TF-Ranking

Neural Learning to Rank using TensorFlow ICTIR 2019

Rama Kumar Pasumarthi Sebastian Bruch Michael Bendersky Xuanhui Wang

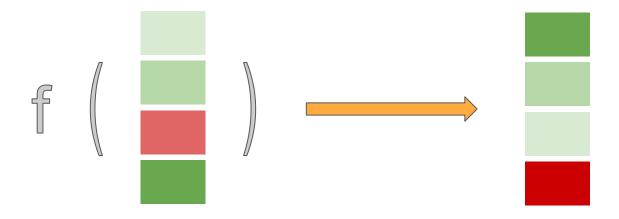
Google Research

Talk Outline

- 1. Motivation
- 2. Neural Networks for Learning-to-Rank
- 3. Introduction to Deep Learning and TensorFlow
- 4. TF-Ranking Library Overview
- 5. Empirical Results
- 6. Hands-on Tutorial

Motivation

Learning to Rank



Applications

Dialogue systems

Question Answering

General Problem Statement

Problem Learning a scoring function **f*** to sort a list of examples

- Input: List of examples (with Context)
- Output: Scoring function f* that produces the most optimal example ordering
 - o Can be parameterized by linear functions, SVM, GBDTs, Neural Networks

Formally

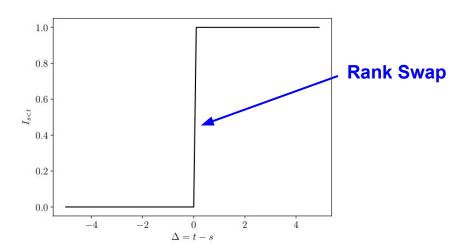
$$\psi = (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X}^n \times \mathbb{R}^n$$

Training sample with relevance labels

$$\mathcal{L}(f) = \frac{1}{|\Psi|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \Psi} \ell(\boldsymbol{y}, f(\boldsymbol{x}))$$
 Choose f* to minimize empirical loss

Ranking Metric Optimization

- Ranking metrics are piecewise constant
- Cannot be directly optimized with gradient descent
- Therefore, various proxy losses were proposed



Pointwise LTR methods

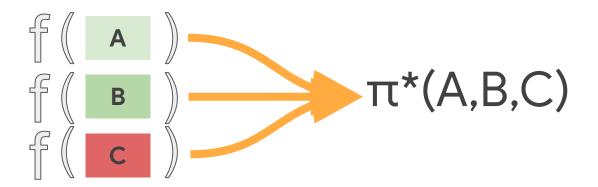
- Documents are considered independently of each other
- Some examples: ordinal regression, classification, GBRTs

Pairwise LTR methods

- Document pairs are considered
- Some examples: RankNet, RankSVM, RankBoost

Listwise LTR methods

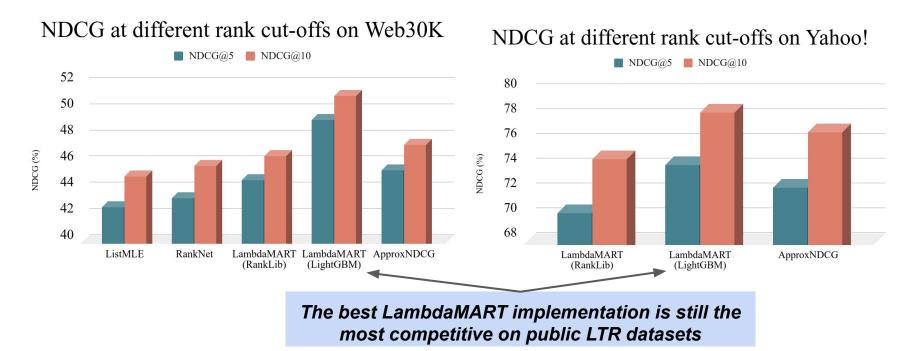
- Consider the ordering of the entire list
- Some examples: LambdaMART, ApproxNDCG, List{Net, MLE}



Standard LTR setting

- Handcrafted features based on query, document and their match scores
 - Web30K has 136 features per document
 - tf-idf scores
 - BM25 scores
 - Inlink counts
 - URL length
 - Page quality
 -
- Human relevance judgments
 - The largest datasets have tens of thousands of labeled examples
 - Web30K, Istella, Yahoo! ~30K queries

