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Tomáš Kozelek

Methods of MCTS
and the game Arimaa

Department of Theoretical Computer Science
and Mathematical Logic

Supervisor: RNDr. Jan Hric

Study program: Theoretical Computer Science

2009



On this place I would like to thank to the supervisor of my thesis for all the time spent
at consultations, for relevant comments and for many corrections he did in the course
of the work on the program and in the thesis itself. Also I would like to thank to all of
my friends who gave me inspiring ideas and to my family for their support.
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Abstract:
Game of Arimaa is an artificially created strategic board game with the purpose to be
difficult for computers. A vast majority of introduced computer engines for Arimaa
are based on successful approaches from chess, namely the minimax algorithm with αβ
pruning and further extensions. In this thesis we have analyzed the applicability of the
so called MCTS methods in the game of Arimaa. MCTS methods are a state-of-the-art
approach to the computer Go with bright prospects in other strategic games as well.
We have implemented a MCTS based Arimaa engine called Akimot and adapted the
MCTS techniques for the Arimaa environment. We have experimented with various
MCTS enhancements known from computer Go and identified which are prospective in
our setup. Moreover, we have proposed several new enhancements on ourselves. Per-
formance experiments show that our MCTS approach is comparable to an average αβ
engine.
Keywords: Arimaa, MCTS, Monte Carlo, UCT, Go
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Abstrakt:
Arimaa je strategická hra vytvořená za účelem být obzvláště těžká pro poč́ıtače. Většina
existuj́ıćıch programů hraj́ıćıch hru Arimaa je založena na ověřených postupech z pro-
blematiky poč́ıtačových šach̊u obzvláště pak na αβ prořezáváńı s rozš́ı̌reńımi. V této
práci jsme se zaměřili na prostudováńı použitelnosti MCTS technik ve hře Arimaa.
MCTS techniky jsou momentálně nejlepš́ı známé algoritmy pro poč́ıtačové Go s dobrými
vyhĺıdkami i v daľśıch strategických hrách. Naprogramovali jsme poč́ıtačového hráče
založeného na MCTS, kterého jsme pojmenovali Akimot. V naš́ı implementaci jsme
přizp̊usobili známé MCTS postupy pro prostřed́ı hry Arimaa. Provedli jsme experi-
menty s r̊uznými vylepšeńımi známými z poč́ıtačového Go a určili jsme, které z nich
jsou použitelné v naš́ı implementaci. Nav́ıc jsme navrhli a otestovali několik vlastńıch
rozš́ı̌reńı. Experimenty ukázali, že náš MCTS program je srovnatelný s pr̊uměrným αβ
programem.
Kĺıčová slova: Arimaa, MCTS, Monte Carlo, UCT, Go
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Chapter 1

Introduction

1.1 Thesis Preview

In this thesis, our goal is to apply MCTS1 techniques in the game of Arimaa. These
algorithms proved to be very successful in computer Go and we would like to check
what potential they have in a different field.

Chapter 1 provides an introduction to the game of Arimaa and MCTS techniques in
general and presents the research guideline of the thesis.

Chapter 2 outlines why Arimaa is difficult for computers and introduces existing ap-
proaches to the game, their (dis)advantages, their limitations and their success.

Chapter 3 lays out basic principles of MCTS methods, mentions some known enhance-
ments that have been proposed and tested mostly in the domain of computer Go
and elaborates on their applicability in Arimaa.

Chapter 4 explains how we have built up our MCTS engine for Arimaa and what
enhancements we have used.

Chapter 5 shows results of experiments we have performed.

Chapter 6 discusses the achievements and future work.

Appendix A gives the user documentation for the project

Appendix B provides the glossary

1.2 Arimaa - The Game of Real Intelligence

The game of Arimaa was created in 1997 by Omar Syed and his son Aamir (Arimaa = A
+ reversed(Aamir)). The main impulse for Arimaa creation was the famous Kasparov
- Deep blue match (see [1]). This was a triumph for computers in the field of chess

1Monte Carlo Tree Search
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programs, a huge milestone in the field of Artificial Intelligence. However, many com-
puter scientists believe that brute-force approach combined with very capable hardware
is far from what Artificial Intelligence should be about. Omar is one of them and he
decided to prove his point by creating a game that might be played with a standard
chess set and is easy to learn and play well for humans but which is far more difficult
for computers than chess is (see [2]).

To boost the bot development Omar offered a financial prize of 10,000 USD for the
first computer program to beat a human champion in an annual match. Even though
this challenge has been held for 6 years now, the prize still hasn’t been claimed. Time
has proven that the game of Arimaa is not only deep, interesting game for humans but
also a challenging problem for computers.

1.3 The Rules of Arimaa

Arimaa is a two player zero sum game with perfect information played on the 8x8
board. Players are called Gold and Silver and each of them possesses 16 pieces in the
beginning of the game. These are (ordered from the strongest to the weakest): 1 x
elephant (E), 1 x camel (M), 2 x horse (H) , 2 x dog (D), 2 x cat (C), 8 x rabbit (R).
One letter shortcut expresses both piece and the color of the player - uppercase for the
gold player and lowercase for the silver player.

The game starts by setting up the pieces in the player’s two closest rows. The initial
set up of the pieces is not prescribed. See Figure 1.1 for one possible initial setup. The
goal of the game is to transport one of the 8 weakest pieces (rabbits) to the most distant
row. The most elementary movement is called the step. All pieces are allowed to make
the same steps: 1 square to the left, right, front or backwards. Only rabbits are not
allowed to step backwards.

A player’s turn (also called a move) in the game of Arimaa consists of up to 4 steps.
These might be distributed among different pieces. There are three kinds of steps:

single step Move one piece to a neighboring square.

push Push a weaker piece out of the way and move on its place. The player who is
performing a push selects (an empty) intersection to which is the opponent’s piece
pushed.

pull Move to a neighboring square and pull a weaker piece along.

Pushes and pulls count as 2 steps (both the opponent’s and the friendly piece are
moved). Pushing and pulling simultaneously is forbidden. When a piece is adjacent to
a stronger opponent piece then it is frozen and it cannot move, unless it is also adjacent
to a friendly piece (it is supported).

There are 4 special squares on the board. These are called traps and are positioned
at c3, c6, f3, f6. If there is a piece on the trap square and it has no supporter
(adjacent friendly piece), then this piece is trapped and it is removed from the board.
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Figure 1.1: One possible initial setup. Figure 1.2: Example position.

Notation for writing down the moves in Arimaa is as follows. All the steps in a
move are written in a row separated by whitespace. Every step is written in the form
(one letter for piece and player)(row coordinate in alphabet)(column coordinate as a
number)(letter “x” if the piece is trapped, or a first letter of step direction - North,
East, South, West ). For example, move Rf2n Rf3x ee2e rh8s can be interpreted as
follows: the silver elephant at e2 pushes the rabbit at f2 to the north where the rabbit
dies in the trap, afterwards the silver rabbit moves from h8 to the south. First the result
of the push is written down (the elephant cannot actually go to the rabbit’s location
because it is not empty). Rf2n says rabbit (it is a gold rabbit because R is written in
uppercase) from f2 moves north. Rf3x means the gold rabbit at f3 dies. ee2e expresses
that the silver elephant from e2 moves to the east (that caused the push). The move
ends with the silver rabbit moving from h8 to the south (rh8s). The silver player can
still make one single step (the total count of his steps so far is 3), but he used his right
to pass and let the opponent play.

In the example position displayed in Figure 1.2 the following holds:

• Possible moves for Gold include: Mg1n Mg2n df4s df3x Hg4w, Db1n Db2s Rc2w,
Ec4e rc5s rc4s rc3x Ed4w.

• Pieces rc5, df4 are frozen.

• Rabbits cannot move backwards, therefore Rh3s is an illegal step, but rabbits can
be pushed backwards by opponent’s pieces – for instance rc5n Ec4n is a legal
step.

• Pieces rc5, df4, cb6 might be trapped when it is Gold’s turn to move. For
instance the move rc5e Ec4n cb6w cc6x Hb5n traps the cat cc6.

• Piece Rf2 might be trapped when it is Silver’s turn to move.

Instead of using all 4 steps in a move, player might play pass and discard the rest
of his move. Position repetitions in Arimaa are handled by the following rules:
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• pass: Position after the move must be different from the position before the move.
Therefore playing pass as a first move counts as a loss.

• 3 times repetition: Repeating position for a third time means a loss for the player
who performed the move.

There are three ways how to win the game:

• goal: If one of the 8 rabbits is on the last row at the end of the move, then its
owner wins the game.

• elimination: If all of a player’s rabbits are eliminated then this player loses the
game.

• immobilization: When a player has no legal move to play, he loses the game.

Detailed rules description can be found in [3].

1.4 MCTS motivation

Computer Go has always been considered one of the grand challenges to the Artificial
Intelligence. While computers have been conquering the world of chess, top Go playing
programs have been struggling around the level of lower intermediate human player.
Detailed elaboration on why Go is much more difficult for computers is given in [4].

In 2006 new and interesting approaches to the domain of computer Go emerged and
situation has evolved notably since then. These algorithms are referred to as MCTS
(Monte Carlo Tree Search) and are based mainly on statistical sampling of the position
and selective iterative search. Since 2006 there has been a boom of MCTS based
Go programs pushing the bar of programs’ strength higher and higher resulting into
some surprising achievements against human players. In principle MCTS methods are
applicable to a wide variety of problems, however, so far relatively little effort has been
put into trying out these algorithms outside of their flagship – the computer Go. For
consistency we mention the successful applications of MCTS methods in the following
games: Lines Of Action, Amazons, Hex.

1.5 Research guideline

Guideline according to [5].

1.5.1 Objectives

• To propose and implement MCTS integration in a bot playing the game of Arimaa.

• To identify ways of improving MCTS algorithms which work in Arimaa.

• To check whether MCTS might be successful in a game dissimilar to the game of
Go.
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1.5.2 Research Questions

• How the Monte Carlo playouts must be rebuilt to be applicable in the game of
Arimaa?

• Which of the proposed improvements to the MCTS algorithms are domain inde-
pendent?

• Is there a potential for MCTS algorithms in Arimaa to start the kind of revolution
they did in computer Go?

1.5.3 Hypotheses

• Monte Carlo playouts used “as is” from the game of Go will provide a weak
Arimaa player.

• Standard improvements from computer Go will improve the MCTS Arimaa player
as well.

• MCTS Arimaa player might be competitive to the existing αβ searchers.

9



Chapter 2

AI in Arimaa

2.1 Why is Arimaa difficult for computers

There are several reasons why Arimaa is difficult for computers:

Huge branching factor
Arimaa was intentionally created as a game with an enormous branching factor.
While in chess the number of moves in an average position is around 35, in Go it
is around 200, in Arimaa this number rockets to 17,000 unique moves on average
and in complicated middle game situations up to 50,000 unique moves (see [6]).
One might argue that such a huge branching factor is a very limiting issue for
humans as well. However, humans approach to the game is not as sensitive to the
branching factor as the brute force approach, which proved successful in chess.

Stability
Tactical combinations are much less common than in chess. There are mainly
two reasons for this: the fact that a move consists of 4 steps and the absence
of “long shooting” pieces. The game of Arimaa might be played in such a way
that the winner is decided based on the ability of longterm planning rather than
snatching a tactical combination. This longterm planning is a huge weapon in
the hands of the humans who can beat computers with systematic cumulation of
little strategic advantages.

Position evaluation
Static evaluation of position in Arimaa consists of many aspects and a good
evaluation function is not as straightforward as it is in chess. Not only material
balance but also trap control, local piece domination, mobility, rabbits’ advances,
hostage situations, etc. must be taken into account. Arimaa tactics and strategy
are closely related to building a good evaluation function and are described in
[7]. Precise implementation of evaluation function is often the result of a long
hand-tuning process. Attempts to use automatic parameters tuning techniques
to increase the accuracy of the evaluation function unfortunately have failed so
far (see [8]). On the other hand, use of the static evaluation function is still way
more successfull in Arimaa than in Go.
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Opening
Initial positioning of pieces is not prescribed which virtually makes opening books
obsolete. It has not been agreed on yet which opening setup is the best (or if there
exists such a concept at all).

