces the con-

cept of ignore flags. After the initial annotation collection,

at least 3 AMT Workers examined each image and flagged

any they believed had errors, such as oversized, missing, or

extra boxes. If any of the reviewers observed an error in the

image’s bounding boxes, that was denoted by an “ignore”

flag on the image.

Agência Brasil

Figure 4: Example of labeled occlusion grid. In this example, the

subject of interest (right) has full eye occlusion, so the areas of the

grid covering the eyes are marked. Glasses (tinted or clear) are

considered occlusion.

5www.ffmpeg.org

In total, over 9.7 million manual annotations were per-

formed by AMT Workers determined to be reliable through

qualification tests. This annotation process produced (i) an

accurate ground truth corpus of imagery containing bound-

ing boxes for face detection evaluations, (ii) subject labels

for face recognition and clustering evaluations, and (iii) at-

tribute metadata for understanding the effects of different

covariates (occlusion, facial hair, gender, capture environ-

ment, skin tone, age, and face yaw) on an algorithm’s facial

recognition performance.

2.2. Protocol Description

IJB-C is released along with 8 protocols testing face de-

tection, verification, recognition, and clustering at various

scales. Throughout these protocols, IJB-C utilizes the con-

cept of subject-specific modeling, in which a single tem-

plate is generated for a subject based upon the available

pieces of media – a paradigm shift from the traditional pro-

cess of creating a template for every available piece of me-

dia (e.g., still images and frames). This is a more opera-

tionally relevant approach to the problem of face recogni-

tion. Also, by utilizing multi-image templates, the inherent

difficulty of IJB-C is obfuscated, since algorithms have the

ability to pool information from multiple pieces of media

through subject-specific modeling.

Table 2 outlines key statistics of the protocols released

with IJB-C. Due to space constraints, the focus of this paper

will be on the novel protocols, but the following serves as a

brief overview of the remaining protocols:

• The face detection protocol tests an algorithm’s ability

to detect faces, and is augmented with an additional

10,040 non-face images to test operationally relevant

use cases. All media includes an ignore flag that iden-

tifies media with potential bounding box issues.

• The baseline 1:1 mixed verification protocol tests an

algorithm’s abilities in subject verification scenarios.

• The covariate 1:1 verification protocol utilizes single-

image templates to allow further analysis of an algo-

rithm’s performance on individual covariates.

• The baseline 1:N mixed recognition protocol tests an

algorithm’s abilities in identification scenarios.

• The clustering protocol, which includes 4 subprotocols

ranging from 32 to 3,531 subjects, tests an algorithm’s

ability to cluster faces at different scales.
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Figure 5: Annotation Labels included within IJB-C

Num. of

Subjects

Num. of

Templates

Still Images

and Frames

1:N

Identification

Gallery-G1 1,772 1,772 5,588

Gallery-G2 1,759 1,759 6,011

Mixed 3,531 19,593 127,152

1:1

Verification

Verify 3,531 23,124 138,836

Verify-Cov 3,531 140,739 138,836

Face Detection
Face Partition >3,531 N/A 138,836

Non-face Partition 0 N/A 10,040

Clustering

Clustering-32 32 955 955

Clustering-1024 1,021 41,074 40,709

Clustering-1845 1,839 71,392 70,056

Clustering-3545 3,531 140,623 138,136

End-to-End

End-to-End Probe Still Images/Frames – – 137,275

End-to-End Probe Video – N/A 11,739

End-to-End Probe Mixed – N/A 31,415

Table 2: Overview of the different protocols developed for IJB-B.

Verify-Cov refers to Covariate Verification; Clustering-X denotes

clustering with “X” number of subjects. 1:N identification sup-

ports both closed- and open-set evaluations.

Included with the protocols are two disjoint galleries,

gallery 1 (G1) and gallery 2 (G2). Each gallery contains one

template per subject, created by randomly selecting half of

the subject’s still imagery. The remaining media instances

are reserved for the probe set. G1 includes 1,772 subjects

with 5,588 still images, and G2 includes 1,759 subjects with

6,011 still images. These galleries are disjoint from each

other so that open-set identification scenarios (i.e. where

probe templates do not have a mate in the gallery) can be

tested.

Receiver Operating Characteristic (ROC) curves are re-

ported for the 1:1 verification protocols, while Cumulative

Match Characteristic (CMC) and Identification Error Trade-

off (IET) curves are reported for the 1:N mixed recognition

protocol [11]. BCubed precision, recall, and F-measure val-

ues are reported for the clustering protocol [1]. For more

detail about the above protocols and their evaluation met-

rics used, please see [17].

2.3. End-to-End Protocols

An important feature that differentiates IJB-C from pre-

vious releases of this series is the inclusion of 3 end-to-end

protocols, designed to test an algorithm’s ability to perform

end-to-end face recognition. The end-to-end protocols uti-

lize galleries G1 and G2 (discussed in Section 2.2) for eval-

uation.