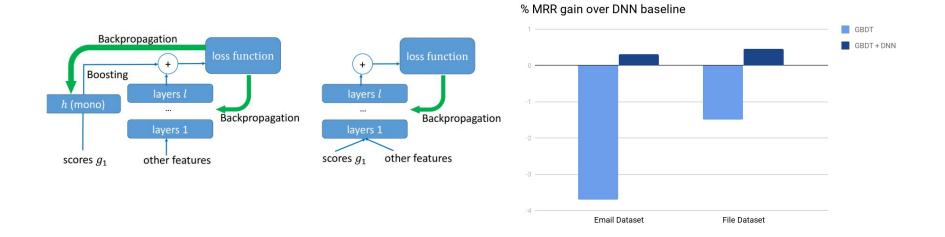
Current State-of-the-Art in LTR



Neural Networks for Learning-to-Rank

Why Neural Networks for Ranking?

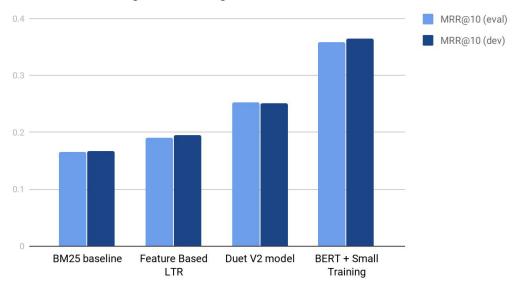
- Are complementary to standard LTR methods, not a direct replacement
 - Can be ensembled with GBDTs for further performance gains



Why Neural Networks for Ranking?

- Allow learning feature representations directly from the data
 - o Directly employ query and document text instead of relying on handcrafted features
 - NNs are clearly outperforming standard LTR on short text ranking tasks

MS Marco Passage Re-ranking task



Neural models for IR

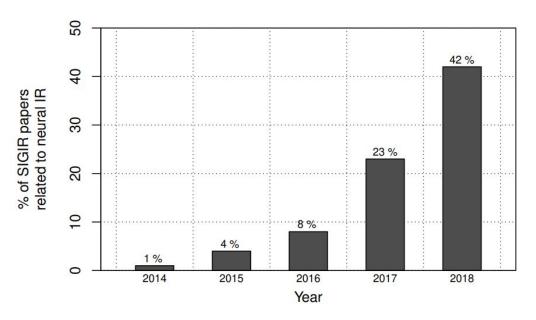


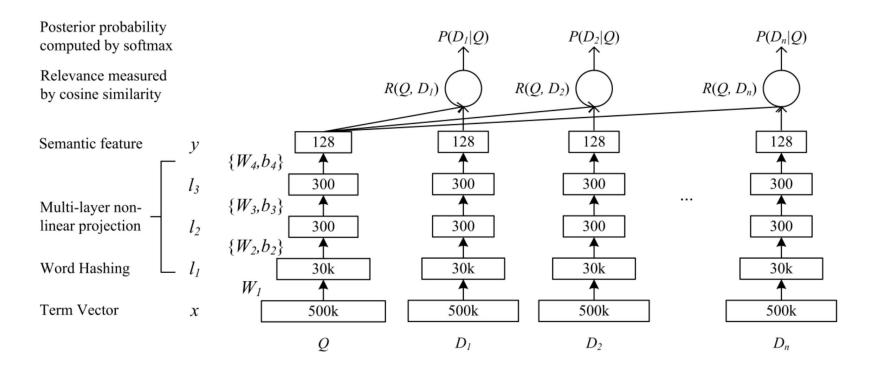
Figure 1.1: The percentage of neural IR papers at the ACM SIGIR conference—as determined by a manual inspection of the papers—shows a clear trend in the growing popularity of the field.