No endgame
While in chess or Go the position usually gets simpler when approaching the end
of the game, this might well not be the case in Arimaa where most of the games
are decided in the late middle game.

2.2 Algorithms

Variety of approaches have already been tried in Arimaa. Sadly from the AI point of
view, those which succeeded are basically “good old” brute force algorithms from chess
adapted to a new environment. Specifically this is a well-known model of full-width tree
search done by the Minimax algorithm with αβ pruning and static evaluation in the
leaves. Naturally, many enhancements (also known from the domain of chess programs)
have been implemented on various levels of abstraction in this model. For instance:

• Transposition tables with Zobrist hashing for avoiding re-evaluation of previously
encountered positions.

• Killer moves and history heuristic for effective information sharing in the tree.

• Search extensions for extending the search into “silent positions”.

2.3 Peculiarities of Arimaa

Compared to chess there are several (sometimes intentional) further peculiarities that
must be dealt with in the computer approach to Arimaa.

Multiple steps in a move
First programs playing Arimaa have taken the so called move-based-approach -
i.e. generating all possible unique moves from the position and evaluating them.
As it was mentioned, due to the large branching factor this option has proved
to be infeasible. Therefore, the step-based-approach has been widely adopted. In
this scenario, programs iteratively generate all legal steps from the position. In
combination with αβ pruning this approach is much more efficient than the one
mentioned previously.

Frequent repetitions
Different moves (step sequences) might lead to the same positions. Actually, the

ratio unique positions
all positions after a single move is relatively small. This issue is tradi-

tionally handled by Transposition tables. However, in the step-based-approach it
is desirable to refine repetitions handling in a more effective manner – many step
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sequences can be pruned quite early. A nice solution to this called “step combo”
was provided in [8].

Reversible moves
From the nature of the game the following scenario is possible: in position P1,
player 1 makes a move A resulting in position P2, player 2 makes a sequence of
steps (less than 4) resulting in position P1 (he has reversed the position) and then
he can make some extra step(s). The effect is the same as if player 1 discarded
his move (A is called a reversible move) and player 2 played 1 or more steps
for free. Clearly this often leads to an advantage for player 2. Existing programs
(being deterministic searchers) often do have issues with this phenomena and may
stubbornly play reversible moves several times in a row while the other player is
cumulating advantage.

2.4 Existing programs

A spot where virtually all Arimaa games are played is the online gameroom1. Both
bots and humans compete in here. A variant of ELO rating system is used for player’s
evaluation. There are currently a few programs with rating over 1800. All of these are
principally very similar (all based on αβ model) and any of them might be considered as
a reasonably strong player. Moreover, in blitz games some of these have rating around
2000. This corresponds to a strong human player. For comparison, strongest human
players are rated around 2450.

Top programs include:

• Bomb by David Fotland

• Clueless by Jeff Bacher

• Gnobot by Toby Hudson

• OpFor by Brian Haskin

So far only two programs have earned the right to represent computers in the annual
Human - Computer Arimaa challenge. These are bot Bomb (computer champion in
2004-2008 see [9]) and bot Clueless (computer champion in 2009). Hardware for Arimaa
challenge is selected by Omar Syed, inventor of the game, and usually it is a piece of
hardware you can buy for around 1,000 $. Accumulated score for 6 years of the challenge
is 47:5 for humans including games with handicap (also not always top humans played
against challenging bot). This clearly shows current human dominance in the game.

1http://arimaa.com/arimaa/gameroom
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2.5 Limitations

While top Arimaa programs have already achieved relatively high level of play, still top
human players are able to defeat them even with big handicaps (e.g. giving the handi-
cap of a dog, a horse, or even a camel). The reason for this is that human players have
learned how to steer the game into a rather peaceful flow avoiding complicated tactical
fights and slowly cumulating little advantages. Unless computers make a significant
progress in longer planning issues (or are given much stronger hardware), their com-
puting capabilities will be defeated by human reasoning abilities and Arimaa branching
factor.
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Chapter 3

MCTS

3.1 Origin

One of the greatest obstacles for building a decent computer program playing the game
of Go has always been an evaluation function. An interesting alternative to this was
proposed in 1993 in [10]. The described method (called Monte Carlo) works as follows:

1. Play a pseudo-random game (also called a playout – see Appendix B) from the
given position – there is only one restriction on move selection in playouts: filling
one’s own eyes1 is prohibited (otherwise the game could be infinite).

2. In the end of the game (no move is possible) compute the result (per player:
number of stones played plus surrounded intersections).

3. Save the result of the game and repeat.

4. Use the mean from accumulated simulations as a position evaluation.

This way, an estimate on winning probability for both players is obtained. Sur-
prisingly, this estimate proved to bear some promising accuracy potential, especially in
positions where strategy thinking was of higher importance than tactical thinking (i.e.
opening). In the same paper, the method was naturally extended into a complete Go
playing engine:

1. Keep performing Monte Carlo playouts from starting position till time is up. For
every simulation update the result bound to the first move in the simulation.

2. In the end, return the move with the best estimate on winning probability.

Tests on 9x9 board performed in [10] showed that such a Go playing engine was
better than a human novice (around 25kyu ) even with a very few simulations per move.
An important fact to note is that this approach uses virtually no domain knowledge.

1see Appendix B
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3.2 Overview

Monte Carlo approach to computer Go was revisited around 2005. While Monte Carlo
playouts proved to be an interesting idea on evaluation of Go position, a program based
solely on this principle was giving quite poor results and didn’t scale well (after around
5000 simulations, the search reached a plateau and didn’t progress any further). An
elegant idea was proposed: moves that have better results from simulations than others
should be allocated more “attention” (more simulations) than others. This approach
can be applied iteratively, resulting in the following algorithm outline:

1. Start from the root node (representing the current position).

2. Traverse the tree in the best-first manner (according to a specific exploration
formula) down to a leaf.

3. If in a leaf node and few simulations have gone through this node then expand
the node.

4. Perform the Monte Carlo simulation from the leaf node and backpropagate the
result of the simulation.

Figure 3.1: MCTS scheme.

This way, an asymmetric tree (in the sense that some branches are deeper and more
explored than others) is built up and kept in the memory. A scheme of this algorithm
frame is depicted in Figure 3.1 taken from [11].

The core of the presented pseudo-algorithm lies in the exploration formula. The initial
phase of research in the field of MCTS in computer Go was boosted by the utilization of
results from the mathematical games theory, particularly multi-armed bandit problem.
The motivation behind this is that the node N in the search tree together with its
children Ni where i = 1, . . . , n represents a singe multi-armed bandit B. The children
of the node N are the arms of the bandit B. This way the whole search tree is made
up of independent bandits.
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A deterministic algorithm UCB1 for playing a multi-armed bandit was presented in
[12]. Its principle is the following:

1. Play each arm once.

2. Play the arm maximizing the formula X i +
√

2 log n

ni

where X i is an average value of the arm i.
n is the total number of games with the bandit
ni is the number of games when the i-th arm was played

This strategy is believed to balance the exploration and exploitation of bandit’s arms
well. Moreover, UCB1 is proved to provide a logarithmic regret (regret is an expected
loss after n plays caused by the fact that the algorithm does not play the optimal arm
consistently). This is a very desirable property considering that previously proposed
strategies usually operated with a linear regret.

In [13] Kocsis et al. have refined the multi-armed bandit problem applied to the
minimax-like trees. They have shown that under certain assumptions (that values of
nodes in the tree are independent) applying UCB1 formula to tree-like organized multi-
armed bandits provides an asymptotically optimal exploration-exploitation strategy (it
converges to minimax algorithm). They named the algorithm UCT 2.

However, theoretical fundings for the application of the theory developed by Kocsis
et al. to the game of Go might be inaccurate. The arms of the bandits (the moves) in
Go are NOT independent (as demanded by Kocsis). There are dependencies both in
the single node (for instance the locality factor in the given position) and also across
multiple nodes (the same move might be good in different positions). However, the
first experimental results in Go given by UCT combined with Monte Carlo playouts
(see [14]) have proved to be excellent and laid out a foundation for further intensive
research in the area.

UCT is quite different from standard tree search methods (i.e. αβ). In comparison
to these, both pros and cons can be observed.

Pros:

• It is an anytime algorithm.

This is a very desirable property especially in playing a board game with limited
time. αβ searchers usually perform iterative deepening to achieve similar effect.

• It handles uncertainty in a natural manner.

The algorithm reacts very smoothly to the fluctuations of estimates of the node
values. In the beginning of the node’s “life-cycle”, exploration is dominant and
all its children (arms of the bandit) get played several times. However, with the
rising number of node visits it is quite likely that several (sometimes only one)

2Upper Confidence bound to Trees
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children with superior performance are found and they are granted majority of
attention. Given a sufficient amount of time, values estimated by this process
should converge to the same results as found by the Minimax algorithm.

• It automatically generates an asymmetric tree.

Promising lines of play are allocated more attention and thus they are getting
explored deeper. On the other hand, subtrees with uninteresting moves in the
root remain quite shallow. A lot of time is saved for the exploitation of good
moves, on the other hand, good variations starting by unpromising-looking moves
might remain unexplored.

Cons:

• It is weak in tactical combinations.

This is quite a serious disadvantage. αβ searchers are from the nature of the
Minimax algorithm extremely good at revealing tactical shots. On the other
hand, UCT tree search might simply “overlook” a deeper tactical combination
because it doesn’t allocate enough resources to a seemingly unyielding move near
the root.

• It is “slower” than αβ.

In contrast to evaluate-one-by-one-node strategy of αβ searchers, UCT tree search
has to descend deep down to the tree to perform the evaluation. Descending
through the tree is a relatively costly operation - exploration formulas for children
of all nodes along the way to the leaf must be computed and compared. On the
other hand, UCT descent is a much smaller computational burden than Monte
Carlo playouts.

• The whole tree must be kept in memory.

This is somehow similar to the human approach to the board game playing. Yet
it imposes further requirements on the computer memory and indirectly also on
the processing power.

3.3 Enhancements

While UCT algorithm with Monte Carlo playouts has shown promising performance it
is just a starting point for numerous extensions. A collection of these extensions and
variants of UCT algorithm is often referred to as MCTS3 methods. Many of current top
Go playing engines are commercial and source-closed. Thus it is perfectly possible that
enhancements mentioned below have already been further developed or even replaced
by more sophisticated solutions. For instance it is well known that MoGo, one of the top
Go programs with very stable performance have stopped using UCB-like exploration
formulas (formerly believed to be one of the pillars of the MCTS techniques) quite some
time ago.

3Monte Carlo Tree Search
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3.3.1 The notion of learning in UCT

The act of choosing the best move in a given position can be looked at as a process
of learning the values of moves and selecting the move with the best value. There are
three core elements in this learning process:

Online learning is the MCTS algorithm itself – approximating the distribution of the
values of the moves by Monte Carlo simulations in the asymmetrically growing
tree.

Offline learning represents inputing the domain knowledge to bias the playouts or
node initializations in the tree.

Transient learning 4 corresponds to applying values learned in a particular position
on similar positions as well. More on this topic is given in §3.3.4.

3.3.2 Core algorithm improvements

While UCB1 is proved to have logarithmic regret and is very desirable from this point
of view, improved strategies with better actual performance have been introduced. One
of these is UCB-tuned which works as follows:

1. Play each arm once.

2. Play arm maximizing the formula Xj +
√

log n

ni

min{1/4, Vi(ni)}

where Vi(s) =

(

1
s

s
∑

k=1

X2
j,k

)

− Xj,s +
√

2log n

ni

Vi(s) is an estimate on upper bound of variance of arm i.

