
TF-Ranking
Neural Learning to Rank using TensorFlow

ICTIR 2019
Rama Kumar Pasumarthi

Sebastian Bruch
Michael Bendersky

Xuanhui Wang

Google Research

Talk Outline
1. Motivation

2. Neural Networks for Learning-to-Rank

3. Introduction to Deep Learning and TensorFlow

4. TF-Ranking Library Overview

5. Empirical Results

6. Hands-on Tutorial

Motivation

Learning to Rank

Applications

Search

Recommendation

Dialogue systems

Question Answering

General Problem Statement

Problem Learning a scoring function f* to sort a list of examples

● Input: List of examples (with Context)
● Output: Scoring function f* that produces the most optimal example ordering

○ Can be parameterized by linear functions, SVM, GBDTs, Neural Networks

Formally

Training sample with relevance labels

Choose f* to minimize empirical loss

Ranking Metric Optimization
● Ranking metrics are piecewise constant
● Cannot be directly optimized with gradient descent
● Therefore, various proxy losses were proposed

Rank Swap

Pointwise LTR methods
● Documents are considered independently of each other
● Some examples: ordinal regression, classification, GBRTs

A

B

C

P(A is Relevant)
P(B is Relevant)
P(C is Relevant)

Pairwise LTR methods
● Document pairs are considered
● Some examples: RankNet, RankSVM, RankBoost

A

B

C

P(A > B)

P(B > C)

Listwise LTR methods
● Consider the ordering of the entire list
● Some examples: LambdaMART, ApproxNDCG, List{Net, MLE}

π*(A,B,C)
A

B

C

Standard LTR setting
● Handcrafted features based on query, document and their match scores

○ Web30K has 136 features per document
■ tf-idf scores
■ BM25 scores
■ Inlink counts
■ URL length
■ Page quality
■ ….

● Human relevance judgments
○ The largest datasets have tens of thousands of labeled examples

■ Web30K, Istella, Yahoo! ~30K queries

Sample of features available on Web30K

Current State-of-the-Art in LTR

"Revisiting Approximate Metric Optimization in the Age of Deep Neural Networks"
Bruch et al., SIGIR 2019

The best LambdaMART implementation is still the
most competitive on public LTR datasets

Neural Networks for Learning-to-Rank

Why Neural Networks for Ranking?
● Are complementary to standard LTR methods, not a direct replacement

○ Can be ensembled with GBDTs for further performance gains

"Combining Decision Trees and Neural Networks for Learning-to-Rank in Personal Search"
Pan et al., KDD 2019

Why Neural Networks for Ranking?
● Allow learning feature representations directly from the data

○ Directly employ query and document text instead of relying on handcrafted features
○ NNs are clearly outperforming standard LTR on short text ranking tasks

Neural models for IR

● Neural IR is increasingly
popular

● Major focus is on
neural matching models

● Less research on
neural ranking models

Figure source: "An Introduction to Neural Information Retrieval"
Bhaskar et al., FnTIR (2018)

DSSM model

17"Learning Deep Structured Semantic Models for Web Search using Clickthrough Data"
Huang et al., CIKM 2013

Deep Listwise Context Model (DLCM)

18"Learning a Deep Listwise Context Model for Ranking Refinement"
Ai et al., SIGIR 2018

Neural Ranking with Weak Supervision

19"Neural Ranking Models with Weak Supervision"
Dehghani et al., SIGIR 2017

Groupwise Multivariate Scoring Functions

20
"Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks"

Ai et al., ICTIR 2019

Introduction to Deep Learning and
TensorFlow

Many materials are from Lex Friedman’s MIT Deep Learning Course
https://www.dropbox.com/s/c0g3sc1shi63x3q/deep_learning_basics.pdf

https://www.dropbox.com/s/c0g3sc1shi63x3q/deep_learning_basics.pdf?dl=0

Deep Neural Network

Neuron

Activation Function → Non-Linearity

Loss Function

Backpropagation

TensorFlow: A Deep Learning Framework

Slides are adapted from Jeff Dean’s talk:
https://www.matroid.com/scaledml/slides/jeff.pdf