- Neural IR is increasingly popular
- Major focus is on neural matching models
- Less research on neural ranking models

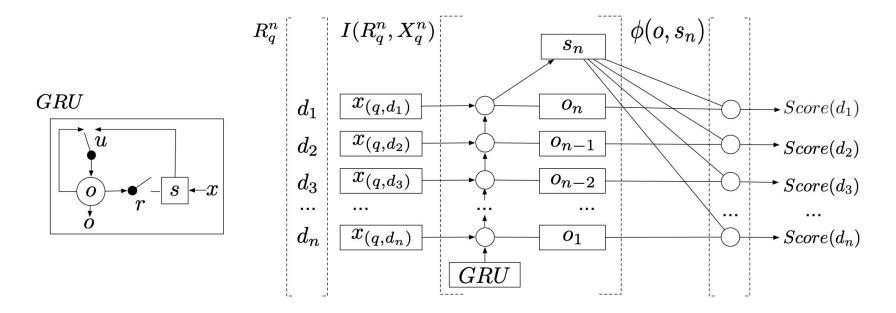
Figure source: "An Introduction to Neural Information Retrieval"

Bhaskar et al., FnTIR (2018)

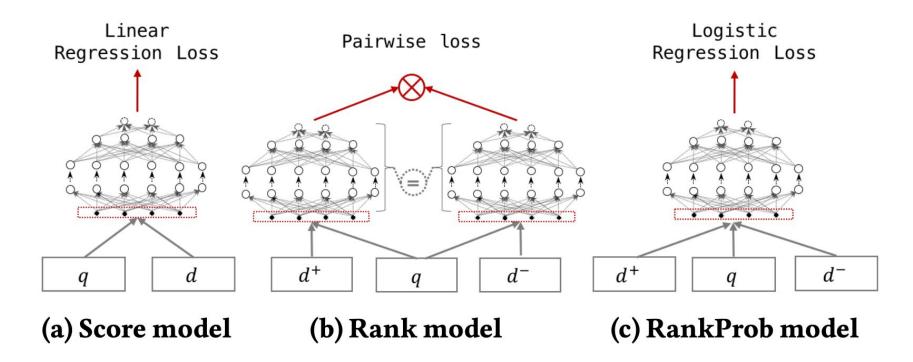
DSSM model



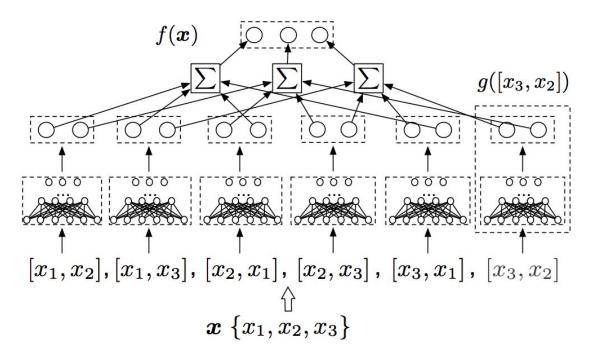
Deep Listwise Context Model (DLCM)



Neural Ranking with Weak Supervision



Groupwise Multivariate Scoring Functions

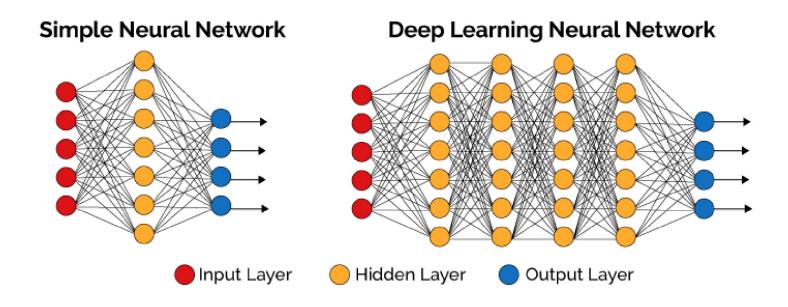


"Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks"