2.3.1 1:N End-to-End Still

For the 1:N end-to-end still protocol, the algorithm is re-

sponsible for detecting faces in the image and searching

each detected face against galleries G1 and G2. This resem-

bles the operational work performed today by law enforce-

ment. The 1:N end-to-end still protocol includes 136,734

still images and frames.

2.3.2 1:N End-to-End Video

A 1:N end-to-end video protocol is also provided. This pro-

tocol follows the same outline as the above 1:N still proto-

col, but instead uses full-motion videos as input. The pro-

tocol includes 11,779 videos. For evaluating this protocol,

frames are weighted such that all of a subject’s frames from

a single video have the same combined weight as a single

still image.

2.3.3 1:N End-to-End Mixed

The 1:N end-to-end mixed protocol is designed to test an

algorithm’s ability to perform end-to-end recognition tasks.

The protocol contains both still images and full-motion

videos, for a total of 31,415 pieces of media. The algo-

rithms are responsible for detecting faces in still images and

videos, clustering the detected faces, creating a multi-image

template from each cluster and then searching against the

galleries. Frames in this protocol are weighted as described

in Section 2.3.2.

2.3.4 Performance Metrics for End-to-End Protocols

Performance on the end-to-end protocols is evaluated ac-

cording to two metrics: (i) End-to-End Retrieval Rate

(EERR) and (ii) a variant on the Identification Error Trade-

off (IET) [17].

The EERR evaluates accuracy in a closed-set identifi-

cation scenario relative to rank. Similar to the CMC used

in earlier protocols, the EERR expresses the proportion of

mated searches returning a match at or above a particular

rank, where a mated search is defined as having a corre-

sponding mate in the gallery. For end-to-end probes, how-



ever, there are two scenarios in which a mated search may

result in a miss: (1) the face of the subject of interest was

not detected, or (2) the face of the subject of interest was

detected but the resulting candidate list did not contain the

mate. A correct detection is defined as a (normalized) pre-

dicted bounding box which has an intersection over union

score of at least 50% with the ground truth bounding box.

Predicted boxes are rigidly normalized by increasing or de-

creasing the area of the predicted box until it matches the

area of the ground truth bounding box. If the percent dif-

ference of the normalized box area and original predicted

box area is greater than 150%, then the predicted boxes are

considered to be a false alarms.

The IET variant (henceforth referred to as the weighted

IET) expresses how the False Positive Identification count

(FPI) varies with respect to the FNIR. FPI is the number

of non-mated probe searches that return a candidate at rank

one with a score greater than a threshold, t. FNIR is the

proportion of mated searches that do not return the mated

gallery template at or above the same threshold t. Unlike in

earlier IJB protocols, the false positives are not normalized

by the proportion of non-mated searches. Otherwise, al-

gorithms could configure their detector to have many more

false detections, thus lowering their FPIR.

2.4. Synthetic Degradation Experiments

To further analyze performance in the presence of var-

ious media artifacts, experiments were conducted on syn-

thetically degraded media. Performance on these protocols

was evaluated before and after rotation, blur, and resolu-

tion changes were applied. An example image is shown

below in Fig. 6 before and after each degradation type was

applied. To test the impact of rotation on face detection,

images had an equal chance of being rotated 90◦ in either

direction. Blur experiments were run using the OpenCV

Gaussian blur function with mean 0 and standard deviation

parameters of 2, 5, and 10. In order to maintain a minimum

bounding box side size of 20 pixels for resolution experi-

ments, resizing levels were selected on a per-image basis as

fractions (0, 0.33, and 0.66) of the range between the reduc-

tion level that would reach this minimum size (0), and the

original size of the image (1). For blur and resize testing,

degradation was only applied to images in the probe set in

order to enable comparisons between original and degraded

media. The scripts used to synthetically degrade the media

will be released along with IJB-C to facilitate repeatability

and reproducibility.

3. Experimental Results

Baseline results for select protocols are shown below.

Due to space limitations, only benchmark results for face

detection, 1:1 mixed, 1:N mixed, and 1:N end-to-end still

!"#$%%&

Figure 6: Examples of original and synthetically degraded media.

From left to right: the original, blurred at a standard deviation

parameter of 10, rotated 90◦, and resized by the minimum factor

0.

are discussed. Results from all protocols released with IJB-

C are available from the authors.

We do not provide a detailed meta-analysis of confound-

ing factors that impact face recognition performance due to

space constraints. However, it should be noted, as illus-

trated in [6], extreme pose continues to be a primary con-

founding factor of performance in the IJB datasets. Specifi-

cally, the difference in yaw between subject’s pose in com-

pared templates is a limiting factor in face recognition per-

formance. In other words, face recognition algorithms per-

form best when the two compared templates closely resem-

ble one other. This also holds true across the dataset for

confounding factors such as occlusion and “environment”.

The authors are preparing a full manuscript outlining the

IJB-C confounding factors and their impact on face recog-

nition performance.

3.1. Face Detection

Three baseline algorithms were used to test the IJB-C

face detection protocol. First, two government-off-the-shelf

(GOTS) algorithms were utilized. The GOTS algorithms

were both designed specifically to detect faces in uncon-

strained imagery, and are shown to be the top performing

face detectors in a recent face detection benchmark [5].