● Computation is a dataflow graph
○ Node: tf.Operations / ops

○ Edge: tf.Tensors

● Declarative language to build a graph

● Symbolic differentiation

https://www.matroid.com/scaledml/slides/jeff.pdf

Declarative Language to Build a Graph

TensorFlow Estimator API

TF-Ranking Library Overview

Challenges for LTR in TensorFlow
● Data representation

○ How to represent a ranked list of varying size
○ tf.Example is not suitable for a ranked list
○ tf.Tensor is not friendly for varying size

● Losses & Metrics
○ No built-in ranking losses/metrics in TensorFlow
○ Implemented based on Tensors/Ops

● Serving
○ For some training modes (e.g., with ranked lists of varying size), there may be a

training/serving discrepancy

ExampleInExample Format
{
 key: "query_tokens"
 value: ["this", "is", "a", "query"]
}

{
 key: "document_tokens"
 value: ["relevant", "answer"],
 key: "relevance"
 value: 1
}

{
 key: "document_tokens"
 value: ["irrelevant", "data"],
 key: "relevance"
 value: 0
}

{
 key: "document_tokens"
 value: ["very", "relevant"],
 key: "relevance"
 value: 2
}

q1

doc list

d1,1

d1,2

d1,3

{
 key: "query_tokens"
 value: ["another", "query"]
}

{
 key: "document_tokens"
 value: ["irrelevant", "answer"],
 key: "relevance"
 value: 0
}

{
 key: "document_tokens"
 value: ["relevant"],
 key: "relevance"
 value: 1
}

q2

d2,1

d2,2

doc list

● Each q, d is a tf.Example and serialized as a string
● EIE is tf.Example with 2 features:

○ “serialized_context”: q
○ “serialized_examples”: [d1, d2, …]

Internal Representation: Tensor
● Tensor: multi-dim array for a batch of queries

○ [batch_size, list_size, ...]
○ [num_query, max_num_doc, ...]

● Padding is used but ignored in TF-Ranking computation

[
[relevant, not-relevant, very-relevant],
[not-relevant, relevant, padding-doc],

]

[
[1, 0, 2],
[0, 1, -1],

]

q1

q2

d1,1 d1,2 d1,3

d2,1 d2,2 N/A

Shape: [2, 3]

Supported Components
● Supports pointwise/pairwise/listwise losses

● Supports popular ranking metrics
○ Mean Reciprocal Rank (MRR)
○ Normalized Discounted Cumulative Gain (NDCG)

● Supports multivariate scoring functions

● Supports unbiased learning-to-rank

● Supports sparse/embedding features

Supported Metrics
Mean Reciprocal Rank

Average Relevance Position

Discounted Cumulative Gain

Supported Scoring Functions
● Univariate - scoring function f(x) scores each document separately (most

existing LTR methods)

● Bivariate - scoring function f(x1,x2) scores a pair of documents

● Multivariate - scoring functions f(x1, …, xm) jointly scores a group of m
documents

Supported Loss Examples (Binary Labels)
(Pointwise) Sigmoid Cross Entropy

(Pairwise) Logistic Loss

(Listwise) Softmax Loss (aka ListNET)

"An Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary Relevance"
Bruch et al., ICTIR 2019

ApproxNDCG - Ranking Metric Approximation

"A general approximation framework for direct optimization of information retrieval measures"
Qin et al., Information Retrieval, 2010

"Revisiting Approximate Metric Optimization in the Age of Deep Neural Networks"
Bruch et al., SIGIR 2019

TF-Ranking Ecosystem

CPU GPU Android iOS ...