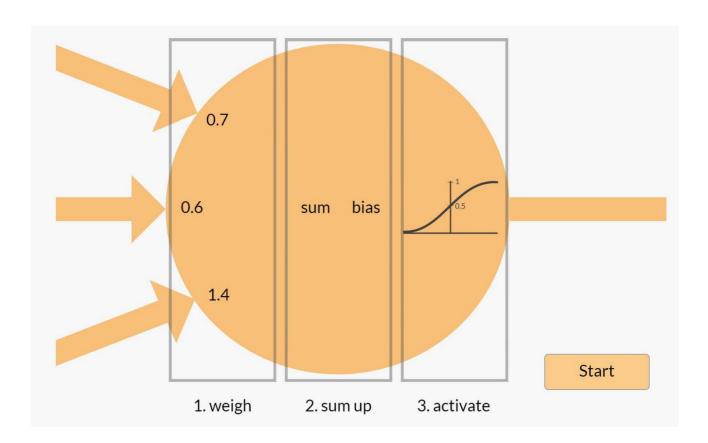
Ai et al., ICTIR 2019

Introduction to Deep Learning and TensorFlow

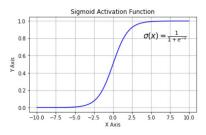
Deep Neural Network

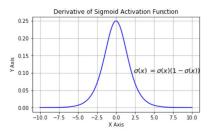


Neuron



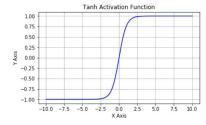
Activation Function → Non-Linearity

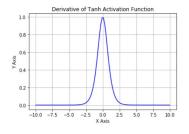




Sigmoid

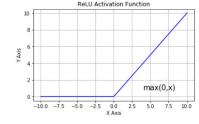
- Vanishing gradients
- Not zero centered

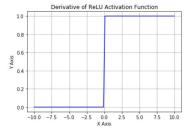




Tanh

Vanishing gradients





ReLU

Not zero centered

Loss Function

Mean Squared Error

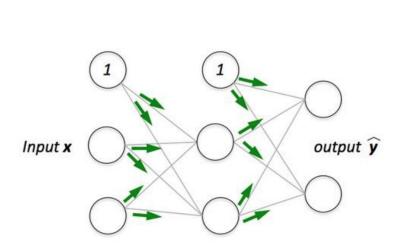
$$MSE = rac{1}{N}\sum_{i=1}^{N} (t_i - s_i)^2$$

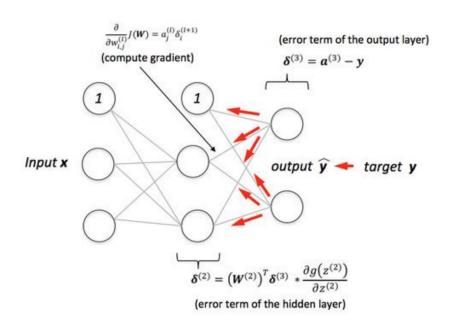
Cross Entropy Loss

Classes Prediction
$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$
 Ground Truth {0,1}

Backpropagation

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ij}}$$



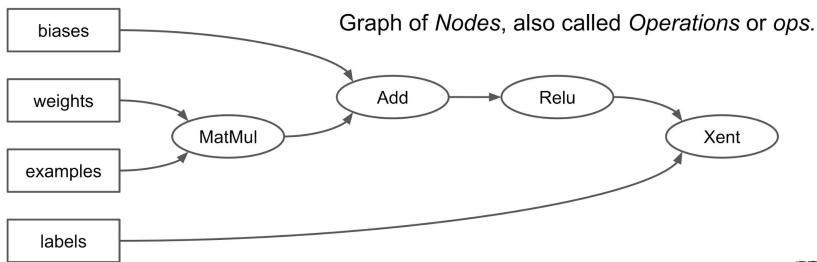


Task: Update the weights and biases to decrease loss function

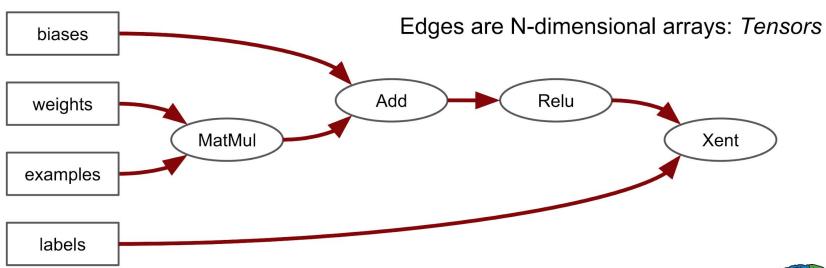
TensorFlow: A Deep Learning Framework

- Computation is a dataflow graph
 - Node: tf.Operations / ops
 - Edge: tf.Tensors
- Declarative language to build a graph
- Symbolic differentiation