The demand of UCB-like strategies to play each arm once in the beginning is quite
limiting. This might be an issue, especially if a good arm is discovered quickly and
could be given more attention. Therefore the notion of FPU (First Play Urgency) was
introduced. FPU is a global constant whose value was empirically set around 1.1. Value
of the arm is decided as follows:

vali =

{

FPU if ni = 0
Xi if ni > 0

This way a good arm might be played several times in a row even though other arms
haven’t been played at all yet. While this technique improved performance of early
UCT engines it became rather obsolete with the introduction of more sophisticated
methods for initialization of a node’s value (e.g. progressive bias introduced in [15]).

4we refer to this one as information sharing as well
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3.3.3 Domain knowledge application

UCT algorithm contains practically no domain knowledge at all (beside the moves gen-
eration and “don’t fill the eye” rule in playouts). However, very soon it was discovered
that adding the domain knowledge might significantly improve the strength of a MCTS
player. Two questions appear:

Where to apply the knowledge?
There are two obvious slots where applying the knowledge could be appropri-
ate. In the tree or in the playouts (these are referred as heavy playouts then).
There is a reasonable argumentation for using the knowledge both in the tree
and in the playouts. Knowledge in the tree works relatively close to the root and
should help to quickly filter out bad moves. On the other hand, if there was very
heavy knowledge in the playouts and the playouts were close to the perfect play
then it would be enough to perform a single playout to estimate the given position.

An investigation on this issue is provided in [16]. The result of this survey sug-
gests that the highest efficiency was reached with best-of-N 5 heuristics in playouts.

The system of simple patterns in the playouts proved to be very successful as
well. This improvement is suggested in [17] and it is believed it was one of the
reasons of initial MoGo domination in the field of computer Go. There are several
small patterns (size 3 x 3) where every intersection has one of the values : empty,
black stone, white stone, don’t care. A move which fits the pattern is likely to be
selected in the playout.

In the case of applying the knowledge in the tree it is desirable to use the of-
fline learned value in the beginning of the node’s existence but when the number
of simulations through this node gets higher it is desirable to shift to using the
online learned value. Interesting methods on how to apply the knowledge in the
tree were proposed in [15]. These are called progressive bias and progressive un-
pruning and they provide a smooth transition from the offline learned value of
the move to the online estimate given by the UCT algorithm.

What kind of Go knowledge to use?
This is tightly connected to the previous question. In the tree, relatively slow
methods for pattern matching and shape recognition might be used without a
significant slowdown. On the other hand, current mainstream puts pressure on
keeping the Monte Carlo playouts very fast thus the knowledge used in them is
relatively simple.

A natural attempt was made in [18] to train a simulation policy by the means of
reinforcement learning of linear combinations of binary features. Computer Go
player based on this trained policy outperformed by far both random policy and

5heuristically best move from N random moves is selected
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handcrafted policy in the tournament of standard game of Go. However, results
from using the learned policy in playouts were rather poor compared to the hand-
crafted policy. This revealed a strange paradox when a correlation between the
success of policy in playouts and the strength of the policy as a standalone player
is rather unclear.

Many researchers found using handcrafted domain knowledge superior to gen-
erating the knowledge automatically. On the other hand, a successful method of
automatic knowledge extraction in the context of MCTS methods was presented
in [19]. A set of fixed binary features is introduced (e.g. is a given move extension,
is it an atari6, is it close to the last move, . . . ). Every pattern is given an ELO-
like rating expressing the chance of a move being played if it satisfies the feature.
These values were automatically harvested from the games of strong players. A
move can then be thought of as a team of these patterns and its estimated value is
a joint value of its patterns. Experiments with using this approach for generating
the knowledge in both the tree and the playouts were made and they proved to
raise the level of the Go playing engine significantly.

3.3.4 Transient learning

Motivation

Information sharing mechanisms have proved to be significant performance boosters
in tree search algorithms. In αβ approach probably best-known are killer moves and
history heuristic techniques (see [20]). Both of these are used successfully in the state-
of-the-art Arimaa engines. On the other hand, transient learning solutions have been
proposed and implemented for MCTS methods as well. While in αβ searchers all
sharing happens on the tree level, in MCTS the sharing process might take place on
up to 4 different levels - depending on where the information is gained and where it
is used. In this manner, the tree-playout level means that information is gained in the
tree (from the cumulated statistics of the move/position) and is used in the playout
(for selecting the next move to be played). So far the transient learning mechanisms in
MCTS have proved to be useful on following levels (for every level an example follows):

tree-tree level The grandfather heuristic introduced in early MoGo. A node was
initialized with the value of its grandfather (following assumption that the move
which is good will be on average good even after another move is played).

tree-playout level History heuristic as described in [21]. A table with the number of
“UCT wins” (how many times a move was selected in a UCT descent) is kept in
first order and second order (reaction to another move) manner. These statistics
are then used in the playout for selecting a move (first order) or making a reply
to opponent’s move (second order). A similar approach to history heuristic is
mentioned in [22].

6see Appendix B
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playout-tree level UCT-RAVE mechanism discussed below.

UCT-RAVE

The drawback of the UCT algorithm is that it must sample every child of a particular
node many times before it is able to produce a low-variance estimate on the value of
the action leading to that child. This might result in a slow online learning process.
An elegant solution to this was proposed in [18] and is called UCT-RAVE7. Normally,
when UCT performs a simulation from a particular node (here simulation means both
the Monte Carlo Simulation and continuing UCT descent in the tree) only the child
representing a first move of the simulation is updated. However, already in [10] an
AMAF 8 heuristic was mentioned. The trick is to consider all subsequent moves in the
simulation starting from a certain node as if they were played first. The basis of such a
heuristic is that in the game of Go many sequences might be transposed without losing
the meaning behind the moves.

UCT-RAVE is an extension of AMAF in the UCT framework. The idea is the
following:

• Keep RAVE statistics in every node (RAVE-value, RAVE-visits) besides standard
UCT statistics.

• After every simulation from the node update the RAVE statistics for all children
which had their move played in the simulation. RAVE statistics are updated in
the very same way as UCT statistics.

• When selecting a move for descent, combine both UCT and RAVE statistics of
the move. This is done in such a way, that when a number of visits to the node is
small more weight is given to the RAVE estimate and as the number of the visits
to the node is increasing the weight is continuously shifting to the UCT estimate.

UCT and RAVE estimates are combined as follows:

QUCT−RAV E(s, a) = β(QRAV E(s, a)) + (1 − β)(QUCT (s, a))

β =

√

k

3n(s) + k

where β is a balancing element with k being an equivalence parameter guiding the shift
of weight from RAVE estimate to UCT estimate.
QUCT is the UCT exploration formula as given above. QRAV E(s, a) = XRAV E,a +

c
√

log m(s)
m(s,a)

is RAVE exploration formula (more than resembling the UCT one)

XRAV E,a is a mean RAVE value of action a in the state s
m(s) is number of RAVE visits to the state s
m(s, a) is number of RAVE visits to the state resulting from s by making an action a.

7Rapid Action Value Estimation
8All Moves As First
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RAVE provides a biased estimate of the node’s value, however it is more accurate
in the beginning of the node’s existence than UCT estimate. In its first application in
MoGo it was documented to significantly improve the performance against the bench-
mark engine GnuGo (66% of wins with RAVE vs. 24% of wins without). Nowadays
RAVE is considered a “must-have” extension of a strong MCTS Go engine.

3.3.5 Parallelization

It was independently shown in several sources (for instance [14], [11]) that increasing
the number of simulations significantly improves the MCTS player. In [11] an outline
was made that doubling the number of simulations adds 50 ELO points of strength
to the engine. Such a scalability poses a strong motivation for parallelization of the
algorithm. Several models for parallelization have been proposed (see [11] for further
descriptions and benchmarks).

Leaf model
Control thread descends through the UCT tree to the leaf from where work threads
perform Monte Carlo simulations. This is a very straightforward and easy to
implement model. The drawback of this model is the inefficiency of resources
allocation - too much processing power might be concentrated to unpromising
moves.

Root model
Every thread works separately in its own tree. When the time is over all the
created trees are merged and results for particular nodes are summed up. This
model is also very simple to implement yet the results it yields are satisfactory.
Surprisingly when the number of threads is relatively small (<= 16) this model
performs better than hypothetical N times speedup model. A possible explanation
for this phenomenon is that spawning several independent trees and merging them
in the end helps the algorithm to escape from a local optimum.

Tree model
Multiple threads work on the single tree. There are two variants of locking: global
mutexes and local mutexes. The performance of the first one stagnates already
with a few threads, as most of the threads are waiting for the lock. In the second
variant particular nodes are locked which provides a decent performance.

Simulation Servers model
This is a variation of the leaf model designed for a cluster of machines connected
via LAN. A control thread descends the UCT tree to the leaf and launches the
work threads. However, opposed to the leaf model, the control thread performs a
new update and a UCT descent when any of the workers finishes.

22



3.3.6 Optimization

Many methods for optimizing the speed of simulations or tree navigation have been
proposed. These include efficient representation handling (for instance in computer
Go the term of pseudo-liberty was introduced to quickly handle the capture threats
in Monte Carlo playouts), pre-computations of functions (log, sqrt functions in the
UCT tree) or children caching. Children caching is a simple yet effective heuristic used
during the UCT descent in the tree. A few best children are “cached” in every node and
during the descent the best one is selected from these. After some particular amount
of descents goes through the node the cache is “flushed” and new nodes are selected
to populate the cache. This simple technique when tuned well, provides a reasonable
speedup of descents in the UCT tree without losing the accuracy of node selection.
On the contrary this principle must be further tuned for use in a parallelized engine -
number of threads should influence amount of descends before the cache flushes (the
more threads the shorter the time before the cache flushes).

3.4 Performance

Whereas Go is usually played on the board of the size 19x19, in principle it can be
played on the board of an arbitrary size. Especially 9x9 and 13x13 have become very
popular in the Go community. Even though playing Go at 9x9 board is believed to be
several orders of magnitude simpler than playing Go at 19x19, computer Go programs
have never reached reasonable level at 9x9 either. Until MCTS programs appeared.
Taking into account computational demands of MCTS, it was only natural that the
first MCTS programs have focused on the domain of 9x9 computer Go. Very soon 9x9
MCTS engines surpassed the traditional Go programs. In 2006 at the computer Go
Olympiad in Turin, CrazyStone engine started an uninterrupted golden medal streak
of MCTS programs at 9x9 Go. Traditional approach to 19x19 was defeated one year
later by MoGo taking a gold medal at the Olympiad in Amsterdam.

The strength of MCTS programs is nowadays generally considered superior to the
strength of other approaches. Lately, questions have started to arise whether MCTS
is a long-searched-for “holy grail” of computer Go. The one that allows computers to
match (and overcome) the skills of humans (see [23]). Several prestigious matches have
already been organized. The results show that MCTS programs are more or less equal
to the very strong players in the 9x9 domain but need at least 7 handicap stones in
the 19x19 domain. The list of all matches between humans and computers is available
at [24]. Programs playing in these challenges are usually massively parallelized – for
instance MoGo traditionally runs on Dutch computer cluster called Huygens (having
allocated around 600 - 1000 cores) in serious matches.

Top MCTS programs include:

• CrazyStone by Remi Coulom First MCTS winner of 9x9 computer Go olympiad
(2006). One of the strongest engines.

• Leela by Gian-Carlo Pascutto First commercial MCTS program.
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• Many Faces of Go by David Fotland Remake of famous and successful traditional
go program. Winner of 2008 computer Go Olympiad (in both 9x9 and 19x19
category).

• MoGo by Sylvain Gelly et al. Probably most “famous” MCTS engine. The team
behind MoGo is generally considered being responsible for many breakthroughs
in the development of MCTS theory.

• SteenVreter by Eric Van den Werf Winner of 2007 9x9 computer Go Olympiad.

3.5 MCTS in Arimaa

While MCTS methods proved to be very successful in the domain of Go their perfor-
mance in the game of Arimaa is questionable. Here we list potential prospects as well
as pitfalls for MCTS algorithms in Arimaa.