Secondly, we report performance from a TensorFlow im-

plementation of a multi-task cascaded convolutional neural

network (MTCNN) [21]6. Results are provided in Table 3

for all media not containing an ignore flag, as well as for

all media inclusive of flagged images and frames. Note that

the GOTS-1 has the best performance of 49.0% true detect

rate (TDR) at a false detect per image (FDPI) of 10−2 on

all media, while the MTCNN algorithm has the best perfor-

mance of 66.7% TDR at a FDPI of 10−2 when only media

containing no bounding box errors was used.

3.2. 1:1 Mixed Verification

To test the 1:1 mixed identification protocol, we report

performance from three baseline algorithms. We utilize

a GOTS algorithm previously mentioned in Section 3.1.

6The implementation of the face detector can be found at github.

com/davidsandberg/facenet/tree/master/src/align



With Flag TDR (%) Without Flag TDR (%)

FDPI 10−1 FDPI 10−2 FDPI 10−1 FDPI 10−2

GOTS-1 68.0 49.0 71.7 63.2

GOTS-2 75.0 41.7 78.7 66.4

MTCNN 81.0 41.1 86.0 66.7

Table 3: True detect rates (TDR) at operating points of 10
−1

and 10
−2 false detects per image (FDPI) for the benchmark algo-

rithms. “Without flag” refers to the performance of the algorithm

on only media containing no bounding box errors, while “With

flag” refers to the performance of the algorithm on all media within

IJB-C.

We also report performance from an implementation of

Google’s FaceNet7, which was shown to achieve a 98.7%

accuracy on LFW [14]. Finally, we report performance of

a VGG CNN model described in [13]. To handle the multi-

image IJB-C templates, a single feature vector was com-

posed using a weighted average of the images in the tem-

plate, such that all frames belonging to the same subject

within a video have a combined weight equal to a single

still image. Results are illustrated in Figure 7. It is illus-

trated that the VGG-CNN algorithm provides the best per-

formance at all operating points. Note that this protocol

provides 19,557 genuine matches and 15,638,932 impostor

matches to allow for evaluations of performance at low FAR

values.

Figure 7: Average ROC performance across gallery sets G1 and

G2 for the 1:1 Mixed Verification protocol.

3.3. 1:N Mixed Identification

To evaluate the 1:N mixed identification protocol, the

benchmark algorithms described in Section 3.2 are utilized.

CMC results for this protocol can be see in Fig. 8, and the

IET results can be seen in Fig. 9. Note that the VGG-CNN

algorithm provides the best CMC and IET performance in

comparison to the FN-CNN and GOTS-1 algorithms.

7The implementation of the face recognizer can be found at https:

//github.com/davidsandberg/facenet.

Figure 8: Average CMC performance across gallery sets G1 and

G2 for the 1:N Mixed Media Identification protocol.

Figure 9: Average IET (Identification Error Tradeoff) performance

across gallery sets G1 and G2 for the 1:N Mixed Media Identifica-

tion protocol.

3.4. 1:N End-to-End Still

For the 1:N end-to-end still protocol, we utilize the same

three baseline algorithms as described in Section 3.3. The

MTCNN detector is utilized for both VGG and FaceNet

CNN algorithms. The EERR for this protocol can be seen

in Fig. 10, and the weighted IET can be see in Fig. 11. As

show in the figures, overall performance results are lower

across the board. This is a challenging protocol and perfor-

mance is lower without subject specific modeling.

4. Summary

In this paper, the authors have introduced a new publicly

available face dataset, IARPA Janus Benchmark–C (IJB-C),

as an extension to the previously released IJB-B dataset.

IJB-C focuses on unconstrained media, and includes 3,531

subjects, with a total of 31,334 images (21,294 face and

10,040 non-face), and 117,542 frames pulled from 11,779

full-motion videos. All media has manually annotated fa-

cial bounding boxes and covariate labels, including spatial

occlusion results. This dataset includes subjects from di-

verse occupations, which increases the inherent variability

of subject appearance and environment when compared to

easily accessible celebrity-only media. All images within



Figure 10: Average EERR performance across gallery sets G1 and

G2 for the 1:N End-to-End Still Identification protocol. The end-

to-end (E2E) retrieval rate on the y-axis indicates the proportion of

mated searches returned at or above a rank, incorporating misses

from failed bounding box association.

Figure 11: Average weighted IET performance across gallery sets

G1 and G2 for the 1:N End-to-End Still Identification protocol.

the dataset can be publicly redistributed through Creative

Commons licensing. IJB-C is the first dataset that pro-

vides end-to-end protocols based on operationally relevant

use-cases to evaluate an algorithm’s combined performance

on detection, clustering and recognition. Along with the

dataset, benchmark results from two GOTS algorithms and

two academic algorithms are released to be used for com-

parative research. The IJB-C dataset is available through

the NIST Face Projects website8.
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