Computation is a dataflow graph



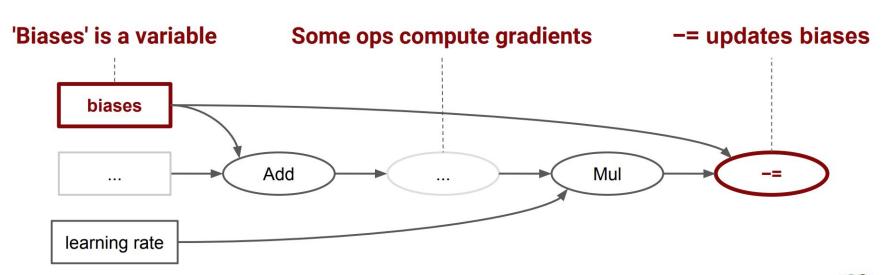
Computation is a dataflow graph



Declarative Language to Build a Graph

```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
x = tf.placeholder("float", shape=[None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
```

Computation is a dataflow graph



Symbolic Differentiation

- Automatically add ops to calculate symbolic gradients of variables w.r.t. loss function.
- Apply these gradients with an optimization algorithm

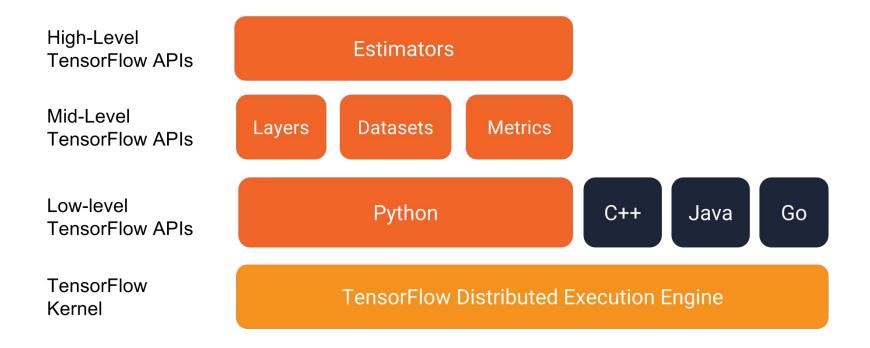
```
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
opt = tf.train.GradientDescentOptimizer(0.01)
train_op = opt.minimize(cross_entropy)
```

Define graph and then execute it repeatedly

Launch the graph and run the training ops in a loop

```
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
```

TensorFlow Estimator API



TF-Ranking Library Overview

Challenges for LTR in TensorFlow

Data representation

- How to represent a ranked list of varying size
- tf.Example is not suitable for a ranked list
- tf.Tensor is not friendly for varying size

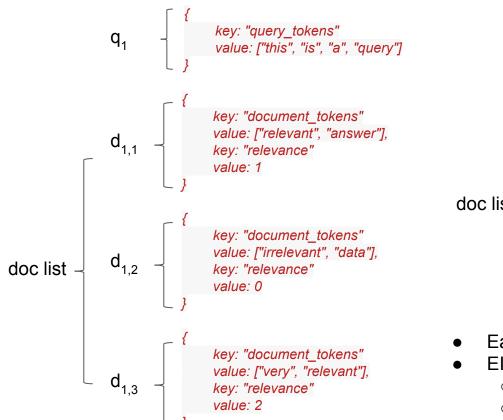
Losses & Metrics

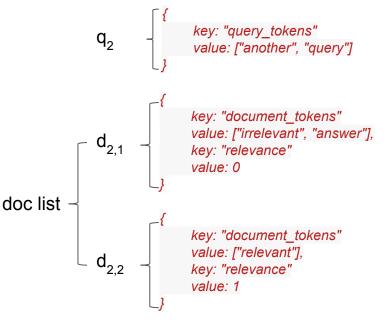
- No built-in ranking losses/metrics in TensorFlow
- Implemented based on Tensors/Ops

Serving

 For some training modes (e.g., with ranked lists of varying size), there may be a training/serving discrepancy

ExampleInExample Format

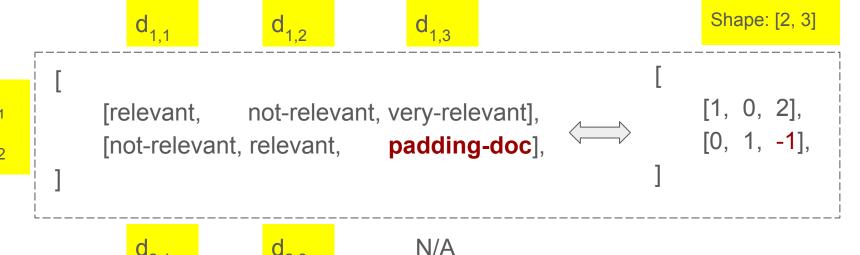




- Each q, d is a tf.Example and serialized as a string
- EIE is tf.Example with 2 features:
 - "serialized_context": q
 - o "serialized_examples": [d₁, d₂, ...]