Prospects:

• Arimaa is supposed to be more of a strategic game.
Tactical combinations are supposed to be rather rare. This could be a good news
for MCTS searchers which are known to be weak in tactics.

• A promising profit might be gained from transient learning in the UCT tree.
A concept of transposition is very common in Arimaa. If approached properly a
lot of information might be shared across the UCT tree.

• The game is played on a relatively small board.
If we look at the Arimaa search space from the point of view of the steps then the
size of the search space approximately corresponds to the 9x9 Go, where MCTS
engines have reached the level of strongest amateur players.

Pitfalls:

• Position is much less stable than in the game of Go.
One of possible explanations of the success of Monte Carlo playouts in Go is that
it is not “easy” to ruin a good position. In other words let there be a position
where player A has (sufficient) advantage over player B. Then there is a good
chance that the game will end by a win for player A no matter of his strength as
long as B is of the same strength. This idea is further researched in [25] where
promising results are shown by learning “balanced” playout strategy rather than
strong playout strategy.

There might be an issue with this property in Arimaa. A good position in Arimaa
might be characterised for instance by achieving successful elephant blockade even
at a cost of material sacrifice. However, it is quite likely that a blockade wouldn’t
be preserved by a weak player (an analogy of random playout).
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• Position often doesn’t get simplified towards the end of the game.
MCTS Go engines are known for their close-to-perfect play in the endgame. From
the very nature of the game of Arimaa, there is no good analogy to the endgame
in Go. In equal game the position might be quite complicated when the goal is
scored.

• Knowledge encoding might be difficult.
Computer Go is quite convenient from the point of position encoding (and con-
nected to this the knowledge encoding). Patterns might be stored quite easily
and efficiently with bitsets, maintaining a set of potential moves is not an issue
as well (it more or less corresponds to the set of empty intersections), etc. This
doesn’t hold in Arimaa though. For instance checking whether a move is appli-
cable in a particular position is not trivial (trapping and freezing must be taken
into account). Step generation must be performed iteratively during the playout
– which might lead to very low ratio of playouts per second.
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Chapter 4

Akimot Approach

4.1 Overview

This chapter presents our approach to building a MCTS engine for Arimaa. We have
decided to describe the concepts and motivation for our solutions and skip the im-
plementation details. Our MCTS implementation addresses (among others) following
issues:

Board representation - What representation is suitable for our purpose?

UCT tree - How to organize UCT tree (step based or move based)? How to define
basic UCT elements (e.g. UCT descend technique, exploration formula, condition
for node expansions, etc.)? How to handle transpositions in the tree?

Playouts - How long should the playout be? How to generate steps/moves in the
playout? How to bias playouts?

Evaluation - When to evaluate the position? What should the evaluation consist of?
How to transform the evaluation result for later back-propagation?

Domain knowledge in steps - What knowledge to use and where to apply it?

Information sharing - How to share information across the tree to increase perfor-
mance?

Speedup - What parallelization model is suitable for our setup? What optimization
techniques to use?

4.2 Board representation

Good board representation is essential for any board game playing engine. Natural
demands on a good board representation are:

• quick step generation
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• small size of the board representation - This way, often used paradigm play-unplay
step might be replaced by much simpler copy board-play-drop board.

In Akimot we have experimented with two approaches to the board representation in
Arimaa.

integer board
This is a straightforward representation of Arimaa board. The board is main-
tained as an array of integers where every cell corresponds to a particular co-
ordinate of real board. It is a good practice to use one dimensional array and
recalculate the indexes if necessary instead of using a two dimensional array. We
have extended this array to contain 100 elements - 64 for board cells and 36 for
edges. This way out of board check is quite elegant. Every cell of the array holds
a single integer value determining

• whether it is an out of board cell

• whether it is an empty cell

• piece type and color of present piece

While this representation is quite easy to implement, its performance in above
criteria is rather inferior.

bitboards
An efficient representation inspired by chess programming. Board is represented
as 14 64-bit integers (bitboards) - one bitboard for every (piece type, color) pair
plus a bitboard for (all pieces, color) pair. If there is 1 at position i in bitboard
for golden cats, then there is a golden cat standing at corresponding coordinates
(typically (i/8, imod8)) on the actual board. Having an extra bitboard for all
pieces of particular color is a nice speedup trick since often it is sufficient to know
what color is the cell occupied by or whether it is empty. A nice property of this
approach is the size of the board model. Its core takes 14 × 8B = 112B which
is quite a difference compared to 100 × 4B = 400B in the case of integer board.
Detailed description of this representation is provided in [26].

Initially we have used the integer board approach because of its simplicity. However
later we decided to switch to the more efficient bitboards representation giving us more
than two times speedup in performing playouts.

Necessary part of an Arimaa engine is management of position signatures and ability to
recognize already visited position. This is also a premise for correct implementation of
3-times repetition rule (see §1.3). We followed a standard practice in handling position
signatures by using a Zobrist hash keys framework (see [27]).
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4.3 UCT tree

4.3.1 Steps vs. Moves

One of key early decisions we encountered was whether the search should be step based
or move based - i.e. whether the elementary unit in the tree represents a step or a move.
Both approaches have its specifics. Authors of traditional αβ programs generally agree
that step based method is superior. The main reason is finer granularity of the search
enabling better cutoffs and more effective iterative deepening search. In the case of
UCT, different aspects might play role as well.

move based

+ Is quite straightforward and easy to implement.

+ Transpositions can be handled already during the moves generation.

+ Might be a solution to the easy way effect (see §4.3.2).

- The shape of the UCT tree is believed to be wide and shallow with nodes having
an enormous number of children (see [6]). This is a serious obstacle because
a lot of time is inefficiently spent in UCT descents. The bottleneck lies in
UCT formula recalculations for every child of the node.

- Information sharing (see §4.7) is very difficult.

step based

- Implementation brings quite a number of obstacles (it is not MIN-MAX tree
anymore, rather MIN-..-MIN-MAX..MAX, the moves might have different
number of steps leading to a very unbalanced tree, the after-search selec-
tion of a move to be played is not as straightforward as in the move based
approach).

- Transpositions must be handled explicitly in the tree, which brings further
complications (see §4.3.4).

- UCT tree must be rather deep in certain variations in order for the algorithm
to be competitive (good players are known to look ahead at least two moves
or up to 16 steps). As known from computer Go to play moves deep in the
tree with good confidence is hard to achieve.

- There is an easy way effect (see §4.3.2).

+ The shape of the UCT tree is narrow and deeper with average number of node’s
children in range of 15 - 30. Most of the bad variants should be recognized
quite early and given little attention. This naturally is a two edge sword
bringing danger that good variants starting with bad looking moves (like
tactical combinations) will be overlooked.

+ It is meaningful from the point of the humans’ view - they also think rather
in terms of steps and their combination to final moves. Algorithm should
benefit from information sharing on steps across the tree( see §4.7).
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We considered all the mentioned pros and cons. Even though the step based approach
poses many implementation challenges we believe that it is the right choice to make.
In the end the decisive factors for us were the favorable shape of the tree, promising
early cutoffs of bad variations and the possibility of benefit from information sharing.

Figure 4.1: Easy way effect

4.3.2 Easy way effect

This phenomena refers to situation when a local (tactical) obstacle might be solved by
multiple ways (let’s say 2). One of these is easier to spot(typically needs less steps),
but leads to inferior solution. Suppose the following example: in Figure 4.1 a gold
camel is in danger and appropriate action must be taken (it is gold’s move). The gold
player should send one of his pieces to guard the b6 trap. While this trap is deep in the
sphere of influence of the silver player the figure dispatched on this mission should be an
elephant - therefore a proper way to play is probably Ed2n Ed3n Ed4n Ed5n pictured
in Figure 4.2. This way an elephant is protecting the dangerous trap for camel while
silver dog is still in the gold’s sphere of influence. An inferior but simpler-to-spot way
to play is depicted in Figure 4.3 and came from a move Db3e Db3n Db4n Ed2n. While
now silver dog is in immediate danger gold is about to experience serious problems
around c6 trap. We performed many tests with this position and when given shorter
time limits the algorithm quite often selects the wrong way to play. The behaviour is
similar (yet not so frequent) even with absence of silver dog at e3. We believe that
the reason for such a failure is the fact that step sequence Db3e Db3n Db4n is one step
shorter than sequence Ed2n Ed3n Ed4n Ed5n and thus easier to spot for UCT. Once
a way to save the camel is found it becomes “superior” to other solutions from the
point of view of UCT algorithm and leads to reinforcing the wrong move. The fact that
horizon proving the move wrong lies deeper in the tree makes the mistake difficult to
spot (in this sense is the situation similar to the horizon effect as known from chess).
The phenomena is the more apparent the “easier” the easy way is.

29



Figure 4.2: Success Figure 4.3: Failure

If we would implement the move based approach we believe that the fact that step
sequences saving the camel are of different length would not play the role anymore and
the advantages of positioning a strong elephant to guard the c6 trap would dominate.

With introduction of further enhancements and under reasonable time conditions
the negative impact of this effect becomes more subtle. Naturally this effect is specific
to the UCT approach and doesn’t happen to αβ engines.

4.3.3 UCT entities

We have used a variation of standard trick to limit the size of the tree called maturity
threshold. Original idea is following: a node is expanded if at least maturity threshold
simulations have already gone through it. It is a good practice to set maturity threshold
approximately to the expected number of children of the node (this would be around 15
in our case). The variation we used is slightly different: we use lower maturity threshold
value (around 5), but node n must have at least maturity threshold+depth(n) visits to
be expanded. The motivation is to have a better dynamics of a tree growth. It’s benefi-
cial not to waste time and expand nodes quickly near the root and gradually postpone
the expansion with rising distance from the root. In our implementation performance
of this solution is superior to that of the traditional one.

The exploration formula in our program is as following:

Xi + c

√

log n

ni

+
hi

ni

+
hhi√

ni

where Xi + c
√

log n

ni

is a standard UCB1 formula,
hi is a knowledge heuristic value of the step in the node, implementing the progressive
bias transition as described in [15],
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hhi is a history heuristic value of the step in the node (more on history heuristic is
in §4.7.1).

Even though UCB1 is said to be obsolete, in our approach it has worked better than
other formulas we have tried. We have experimented with UCB-tuned for a while.
However not only it was more computationally demanding (giving less playouts per
second) but also it hasn’t shown any promising results in the benchmark - even with
an attempt to hand-tune the constants.

The exploration constant c in UCB1 formula is fixed at value 0.2. We made some
experiments with dynamically tuning this value to achieve better balance in exploration
and exploitation. Namely we inspected two scenarios:

decay with time
In this model we started with higher value in the beginning to support the explo-
ration and then as the number of simulations have increased we would lower the
c coefficient to give way to the exploitation. The exact formula was as following :

c = max(0.01, min(0.25,
k√
n

))

for constant k and
n number of visits.

variance based
Here we started with the idea from UCB-tuned to incorporate the variance of
playouts’ results as an indicator of node’s stability. The idea is as following: the
smaller the variance, the more stable the node and the smaller the exploration
constant should be. Formula we used was:

c = max(0.01, min(0.25, k

(

1

n

n
∑

l=1

X2
l

)

− X
2
))

for constant k
n number of visits
X average playouts’ results and
Xi result of the i-th playout.

In both models with some constant hand-tuning we managed to get to the 60% winning
rate against algorithm with fixed c. However the performance was very unstable re-
garding the different time settings. For longer time per move settings the performance
of these enhancements were even inferior to fixed value of c.

Initially we have been using FPU as well. We observed, that best performance is
given for FPU around 0.9. However since we are using various initialization methods
(progressive bias, history heuristic) we decided to drop the FPU. Instead we initialize
every node in the UCT tree with v virtual visits. This corresponds to playing v games
with result 0 (following meta-heuristic that a lot of positions in the tree are expected
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to be equal). The motivation behind using virtual visits is following: if a node repre-
senting good move has a “bad luck” and its first couple of simulations give rather poor
results then it might take some time before this move is revisited again. This leads to
overall inferior performance. Virtual visits diminish this effect by smoothing the differ-
ences between sibling nodes shortly after their initialisation. As more simulations are
invested to the nodes the effect of virtual visits fades away. This significantly increased
the performance of the program and proved the FPU to be obsolete (the winning rate
of algorithm with v = 1 against variant with FPU was around 64% in the time when
this change was introduced). We performed large scale testing to identify the best value
for virtual visits parameter in final stage of program development. For details see §5.