TensorFlow Distributed Execution Engine

C++ OpsPython Ops ...

tf.data

datasets Ranking Building Blocks

TensorFlow CoreLayers Feature Columns

Feature
Transforms

Scoring
Function

Model BuilderRanking
Head

losses metrics

44

TF-Ranking Architecture

45

Empirical Results

Datasets

Dataset # queries

MSLR-Web30k ~30K Public Search dense features

MS-Marco ~800K Public Q&A sparse features

Quick Access ~30M Internal Recommendation dense features

Gmail Instant
Search

~300M Internal Search dense features
sparse features

Quick Access: Recommendation in Google Drive

48

Gmail Instant Search

49

MSLR-Web30k

NDCG@5

RankNetRankLib 32.28

RankSVMRankLib 33.74

MARTRankLib 43.54

λMARTRankLib 44.50

λMARTLightGBM 49.20

Softmax CE w/
GSF(m=32)

44.42

ApproxNDCG 45.38

(a) Comparison w/ other LTR models (b) The effect of the group size

Preliminary Results on MS-Marco

Embedding Embedding

Query Document

Self Attention Self Attention

Attention

Concat

Dot Product

Feed
Forward

● TF-Ranking enables faster iterations over
ideas to build ranking-appropriate modules

● An early attempt is illustrated to the right
○ Trained with Softmax Cross Entropy (ListNet) loss, it

achieves MRR of .244 on the (held-out) “dev” set.
■ [Official Baseline] BM25 -- .167
■ [Official Baseline] Duet V2 -- .243
■ Best non-BERT result -- .318

Quick Access

Quick Access ΔMRR ΔARP ΔNDCG

Sigmoid Cross Entropy
(Pointwise)

– – –

Logistic Loss (Pairwise) +0.70 +1.86 +0.35

Softmax Cross Entropy
(Listwise)

+1.08 +1.88 +1.05

Model performance with various loss functions

"TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank"
Pasumarthi et al., KDD 2019

Gmail Search

Gmail Search ΔMRR ΔARP ΔNDCG

Sigmoid Cross Entropy
(Pointwise)

– – –

Logistic Loss (Pairwise) +1.52 +1.64 +1.00

Softmax Cross Entropy
(Listwise)

+1.80 +1.88 +1.57

Model performance with various loss functions

"TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank"
Pasumarthi et al., KDD 2019

Gmail Search: Incorporating Sparse Features

Gmail Search Dense Features (ΔMRR) Dense + Sparse Features (ΔMRR)

λMART 0.0 --

Softmax CE w/ GSF(m=2) +0.3 +2.4

λMART + Softmax CE w/
GSF(m=2)

+0.95 +3.42

Model performance as compared to LambdaMART

"Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks"
Ai et al., ICTIR 2019

Hands-on Tutorial

Steps to get started
● Go to git.io/tf-ranking-demo
● Open the notebook in colaboratory

○ Make sure the URL starts with “colab.research.google.com”

● Click “Connect” to connect to a hosted runtime.
○ This is where the code runs, and the files reside.

● Open “Runtime” and select “Run All”
● Scroll down to the section on “Train and evaluate the ranker”, to see the

training in execution

http://git.io/tf-ranking-demo

git.io/tf-ranking-demo

http://git.io/tf-ranking-demo

TF-Ranking Architecture

58

"Course Homework"
● Try running the colab with a different loss function

○ Use one of the losses listed at: git.io/tfr-losses
○ Advanced: Implement your own custom loss function

● Try running with an additional metric
○ You can use Average Relevance Position, listed at: git.io/tfr-metrics
○ Advanced: Implement a metric that is a linear combination of two existing metrics

● Explore different neural networks for scoring function
○ Increase the number of layers: when does it start to overfit?

● Try running TF-Ranking on your ranking problem
○ Let us know your experience by filing an issue on github!

http://git.io/tfr-losses
http://git.io/tfr-metrics
https://github.com/tensorflow/ranking/issues