Internal Representation: Tensor

- Tensor: multi-dim array for a batch of queries
 - o [batch_size, list_size, ...]
 - o [num_query, max_num_doc, ...]
- Padding is used but ignored in TF-Ranking computation



Supported Components

- Supports pointwise/pairwise/listwise losses
- Supports popular ranking metrics
 - Mean Reciprocal Rank (MRR)
 - Normalized Discounted Cumulative Gain (NDCG)
- Supports multivariate scoring functions
- Supports unbiased learning-to-rank
- Supports sparse/embedding features

Supported Metrics

Mean Reciprocal Rank

$$MRR(\pi,y) = \mathbb{E}[rac{1}{\min_{j}\{y_{\pi^{-1}(j)}>0\}}]$$

Average Relevance Position

$$ARP(\pi,y) = \mathbb{E}[rac{\sum_{j=1}^{n}y_{j}\pi(j)}{\sum_{j=1}^{n}y_{j}}]$$

Discounted Cumulative Gain

$$DCG(\pi,y) = \mathbb{E}[\sum_{j=1}^n rac{2^{y_j}-1}{\log_2(1+\pi(j))}]$$

Supported Scoring Functions

- **Univariate** scoring function **f**(**x**) scores each document separately (most existing LTR methods)
- Bivariate scoring function $f(x_1, x_2)$ scores a pair of documents
- Multivariate scoring functions f(x₁, ..., x_m) jointly scores a group of m documents

Supported Loss Examples (Binary Labels)

(Pointwise) Sigmoid Cross Entropy

$$\hat{\ell}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^{n} y_j \log(p_j) + (1 - y_j) \log(1 - p_j)$$

(Pairwise) Logistic Loss

$$\hat{\ell}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{j=1}^{n} \sum_{k=1}^{n} \mathbb{I}(y_j > y_k) \log(1 + \exp(\hat{y}_k - \hat{y}_j)))$$

(Listwise) Softmax Loss (aka ListNET)

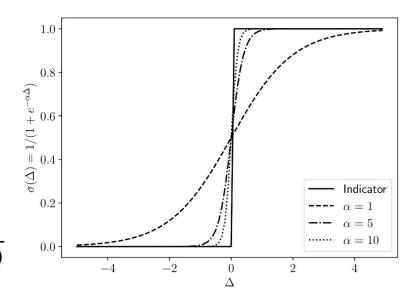
$$\hat{\ell}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{j=1}^{n} y_j \log(\frac{\exp(\hat{y}_j)}{\sum_{j=1}^{n} \exp(\hat{y}_j)})$$

ApproxNDCG - Ranking Metric Approximation

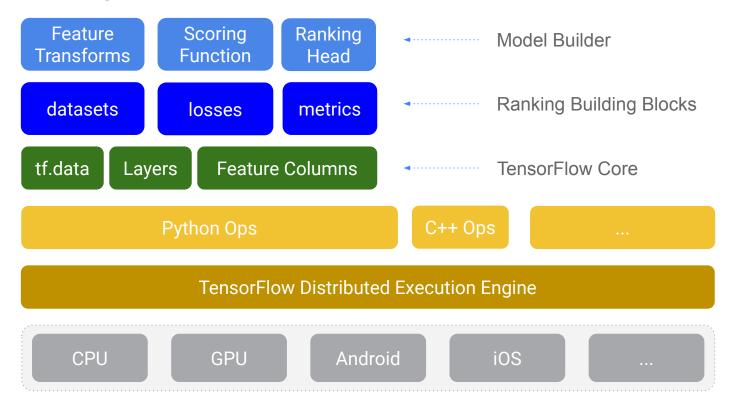
$$DCG(\pi_f, \mathbf{y}) = \sum_{j=1}^{n} \frac{2^{y_j} - 1}{\log_2(1 + \pi_f(j))}$$

$$\pi_f(i) \triangleq 1 + \sum_{j \neq i} \mathbb{I}_{f(\boldsymbol{x})|_i < f(\boldsymbol{x})|_j}$$