We played around with an idea regarding the update phase after the playout was
made. The motivation is that simulation from a particular node should be the more
accurate the more visits the node have. The more visits the node have, the more time
is in principle spent in the tree instead of in the playouts for simulations going through
the node. Promoting the accurate playouts is achieved by giving the bigger the weight
to the result the more the simulations have gone through the node. We named this
variant relative update and used the following formula for propagating results from the
simulation.

w = max(f(n), 1)

Q(s, a) = Q(s, a) + w · (sample − Q(s, a))/(n + w)

n = n + 1

where w is a weight of the playout, sample is the result of the playout, f is a slowly
growing function - typically a variant of log or sqrt. The only difference from traditional
update formula is the weight entity - in traditional formula w = 1.

However the results of this approach were rather disappointing and even after hand-
tuning the weight generation we were unable to get results at least matching the pure
version.

4.3.4 Transpositions

Effective handling of transpositions is a must, considering the large redundancy in posi-
tions generation in Arimaa. As mentioned above, implementation of such a mechanism
in UCT is way more challenging than in αβ approach. A nice survey on this topic is
given in [28]. We decided to implement the model called UCT2 described in the paper.
In this approach the performance and difficulty of implementation is well balanced.
The model applied to our program works as follows:

There are transposition tables T . T contains pairs < k, l >, where k is the key and l
is the list of nodes. All nodes in the tree having the same key k are listed in l. Key k
for the node is computed as combination of Zobrist signature of corresponding position
and depth of the node in the tree (we take into account only transpositions happening
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on the same depth). Moreover every node has a pointer to the corresponding list of
nodes l. First node in l is called r (representative). Now the following is assured:

• All the nodes in l share the same value Qs(t). The update mechanism is simple:
when a node is about to be updated (a result of playout is ready) instead the cen-
tral value in transposition tables gets updated and this value is then propagated
to all the nodes involved (including the node that initiated the update).

• Nodes in l have different visit values Ns(t) (sharing the visits as well could lead
to a misleading bias, for more info see [28]).

• The children of the nodes are “shared”. In practice when one of the nodes creates
the children (usually it is r), the others point to them.

The scheme of the model is depicted in Figure 4.4. The winning rate of such a model
is approximately 60% against the trivial implementation ignoring the transpositions at
all.

Figure 4.4: transpositions handling scheme.
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4.4 Playouts

4.4.1 Playouts organization

Quite early we verified that Monte Carlo playouts to the end of the game (as known
from computer Go) are not a way to pursue in Arimaa. This issue was discussed at
Arimaa forum as well. The reason is simple. In Arimaa random attack is stronger
than random defense. In an experiment we conducted, player who had one more rabbit
instead of an elephant was on average favored by the playouts. Moreover in Go the
position generally gets simplified towards the end of the game and the value of the
moves is decreasing. This is not the case in Arimaa.

We decided to merge the approaches from the world of MCTS and the world of
traditional αβ searchers. A Monte Carlo playout is performed to a certain depth and
then a simple evaluation function is applied to the position. This is a key concept
behind the playouts in our program. It showed up that the most promising results are
given by performing a playouts to random depth in interval of [1, 4] moves.

Figure 4.5: playout scheme.

Playouts’ organization is depicted in Figure 4.5.

4.4.2 Step generation and selection

In Go maintaining set of potential moves is relatively easy and can be naturally updated
when a move is played. In Arimaa situation is way more complicated and often it is
computationally more feasible to recalculate set of potential steps after a step was made
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than to try to keep this set updated. As shown in Figure 4.5 step generation is one
of key elements of the playouts playing mechanism. We have experimented with two
approaches:

step oriented generation
This is a straightforward implementation. All possible steps from given posi-
tion (including pass if applicable) are generated as candidates and handed to the
selection mechanism.

move oriented generation
This approach operates with idea that only a few pieces participate in a single
move. In the beginning of the move a few random pieces are selected (typically
2 or 3). For every step to be made in this move candidate steps are generated
only from preselected pieces. If no candidate is generated pass move is played.
This leads to a significant speedup of playouts while preserving the quality of step
generator. In the end performance of this method proved superior to the previous
one (see §5). We also call this technique optimized step generation in playouts.

Best candidate (step) selection is currently based on best-of-N method (inspired
by [16]). N random candidates are selected from all generated candidates (or at most
half of them), evaluated and the candidate with best evaluation is then selected. We
observed the best results for N = 3. Evaluation of the single step is provided by the
domain knowledge unit.

We have experimented with roulette-like approach as well. N candidates (higher
than in previous case) are evaluated and the best is selected randomly according to
probabilities proportional to these evaluations. However this approach wasn’t as suc-
cessful as the previous one.

4.5 Evaluation

4.5.1 Evaluation Scheme

Once playout reaches its end, the position p is evaluated. The core of the evaluation
process is the static evaluation function for a single player. This is basically a linear
combination of binary features φ with weights θ. We map the relative evaluation of
the position (difference in evaluation for gold and silver) to [0, 1] interval representing
estimated winning probability for gold. This is done by application of the sigmoid
function σ.

eval(p) = σ (φgold(p) · θ − φsilver(p) · θ)

where

σ(x) =
1

1 + e−λx

for constant λ dependent on the evaluation elements
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Figure 4.6: Evaluation transformation.

The sigmoid function used in the program is depicted in Figure 4.6. Its constants
are tuned in such a way that if we consider only difference in material then following
winning probabilities and material imbalances correspond:

52.9% rabbit

57.4% cat

72.8% horse

78.9% camel

99.8% elephant, camel, 2 horses, dog and cat

UCT algorithm operates with values from < −1, 1 > interval, on the contrary the
evaluation unit outputs values from much larger interval. Therefore the sigmoid trans-
formation is necessary and quite natural part of evaluation process. Moreover it follows
a commonsense that the better the position is for one player the less significant (from
the winning probability point of view) are further improvements of such a position.
This however leads to an interesting phenomena. If the position is very favorable for
our program it is not “pressured” enough to play well and quite often it plays infe-
rior moves. This is analogical to the well described situation in computer Go when in
winning situations towards the end of the game UCT players often played unattractive
moves into their own territory thus minimizing the probability of upset.

We are aware that there is a good potential for further improvements in evaluation
and in transformation of evaluation into winning probability. We consider absolute
weights of the features (e.g. cat’s value is always 150, frozen camel always loses 20%
percent of its value), however some features should have different weights depending
on the context - the actual position. For instance having a cat advantage (with all
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other aspects of evaluation cancelled out) should lead to different winning probabilities
depending on the board situation. In the beginning of the game the cat advantage is
much less significant than in the situation when only couple of pieces are left on the
board.

4.5.2 Evaluation Elements

Our evaluation function consists of following independent blocks:

material
Every piece is assigned a static value (relative strength of pieces in not taken into
account). Moreover we have penalization connected to number of player’s rabbits
(less rabbits means higher penalization). Frozen pieces are identified and they
receive a penalty relative to their value.

traps
Every trap for every player is categorized according to: number of friendly guards,
number of enemy guards, owner of the dominant guard. In some cases following
attributes might be taken into account: presence of weak enemy pieces in the
vicinity of the trap, whether the trap field itself is empty or not.

pins and frames 1

Frames are detected and penalized by the relative value of the framed piece. The
same goes for pins. Moreover if the pinned piece is not locally strongest piece fur-
ther penalty is given - because of possibility of pinned piece being pushed/pulled
away and framed piece dying in the trap.

hostages
Frozen camel 2-squares away from the empty traps are detected as camel hostage
situation and penalized. This is a common pattern in Arimaa strategy.

blockades
Check for complete elephant blockade is made and highly rewarded if found.

This evaluation function is principally inspired by [8]. However we strived to keep
it rather simple. Moreover we found out that pieces positional evaluation (small values
assigned to (piece, position) combinations) plays minor role in our program. While in
the αβ approach even very small difference in evaluation plays role, this is not the case
in UCT. Since the value of the position in the UCT tree is determined as a mean of
values of all the simulated games from this position, the small differences arising from
evaluation are irrelevant.

The evaluation is enhanced by a goal-search extension. The reason for having the
goal-search extension is pretty obvious - scoring a goal ends the game right-away there-
fore it is desirable to detect such a situation even couple of steps ahead. This is imple-
mented by a very narrowed 4-steps look ahead whether the player to move can score

1see Appendix B
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the goal. If this is the case no static evaluation is performed and position is treated as
a win for player with a goal score.

4.6 Domain Knowledge in Steps

Step knowledge module is a function evalstep taking position p, step s and outputting a
value v of s in p. Similarly to the case of static evaluation, evalstep is a linear combination
of weighted binary features. Function evalstep is used in two locations:

• As a heuristic value of the step in progressive bias (see §4.3.3).

• As a heuristic value of the step in best-of-N step selection in the playout (see §4.4.2).

Binary features included in evalstep are based on empirical analysis of the game and
appropriate weights are hand-tuned. The rules these features imply contain following:

• Moving an elephant is slightly promoted.

• Making an inverse step2 is demoted.

• Pushing and pulling moves are slightly promoted.

• Killing opponent’s piece is very promoted.

• Suicides are very demoted except for the few special cases (e.g. potential sacrifice
for making a path for rabbit to the goal)

• Moving a rabbit is demoted in the beginning phase of the game, but promoted
in the late phase (the actual phase is determined by the number of pieces still in
the game).

• Steps close to the previous step are promoted.

4.7 Information sharing

4.7.1 History Heuristic

Well-known and widely-used technique in αβ tree search. The idea is to collect statis-
tics (number of cutoffs) on the moves throughout the tree (this is usually done for a
particular level in the tree) and use these values for moves ordering in a new node (for
more information see [20]).

History Heuristic was already introduced in MCTS (see §3.3.4). However it always
operated on tree-playout level and worked with number of successes of the move in the
UCT descents. We decided to try out a different model. We collect statistics (average
value, number of visits) on every step in the tree, regardless of the level (depth in

2leading to the same position as before previous step
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which the node lies). These statistics are used in the exploration formula as described
in §4.3.3. Such a model is rather different from those introduced in MCTS literature
earlier. It might be categorized as tree-tree level (regarding the naming convention
presented in §3.3.4) and collects the same statistics as every node in the tree.

Enabling this mechanism had a very positive impact on the performance (see §5).

4.7.2 UCT-RAVE

UCT-RAVE pushed the performance of computer Go programs to a different level.
Therefore it was quite natural to try it out in our Arimaa implementation as well.
However we had certain doubts regarding its applicability in this case. There are two
main reasons:

• Our playouts are relatively short compared to those in computer Go.

• Locality is stressed in the playouts.

As a consequence of these two we believed there might be a lack of information from
RAVE simulations yielding no particular advantage. When implemented this issue
proved to be a real obstacle. Moreover due to a non-trivial overhead less simulations
were performed than with pure UCT. As a result UCT-RAVE engine demonstrated
rather inferior performance without good future prospects.

4.7.3 Move Advisor

One of major ineptitudes of UCT approach is a weakness in tactical situations. This
is well documented in computer Go and it was confirmed with small experiments we
did as well. We believe that one of the way to fight this lies in incorporating tactical
information into the playouts. In Arimaa this tactical information might be for instance
a sequence achieving:

• scoring a goal

• trapping opponent’s piece

• protecting dangerous trap

• taking opponent’s piece hostage

It is perfectly possible to write search extensions (let’s say 4 step look-ahead) for these
tasks in Arimaa. However, the speed is an issue. Performing (even limited) look-ahead
in the playouts is expensive. We proposed a solution we named a Move Advisor. The
core idea is simple:

1. We perform the tactical look-ahead (this typically happens in the UCT tree in
a node which has just been expanded). The trick is that this look-ahead is not
performed often, thus not wasting the time.
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Figure 4.7: Move advisor scenario. Figure 4.8: Mg6e dg5n dg6w Mh6w mask

2. We store the tactical sequence (move) together with its context (a definition of
local situation necessary for a sequence to be legal and have a desired effect).

3. In the playout with certain probability the control is given to Move Advisor. A
suitable sequence is selected (based on previous performance of the sequence) and
played.

4. After the playout the performance statistics of the sequences that were played are
updated.

We implemented the described mechanism and tested its performance. For tactical
look-ahead we used a search extension, gathering sequences resulting in trapping oppo-
nent’s piece (narrowed 4-steps look-ahead - a variant of extension for recognizing goals
described in §4.5.2). This look-ahead is ran for both players every time a new node
is expanded in the UCT tree. The biggest obstacle is how to encode a local situation
: it comes down to generality vs. verification speed (during the move selection in the
playout) trade-off. We store a move together with its “local” context in the same form
as the bitboards are stored. “Local” context means that the neighboring position of
every step in the move and every trap used in the move are stored. The places belonging
to the context are determined by a simple bit mask. The move is considered legal in a
given position if its masked context matches the masked position bitboard.

The example scenario is displayed in the Figure 4.7 Gold to move. This position
was encountered in the UCT tree during the node expansion. Gold can trap a silver
dog with a move Mg6e dg5n dg6w Mh6w. This tactical shot was found by a trap check
search extension and the move was passed to the Move Advisor. The context (mask)
generated for the move is displayed in the Figure 4.8.

Move Advisor holds all the moves retrieved from the search extensions in the tree
together with their contexts and urgency (an analogy to the pure UCB1 exploration
formula as described in §3.2). In the playout, the control is given to Move Advisor
with certain probability padvisor (this is dependent on configuration, we experimented
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with values around padvisor = 0.2 ). If the Move Advisor is in control it goes through
all the moves it has gathered so far and selects the applicable move (legal in current
position) with the best score. After the playout, its result is backpropagated to the Move
Advisor and all the moves used in the playout get their scores updated analogically to
the update in the UCT tree. This technique operates on the tree-playout level according
to taxonomy in §3.3.4.

The program version equipped with Move Advisor performs less simulations (around
95% of pure version). However, it was able to consistently beat the pure version in 52.5%
of the games3. And even though it is still quite naive (especially the context creation
and verification) it has proved to bear potential for future research.

4.8 Speedup

4.8.1 Parallelization

Since we had an opportunity to run the program on up-to 4-core machines, we decided
to parallelize it as well. From the models discussed in §3.3.6 we chose the root model.
Mainly for its simplicity to implement and proclaimed efficiency for low number of
cores. The number of simulations was almost linear (0.95× single core simulations×
cores num ). However the performance was truly disappointing - under various time
conditions the win ratio of 4-core mode against single core mode was only around 50%
(the same held for experiments on 2 cores). This is especially surprising because of the
excellent performance of this model in computer Go.

We believe that using the tree model with local mutexes as described in [11] would
provide much better results. However we have decided not to incorporate it into the
engine mostly because of a lack of time and potential implementation uneasiness. In-
stead we proposed and implemented a new model called island parallelization model.
The basic idea is that threads should work separately (islands) with time-to-time syn-
chronization (“expedition” from one island to another). The implementation is pretty
straightforward:

• There is one master tree and one tree for every thread. Every node has a link to
a corresponding node in the master tree.

• During the node creation its link to a corresponding node in the master tree is
created. Moreover if there is not such a node in the master tree it is created first
(this operation is locally mutexed).

• Before UCT formula is calculated a node is synchronized with its master with cer-
tain probability (synchronization is locally mutexed). Synchronization represents
both updating statistics in the master node and local node.

The observations we made regarding the model are:

3the winning rate used to be higher, however it decayed with adding other enhancements
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• In principle this model lies between the root model and the tree model. For this
reason we haven’t expected a significant boost in performance (the root model
totally failed), still the parallelized version proved to be stronger than a single
core version (see §5). For this very same reason we believe that this model is
worth trying in the domain of computer Go where the root model proved to be
successful.

• We have kept the history heuristic tables and transposition tables local in par-
ticular trees. This was done mostly for implementation convenience. Sharing
the transposition tables could bring further speedup because the overhead neces-
sary for maintaining the tables would be performed only once in the master tree.
On the other hand, there would be a trade-off in (locally) mutexing the shared
transpositions tables on update.

• The synchronisation frequency (probability of synchronizing the node) might be
set according to the number of threads in order to minimize the potential time
spent waiting for the lock. One strategy is to have a high probability of syncing
if there are little number of threads and vice versa.

• A nice property of this implementation is that it could be reprogrammed back to
the root model implementation simply by dropping the continuous synchronization
and performing a full-tree synchronization in the end of the search (actually we
followed this path in the reverse direction).

4.8.2 Optimization

We have focused on both the higher and the lower level optimization. An example
of higher level optimization we used is the children caching technique as described
in §3.3.6. The actual implementation is as follows:

• When a node has over thresholdccache visits (thresholdccache = 50) its caching
mechanism is activated.

• Node creates a children cache4 for sizeccache children (sizeccache = 5). Postponing
the children cache creation like this - until it is truly needed - yields extra perfor-
mance compared to approach when a cache is statically created in the process of
the particular node creation.

• The cashed is flushed every time when ⌊
√

visits⌋ equals to a yet unvisited natural
number.

The result is approximately 20% speedup in the number of playouts per second.
This variation beats the “not-optimized” variation in 57% of the games.

Towards the end of the development process we have performed lower level optimiza-
tions as well. We have done some profiling to identify performance bottlenecks. We

4dynamically allocated array
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aimed for a Pareto effect (80-20 rule) making little optimizations that would produce
good effects. One of the bottlenecks was in the step generation. Especially finding an
index of a first bit in bitboard (so called lix function). Originally we have been using
trivial implementation of cycling the bit vector and stopping on the first bit that is
on. Some processors even have instructions for lix operation. We haven’t gone that far
though. We used a version of binary search with precomputed values. We created a
precomputed logarithm table (int to int mapping) for computing the first bit position
in 8 bit vectors. To narrow down the potential position of first bit from 64 bit vectors to
8 bit vectors we perform the binary search (hard-coded if statements for performance).
This optimization raised the performance by about 10%.

Further optimizations include:

• pre-computing sqrt and log functions used in the exploration formulas calculation.

• minimizing the size of nodes in the UCT tree in order to cut down amount of
memory access

• creating own object allocation mechanism (object pool) for board objects. Motiva-
tion for this is that instead of play-unplay realm we use the copy board-play-destroy
board realm.
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Chapter 5

Performance and Experiments

5.1 Methodology

We have been measuring the performance of the engine on three levels via:

Arimaa Test Suite 1

We maintained a set of approximately 20 hand created tests (representing mostly
tactical shots). These were quite unreliable as a measurement whether the engine
improved. On the other hand, they did a good job signalling if the performance
of the program went down rapidly. As a consequence we used the ATS as a kind
of preliminary sieve.

Offline matches
This was our main tool for performance study. We have let the engine play
thousands of games against itself and anchor engines. As anchor engines we have
successively used: bot sample (4 steps lookahead), bot sample (8 steps lookahead),
bot fairy (3s/move). Each of these beats the previous one in about 95% games.
While the bot sample is relatively weak (in both configurations), bot fairy is a
reasonable opponent. Some of its modifications showed good performance in the
past computer Arimaa challenges. As the time went on our engine was able to
match all of these (with a little time handicap).

Performance in the online gameroom
During the final stage of the program development process we let the engine to
play in the online gameroom2 (with bot akimot nickname). While this is not as
good measure of performance as offline matches it gave us a glimpse of engine’s
strength against human players under specific time conditions (15s/move). The
program was able to achieve rating around 1600 with peak in history at 1733. It
also showed some interesting victories against strong Arimaa human players.

1see Appendix A
2http://arimaa.com/arimaa/gameroom
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5.2 Experiments

The experiments are depicted in following graphs. If not stated otherwise, then the
opponent is an anchor bot bot fairy 3s/move. Every point in every graph was computed
based on up to 400 games played under specified conditions. Result r was computed as
a mean of outcomes of these games (1 for a win, 0 for a loss). With this setup we are
95% confident that the true result would lie in the interval r ± 0.05. This is based on
the interval estimate for alternative distribution:

X ± µ1−α

2

√

X(1 − X)

n

where µ is quantile of normal distribution, α = 2 and n is the number of trials

Conducting all these experiments was quite time expensive. It took us more than
a month to gather all the data. This is one of the reasons why we have chosen bot fairy
3s/move as a standard anchor bot - using bot with longer thinking times would require
even longer time to simulate all the games.

scalability test
Simple scenario to show that the performance scales well with additional time.
Engine’s best configuration (see Appendix A) plays against variations of anchor
bot (with predefined number of seconds per move (1, 2, 4, 8, 16). Same time con-
ditions were used in other tests as well to show that presented improvements scale
well with time. Results are given in Figure 5.1. The time scale is logarithmic. As
expected against opponent with fixed time (bot fairy 3s/move) the winning ratio
is rising quite quickly. The good news is that the winning ratio is rising (slowly
though) also against opponent with equal time conditions (bot fairy equal). For
16s/move the winning percentage is nearly 50%. Moreover, the shape of the curve
looks promising for our engine under even longer time settings.

improvements test
Here we have selected a fixed set of improvements (add-ons) to experiment with
(according to our beliefs we have chosen the most significant ones). These were:

• knowledge in playout (plk) - see §4.6

• knowledge in tree (tk) - see §4.3.3

• history heuristic (hh) - see §4.7.1

• optimized step generation in playouts (opl) - see §4.4.2

First we have tested the setup with all of these improvements disabled (plain
version). As expected results were so poor, that disabling another modules would
probably have very little effect. Experiments with using only single add-on at a
time (plain version + add-on) are depicted in Figure 5.2. It was quite surprising
to observe that using knowledge in playout add-on has a very little benefit over
the plain version. Experiments with using the add-ons cumulatively are given
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in Figure 5.3. The order was chosen according to results of add-ons in previous
experiment. The effect of using the playout knowledge is quite reasonable here and
it surpassed expectations based on its performance as a single add-on (this shows
dependency among add-ons). Based on these scenarios we have identified history
heuristic and optimized step generation in playouts to be the most significant
improvements.

parameters tuning test
Games against anchor bot proved to be the most valuable tool in program’s
parameters’ tuning. As an example we present an analysis showing impact of
number of virtual visits on the performance. Engine is run under various time
conditions with different virtual visits value. Results are displayed in Figure 5.4.
For low values of virtual visits ({1, 2, 3}) the performance is quite poor. The peak
is for vv = 4 and vv = 5 - this value is used in the strongest engine configuration.
With higher values the performance starts dropping again. Very poor results of
FPU (vv = 0, fpu = 1.1) variant was initially quite a surprise to us. However,
we realised we dropped the FPU concept quite a long time ago and we have
introduced some significant changes in node’s initialization since then (progressive
bias, history heuristic). These changes don’t cooperate well with FPU, leading to
inferior tree exploration and thus poor performance.

parallelization test
Opponent of the engine in the parallelization test was the Akimot engine run-
ning on single thread. Engines are using no transposition tables since the multi
threaded version hasn’t yet been optimized for cooperation with these (it works,
however with poor performance). Results of the experiment are given in the Fig-
ure 5.5. While the results of parallelized version are clearly superior for lower
times, the difference is gradually dropping as the time per move increases. This
is expected behaviour - additional time for thinking is the more worth the less
the time engine has.
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Chapter 6

Conclusion

6.1 Achievements

In this thesis we have analyzed applicability of MCTS methods in the game of Ari-
maa. We have adapted existing MCTS algorithms for Arimaa in our MCTS bot called
Akimot. We have shown that as a proof-of-concept our MCTS implementation was
successful.