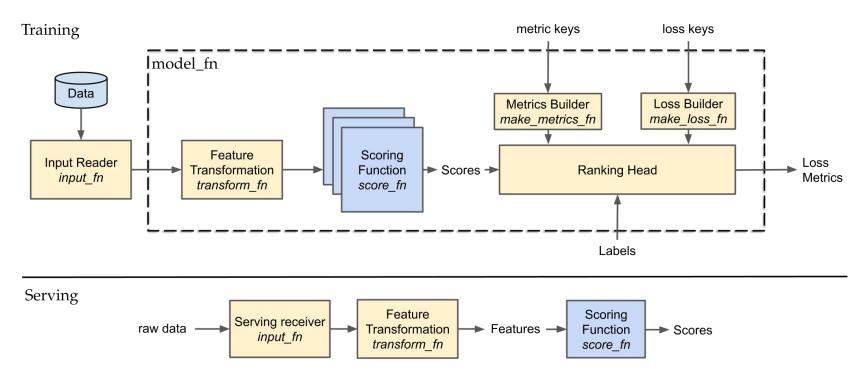
$$\mathbb{I}_{s < t} = \mathbb{I}_{t-s > 0} \approx \sigma(t-s) \triangleq \frac{1}{1 + e^{-\alpha(t-s)}}$$



TF-Ranking Ecosystem



TF-Ranking Architecture

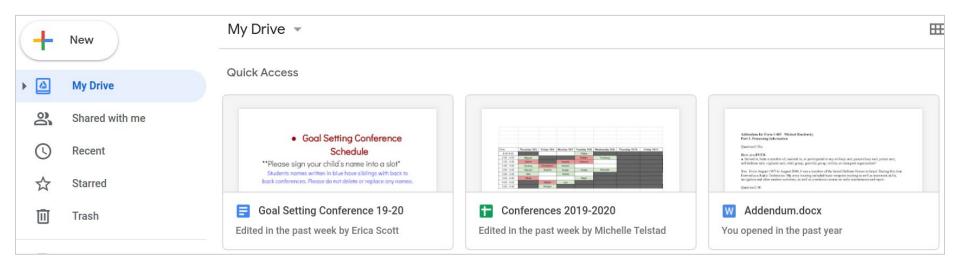


Empirical Results

Datasets

Dataset	# queries			
MSLR-Web30k	~30K	Public	Search	dense features
MS-Marco	~800K	Public	Q&A	sparse features
Quick Access	~30M	Internal	Recommendation	dense features
Gmail Instant Search	~300M	Internal	Search	dense features sparse features

Quick Access: Recommendation in Google Drive



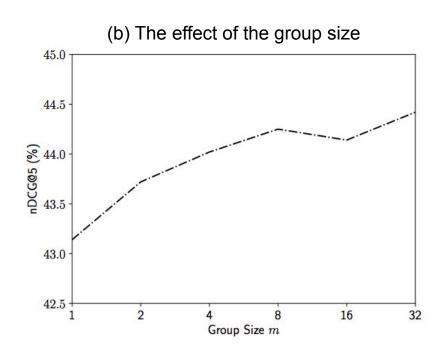
Gmail Instant Search

Q	sigir registration deadline	× •
Y	SIGIR Registration Sebastian Bruch, Qingyao Ai, me	Jan 14
Y	send us a camera ready copy of the SIGIR paper quickly? Mingyang Zhang, me, John Foley, Marc Najork	4/19/18
V	Abstract and title me, Qingyao Ai, Sebastian Bruch	Jan 16
~	SIGIR2018 notification for short paper 794 SIGIR2018, me	4/11/18
Y	ACM Rights Management: SIGIR '18 - sp794 John Foley, me, Mingyang Zhang, Marc Najork	@ 4/26/18
~	WWW 2018 notification for paper 966 John Foley, me, Mingyang Zhang, Marc Najork	© 2/4/18