A naive implementation of UCT engine (with playouts to the end of the game)
gave very poor performance. Therefore we have devised a hybrid playouts concept
consisting of shortened playout followed by a static evaluation. Moreover, we have
optimized playouts to tackle non-trivial issue of step generation in Arimaa.

Naturally we have implemented many known enhancements from computer Go and
tested which work in our setup. It came out that domain knowledge incorporation
(both in playouts and the UCT tree), transposition tables, virtual visits or children
caching provide measurable improvement. On the other hand, UCB-tuned formula or
UCT-RAVE framework haven’t shown a desired effect, in spite of being very successful
in computer Go.

We have proposed several new enhancements for the generic MCTS algorithm as
well. For instance the tree-tree level history heuristic contributed to information sharing
across the UCT tree and raised the performance of the engine significantly. The move
advisor framework strengthened the tactical profile of the playouts. We have also
proposed and implemented a new parallelization method called the island model.

During the development we have naturally encountered many obstacles. For instance
the described Easy way effect caused by the UCT algorithm’s nature, peculiarity of
Arimaa having 4 steps in a move and chosen search granularity (step-based search).

We have conducted numerous performance tests to prove good scalability of our
engine. Akimot is competitive with an average αβ engine bot fairy under short time
settings, having better prospects for longer time settings. We have also tested several
particular parts of the engine and identified their contribution to the performance.

As a part of the development process we have created several supportive applications
for our engine: Arimaa Test Suite, Simple Development Gui, Rabbit Goal Tester, etc.
The whole project will be provided to the Arimaa programming community.
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6.2 Research Guideline Revisited

6.2.1 Objectives

• To propose and implement MCTS integration in a bot playing the game of Arimaa.
Done We have created a MCTS Arimaa engine called Akimot.

• To identify ways of improving MCTS algorithms which work in Arimaa.
Done We have devised and tested numerous extensions to the standard UCT
algorithm.

• To check whether MCTS might be successful in a game dissimilar to the game of
Go.
Done We have conducted various experiments against existing bots and human
players.

6.2.2 Research Questions

• How the Monte Carlo playouts must be rebuilt to be applicable in the game of
Arimaa?
We have verified that using Monte Carlo playouts “as is” (playouts to the end
of the game) results in a poor performance. We have proposed and implemented
a hybrid evaluation consisting of shortened MC playout, followed by a static
evaluation.

• Which of the proposed improvements to the MCTS algorithms are domain inde-
pendent?
History heuristic on the tree-tree level posed a big improvement in our approach.
This enhancement is not documented in the literature and on its own it could
be a good method to improve the UCT algorithm in other domains as well. For
us the main motivation for using the history heuristic was a substitution of in-
ept UCT-RAVE. While we had little time to improve the move advisor concept,
it might carry a good potential for incorporating the search knowledge into the
playouts. We also believe that proposed island parallelization model would be
promising in computer Go.

• Is there a potential for MCTS algorithms in Arimaa to start the kind of revolution
they did in computer Go?
Rather not. Even though our program proved to be able to achieve reasonable
results against average engines, the top engines are on a completely different
level. We see the main reason in the fact that static evaluation function provides
a base for a relatively strong player in Arimaa as opposed to the situation in Go
(where static evaluation functions performance was truly poor). This allows the
αβ Arimaa bots enhanced with search extensions and hand coded knowledge to
compete with moderately strong humans.
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6.2.3 Hypotheses

• Monte Carlo playouts used “as is” from the game of Go will provide a weak
Arimaa player.
True

• Standard improvements from computer Go will improve the MCTS Arimaa player
as well.
Partially True Knowledge in playouts, progressive bias, virtual visits, children
caching, etc. improved the strength of the engine. On the other hand, using
standard techniques as UCB-tuned, UCT-RAVE, etc. yielded no significant im-
provement.

• MCTS Arimaa player might be competitive to the existing αβ searchers.
Partially True As mentioned above Akimot is competitive to the average αβ
searchers. However, the top bots are on a different level.

6.3 Future Work

We have decided to keep up the work on the engine and maybe participate in some future
Arimaa Computer Challenge. Especially following issues deserve further attention (they
are ordered according to our beliefs on their importance):

parameter tuning
We strived rather for introducing more extensions than to spend extra time to tune
the parameters for maximal performance. There are tens of constants marginally
influencing the behavior of the algorithm. We believe that automatic tuning
of these, in for instance evolutionary manner, might bring significant strength
improvement. Moreover, for most of the experiments we have used rather short
thinking times (at most 16s/move), optimal parameters setting might be different
for longer thinking time.

search extensions
We have programmed the search extensions (trap check and goal check) as reduced
4 step lookaheads. Other Arimaa engines are known to use the static check in the
form of a decision tree instead. This significantly speeds up these extensions and
allows them to be used for instance in the static evaluation.

time management
Currently the time management during the game is overly simple. Engine per-
forms search for a fixed time per move and then outputs the best move so far.
From the nature of UCT way more efficient time management can be imple-
mented. With information on move confidence “obvious” moves might be played
quickly thus saving time for potentially complicated positions.

parallel model
Even though the results of parallelization with the island model were rather
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mediocre, still using multiple cores is worth it. We would like to incorporate
parallelization with transposition tables and use the parallel functionality in the
engine. It would also be interesting to check its performance in the domain of
computer Go.

move advisor
We believe that the framework we introduced as a move advisor bears further
contribution to the engine’s strength. Especially more precise specification of the
move context is worth examining.

playouts
Monte Carlo playouts are a natural performance bottleneck of the MCTS engine.
The playouts in Akimot are relatively light only with the basic knowledge incor-
porated. Applicability of additional knowledge or maybe balancing methods as
introduced in [25] deserves further study.

initial setup
Right now single fixed initial setup is used (for both players). It would be desirable
to use a small “library” of good initial setups (this might be fetched from the
Arimaa Games Archive).
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Appendix A

User manual

A.1 About

Akimot is an engine for the game of Arimaa. The very core function of the program
is to take a valid Arimaa position and produce a suggested move. The program is
command line oriented, highly configurable and supporting communication in both
traditional getMove interface and relatively new Arimaa Engine Interface. There are
several support applications delivered together with the program. The whole project is
distributed under the GNU GPL license.

A.2 Background

The program is written in C++ programming language. The target platform are the
Linux systems. Building the program at Windows machines hasn’t been tested. For
development we used the Vim integrated development environment together with Scons
software build system. As a source version control tool we used the Git software. As a
unit testing module we used the cpptest library. We used gdb for debugging and gprof
for profiling. Moreover we programmed several external testing tools. For instance to
verify that our search extension for finding goal works properly we harvested all the
positions where rabbit can score a goal from all the games ever played online. And
through AEI we tested the ability of our program to find the goal moves in these
positions (> 50000).
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A.3 Installation

Project is distributed as a snapshot of the development version. This snapshot is
included on the attached CD. The rough organization of the project is following:

akimot

source files - *.h, *.cpp

a - shortcut for akimot -e -a init

AUTHORS - authors information

COPYING - license information

default.cfg - an example akimot’s configuration file

doc - Doxygen generated reference documentation

Doxy - configuration file for documentation generator

init - file with initial commands for the AEI session with the program

INSTALL - installation and compilation instructions

other - Support software

aei - Arimaa Engine Interface source codes

match - Match environment with example bots

ats - Arimaa Test Suite code and tests

tagui - Development GUI

rabbits - Large scale goal check unit

aga - Tools for downloading and filtering the games from online archive

paths.py - small support file with paths definition

s - shortcut for scons opt=1

SConstruct - configuration file for the build process

TODO - programming issues TODO list

There are no precompiled binaries therefore the program itself must be built from the
source codes. Recommended way for building the binary is to use a Scons tool. There
is a prepared SConstruct configuration file for this job. Following commands might be
used :

scons development build

scons opt=1 optimized build (recommended for standard use)

scons prof=1 build including profiling information

scons dbg=1 build for debugging purpose

scons -c clean the build (removes object files and binary)
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scons cfg=1 copies configuration file default.cfg to predefined places (e.g. match
dir, ats dir, etc.)

The built program should get automatically installed to the proper destinations in
subsequent directories (e.g. match/bot akimot, ats/bot akimot, etc.). You can
force the installation as well - for instance to force installation of optimized source to
match/bot akimot just issue scons opt=1 match.

A.4 Options and Configuration

Command line options are used to customize the general behavior (mode the program is
in, communication protocol to use, etc.). The syntax for running the program is: akimot
[options] [position file [game record file]]. The files listed after options are
part of prescribed communication via the getMove interface. The options are following:

-h prints small help

-b runs benchmarks

-e uses extended AEI command set

-a file uses given file to init the AEI session

-g runs in getMove mode (position file and/or game record file must be
supplied then)

-c file uses given file as a configuration file

Configuration file is used to modify the properties of the search engine. The default
configuration file named default.cfg is present in the project’s root. This configu-
ration file is used by the program if not specified otherwise in command line options.
Moreover, it contains the “best” configuration used for scalability tests and games in
the gameroom. Every item in the file is documented and should be easy to understand.
Various issues might be influenced in the configuration file, for instance:

• details of the algorithm (time settings, exploration coefficient in UCT, mature
level, length of the playouts, etc.)

• various (on/off) extensions (transposition tables, knowledge bias in playouts,
search extensions, etc.)

• parallelism degree (number of threads to use)

• weights of the evaluation method (e.g. what are particular pieces worth, how are
traps evaluated, what is camel hostage penalty etc.)

• weights of the step evaluation

Little effort was invested to make the program’s input processing “dummy proof”.
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A.5 Session

Program supports two distinct ways of interaction:

getMove mode
So far, this communication protocol has been recognized as an official protocol
for computer challenge Arimaa championships. Program takes three files with
game position, game record and game state and outputs a move to be made. For
a long time this was an only way how to connect a bot to the online gameroom.
In Akimot this mode must be explicitly toggled with -g option, moreover not all
three files must be present (actually information from game state file are not used
by Akimot at all). Example sessions:
load from the position
tomik@linda ~/src/akimot $./akimot -g data/captures/02.ari

Ed2n Ed3n Ed4n Ed5n

load from the record
tomik@linda ~/src/akimot $./akimot -g data/captures/02.are

Ed2n Ed3n Ed4n Ed5n

load from the record (preferred over the position)
tomik@linda ~/src/akimot $

./akimot -g data/captures/02.ari data/captures/02.are

Ed2n Ed3n Ed4n Ed5n

AEI mode
Akimot implements the textual AEI protocol as described below. This is a pre-
ferred way of communication with the program. We also used this model for a
connection to the gameroom. Example session1 :

tomik@linda ~/src/akimot $ ./akimot -e

#start the initial opening phase (a handshake)

<aei

>id name akimot

>id author Tomas Kozelek

>id version 0.1

>aeiok

#handskake was performed successfully now ping the engine

<isready

>readyok

#start the new game

<newgame

#set the time for move per sec to 5

<setoption name tcmove value 5

<setpositionfile data/captures/02.ari

1symbol <and >are used only here to emphasize the direction of communication, # marks a com-
ment

59



<go

>log Debug: Search finished. Suggested move: Ed2n Ed3n Ed4n Ed5n

>info stat UCT:

>info stat 355069 playouts

>info stat 4.90003 seconds

>info stat 72462 playouts per second

>info stat 449253 nodes in the tree

>info stat 23326 nodes expanded

>info stat 77962 nodes pruned

>info stat 6.76431 average descends in playout

>info stat best move: Ed2n Ed3n Ed4n Ed5n

>info stat best move visits: 113535

>info stat win condidence: 0.436083

>info time 4.90004

>info winratio 0.436083

>bestmove Ed2n Ed3n Ed4n Ed5n

>log Info: over

<quit

>log Info: bye

Akimot allows to init the AEI session with user defined commands. Commands
are written to the init file and given to the program on the command line. Only
the beginning of the session (e.g. aeiinit, newgame command, etc.) or the whole
session as well might be issued. In the case of whole session being performed from
the init file some commands from AEI extended set must be used(i.e. gonothread
instead of go otherwise following commands are sent to the engine too early).
Example init file called init with comments (akimot -e -a init runs the engine
with this init file in extended AEI mode):

aei

newgame

setoption name tcmove value 6

setpositionfile data/captures/06.ari

gonothread

#view the board and the resulting tree

boarddump

treedump

#make the move proposed by the previous (recent) search

makemoverec

#start new search(now from the other player’s view)

gonothread

quit
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A.5.1 Position formats

Current position might be communicated to program in several ways. All formats are
accompanied with representation of example position (see Figure A.1) in given format.