MSLR-Web30k

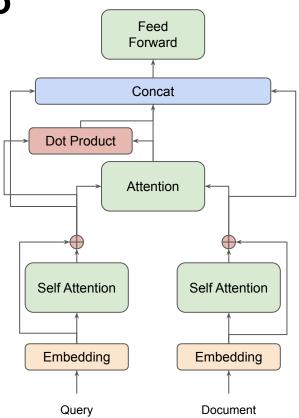
(a) Comparison w/ other LTR models

	NDCG@5
RankNet _{RankLib}	32.28
RankSVM _{RankLib}	33.74
MART	43.54
λMART _{RankLib}	44.50
λMART _{LightGBM}	49.20
Softmax CE w/ GSF(m=32)	44.42
ApproxNDCG	45.38



Preliminary Results on MS-Marco

- TF-Ranking enables faster iterations over ideas to build ranking-appropriate modules
- An early attempt is illustrated to the right
 - Trained with Softmax Cross Entropy (ListNet) loss, it achieves MRR of .244 on the (held-out) "dev" set.
 - [Official Baseline] BM25 -- .167
 - [Official Baseline] Duet V2 -- .243
 - Best non-BERT result -- .318



Quick Access

Model performance with various loss functions

Quick Access	ΔMRR	ΔARP	ΔNDCG
Sigmoid Cross Entropy (Pointwise)	_	_	_
Logistic Loss (Pairwise)	+0.70	+1.86	+0.35
Softmax Cross Entropy (Listwise)	+1.08	+1.88	+1.05

Gmail Search

Model performance with various loss functions

Gmail Search	ΔMRR	ΔARP	ΔNDCG
Sigmoid Cross Entropy (Pointwise)	_	_	_
Logistic Loss (Pairwise)	+1.52	+1.64	+1.00
Softmax Cross Entropy (Listwise)	+1.80	+1.88	+1.57

Gmail Search: Incorporating Sparse Features

Model performance as compared to **LambdaMART**

Gmail Search	Dense Features (ΔMRR)	Dense + Sparse Features (ΔMRR)
λMART	0.0	
Softmax CE w/ GSF(m=2)	+0.3	+2.4
λMART + Softmax CE w/ GSF(m=2)	+0.95	+3.42

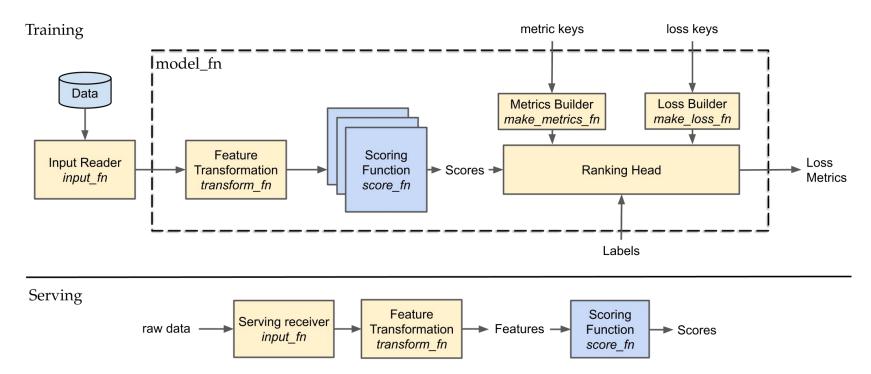
Hands-on Tutorial

Steps to get started

- Go to <u>git.io/tf-ranking-demo</u>
- Open the notebook in colaboratory
 - Make sure the URL starts with "colab.research.google.com"
- Click "Connect" to connect to a hosted runtime.
 - This is where the code runs, and the files reside.
- Open "Runtime" and select "Run All"
- Scroll down to the section on "Train and evaluate the ranker", to see the training in execution

git.io/tf-ranking-demo

TF-Ranking Architecture



"Course Homework"

- Try running the colab with a different loss function
 - Use one of the losses listed at: <u>git.io/tfr-losses</u>
 - Advanced: Implement your own custom loss function
- Try running with an additional metric
 - You can use Average Relevance Position, listed at: <u>git.io/tfr-metrics</u>
 - Advanced: Implement a metric that is a linear combination of two existing metrics
- Explore different neural networks for scoring function
 - Increase the number of layers: when does it start to overfit?
- Try running TF-Ranking on your ranking problem
 - Let us know your experience by filing an <u>issue</u> on github!