Figure A.1: Example position.

standard position format
This format is used for game position file in getMove mode as well as in combi-
nation with setpositionfile command in AEI mode. Token 8b means this is
position in the 8th move with black(silver) to play.

8b

+-----------------+

8| r . . . . r r r |

7| . r c . . c . h |

6| h . x r . x d . |

5| . . . . . r . . |

4| . . d . r e . . |

3| . D x E M x D . |

2| H . C m . C . H |

1| R R R R R R R R |

+-----------------+

a b c d e f g h

compact position format
Position is given by the side to move (w/b) followed by a string embraced in ’[’
’]’ and consisting of the piece letter or a space for each of the 64 squares. This
format is used only in AEI mode (in combination with setposition command).
Information on move number is not included.
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b[r rrr rc c hh r d r d re D EM D H Cm C HRRRRRRRR]

game record format
This is an official system of recording the single game of Arimaa. Game recorded
in this format might be passed to Akimot in getMove mode as a game record file.

1w Ra1 Rb1 Rc1 Rd1 Re1 Rf1 Rg1 Rh1 Ha2 Db2 Cc2 Md2 Ee2 Cf2 Dg2 Hh2

1b ra8 rb8 rc8 rd8 re8 rf8 rg8 rh8 ha7 db7 cc7 ed7 me7 cf7 dg7 hh7

2w Ee2n Ee3n Ee4n Ee5n

2b ed7s ed6s ed5s rd8s

3w Ee6w me7s Db2n Dg2n

3b rc8e re8s dg7s ed4e

4w me6s Ed6e Ee6w re7s

4b db7s ee4e rb8s rd7e

5w re6e Ed6e me5w Ee6s

5b rd8s rd7s re7s rf6s

6w md5s Ee5w md4s Ed5s

6b db6e dc6s re6s dc5s

7w Ed4e dc4e Ee4s dd4e

7b ha7s de4w re5s dd4w

8w Md2e md3s Ee3w Me2n

8b

A.6 Arimaa Engine Interface

Arimaa Engine Interface is an interface allowing engine to connect to gameroom or other
applications. AEI is written in Python and was contributed to the Arimaa community
by Brian Haskin. AEI defines a textual protocol based on UCI 2 for communication with
the Arimaa engine. AEI is meant to replace older bot interface for connecting to the
online gameroom. While AEI is not yet a widely adopted communication protocol in
the Arimaa programming community, it gains popularity pretty quickly. We used AEI
as a primary communication protocol with Akimot and as the only mean of connecting
the engine to the gameroom. Moreover we use AEI as a module in related Python
applications we wrote during the development process, namely : Arimaa Test Suite,
Arimaa Development GUI, Rabbit Goal Tester.

We have implemented most of the commands defined by AEI and even added some
more (we call these an extended AEI set - for these to be recognized, engine must be
started with -e option). The full specification of AEI protocol is given in aei-protocol.txt
in other/aei directory. The following list is based on this specification and represents a
list of commands supported in Akimot. Commands from extended AEI set are marked
with *.

2Universal Chess Interface
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Controller to Engine Messages

aei First message sent to begin the opening phase. Waits for id messages and an
aeiok message back from the engine to end the opening phase.

isready Pings engine. Engine responds with readyok.

newgame Signals the start of a new game.

setposition <position> Sets the current position from the string in compact
position format (see §A.5.1).

setpositionfile* <filename> Gives the path to a file with a position in standard
position format.

setoption name <id> [value <x>] Set further options. Supported options are:
tcmove - The per move time for the game.
Other options (see full specification) are parsed and recognized, however they
currently have no effect on the program behavior.

makemove <move> Makes a move. Stops any current search in progress.

makemoverec* Makes a move that was found as a bestmove in the last search.

go [infinite] Performs search according to its time management and responds
with the best move found. Further option infinite specifies to search until the
stop command is received.

gonothread* Analogical to go command. An engine is supposed to search in the
current thread (usually current thread is used for performing the AEI communi-
cation, while search runs separately). This is useful in batch AEI scripts where
commands are given sequentially in advance.

boarddump* Prints the current board.

treedump* Prints the search tree from the last search.

eval* Evaluates current position.

goalcheck* Performs goalcheck on current position.

trapcheck* Performs a check whether some pieces can be trapped in current posi-
tion.

stop Stops the current search. The engine responds with the bestmove found.

quit Exits the session.
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Engine to Controller Messages

id <type> <value> Sends identification during the opening phase of the session.
Sends information on following identifiers name, author, version

aeiok Ends opening phase and starts the main phase of the session.

readyok Answer to isready message after all previous messages from the controller
have been processed.

bestmove <move> Best move found in search

info <type> <value> Information about the current search. Akimot issues info
messages of following types (all bound to previous search):

time How long it took to perform the search.

winratio Expected winratio of the suggested bestmove.

stat Various statistics from the previous search. These include information
on number of playouts, playouts per second, number of nodes in the tree (all,
expanded, pruned), average descend depth, etc.

goalcheck Information on performed goalcheck.

trapcheck Information on performed trapcheck.

log <string> Logging information. Log messages start with Error:, Warning: or
Debug: to indicate special handling by the controller.

A.7 Arimaa Test Suite

Arimaa Test Suite is a small Python application for testing the strength of an Ari-
maa engine on predefined Arimaa positions representing particular tactical or strategic
maneuvers. This tool can be viewed as a sort of unit test for algorithmic side of the
program. The main motivation for creating this framework was a need for quick testing
whether algorithmic changes hurt or improve the performance of the program. Even
though its accuracy is questionable it proved to be a useful tool to quickly identify
clearly bad extensions.

The framework has a given format for defining tests. Every test carries : single Ari-
maa position, a comment on position, multiple tags and test how well are the criteria
fulfilled. Currently implemented criteria are: score goal, prevent opponent’s goal and
piece position criteria which is basically an AND-OR description of position changes
with weights. This description (after piece position field) is a collection of blocks sep-
arated by “|” character. Every block consists of atoms separated by whitespace and
optional weight indication in the end of the block definition separated by “:” charac-
ter. Atoms express certain assumptions about position of pieces after the move. If the
assumption is correct after the particular move we say that atom is satisfied. Atom can
be of one of the following types:
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• An indication of position - e.g. Eb3, this atom is satisfied if after the move there
will be gold elephant at b3

• a negation of position indication - e.g. !ce2, this atom is satisfied if after the
move there is not a silver cat at e2.

• An indication of trapping - e.g. Hf6x, this atom is satisfied if during the move
the gold horse is trapped at f6.

A block is satisfied if all of its atoms are satisfied. If a block is satisfied it is evaluated
with its weight (or 1.0 if there is no explicit weight given) otherwise it is evaluated
with 0. Weights are meant to provide broader evaluation for possible moves than just
passes/fail. The result of the test is the maximum from evaluations of its blocks.
Example ATS test file (corresponding to position depicted in Figure A.2):

[settings]

comment =

Elephant blockade at f7.

position =

12b

+-----------------+

8| r r r r . c r . |

7| h . c m r E h r |

6| . d X . . X d . |

5| . . . . . r . . |

4| . . . . . . . . |

3| . H C e . X D . |

2| . D . M . C . H |

1| R R R R R R R R |

+-----------------+

a b c d e f g h

tags = elephant, blockade

[criteria]

condition = piece_position

after_piece_position = re8 re7 cd7 me6 | re8 re7 md7 ce6 : 0.8 |

re8 re7 md7 de6 : 0.85 | re8 cd7 me7 re6 : 0.7

When started (python ats.py), ATS reads from its configuration file (default is
ats.cfg) information on: time per test, tests to use, how often repeat every test, engine
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Figure A.2: ATS example position.

to connect, where to log. The engine is connected through AEI and selected tests are
sequentially presented to it. This is accompanied with logging information. In the end,
statistics on performance are given to the user. For more examples please see tests in
akimot/other/ats/tests directory.
Example configuration file:

[global]

engine = akimot/akimot -c akimot/akimot.cfg

tests = 15

time_per_test = 5

cycles = 1

A.8 Gameroom

There is an online gameroom (created by Omar Syed) accessible to both human players
and bots at http://arimaa.com/arimaa/gameroom/. Akimot engine uses AEI to con-
nect to the gameroom. A bot’s account must be created online in the gameroom first.
Such a bot is then identified by its name and password for connection to the gameroom.
There is a script called gameroom.py in other/aei directory for connecting the bot to
the gameroom. Attributes of a session (bot’s name, password for connection, engine to
use, number of games to play, time settings, etc.) are specified in the configuration file
called gameroom.cfg in the same directory.
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A.9 Match environment

Besides connecting the engine to the online gameroom it is naturally possible to let
it play against other engines offline. There are several freely downloadable engines at
Arimaa homepage for this purpose - for instance bot sample by Don Dailey or bot fairy
by Mika Ole Hansson. There is an AEI extension for offline match as well, however the
mentioned engines don’t support the AEI. For this reasons we sticked with using the
match environment based on getMove interface also created by Omar Syed. The match
environment is positioned in other/match directory. Every bot is supposed to have
its own directory (e.g. other/match/bot akimot). The alias names for bots (with
possibly various command line arguments) are listed in configuration file bots. The
script conducting the game is called match. A game between two bots is performed by
issuing match bot 1 alias bot 2 alias where aliases must be defined in bots file.

For our purposes we have created a tour.py script to perform a tournament between
two engines consisting of specified number of games. The tour.py script iteratively
performs the match between specified bots by calling the match script itself. It makes
the process of organizing the results more convenient. Configuration files for bots (if
available), setup notice and record of every match played in the tournament are stored
in the tournament’s directory. Moreover result of the tournament is written to file
list.txt on the same level as tournament’s directory.
The syntax is following: python tour.py bot 1 alias bot 2 alias [options]

Where options are:

--game dir dirname Tournament’s directory (default matches/some number).

--games num number Number of games in the tournament (default 100).

--comment comment Comment on a tournament.

--silent Ignore the bots log output (otherwise written to appropriate log file in
the final directory).

--mode Running mode - default is standalone, other options are master, slave,
finish only. This option served a very specific purpose during the development
and is not recommended to use. For more details see below.

For effectively running the large number of games we have devised the tour.py script
with ability to run simultaneously on (potentially) multiple machines (aka cluster). This
was quite specific demand in the development process and is meant for interested and
experienced users (won’t work out-of-the-box). The principle is following. The code and
configuration files that the games should be run with, must be present on the cluster
machines. Moreover it is advisable if the cluster machines have a shared filesystem (i.e.
AFS). On the controlling machine the tour.py script is invoked in master mode. The
script connects to predefined computers (via ssh using the psshlib.py script based on
the pexpect library) and starts its instances in slave mode, these run only a single game
and finish. After which the controlling script starts the next instance. In the end final
log entry to the list.txt is made by a single instance in finish only mode. The psshlib.py
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script is included in the package. Users interested in this feature should study this
script and define their login credentials (if any) in there.

A.10 Simple Arimaa Development GUI

During the process of development we strongly missed a simple-to-use Arimaa game
viewer. While it is possible to view the game records online through a Java applet
this was quite slow and sometimes unreliable. For this reason we have developed a
very simple GUI for Arimaa developers. The GUI is written in Python using Qt4. It’s
capable of:

• Loading a game record and replaying the game with possibility to jump back and
forth in the record.

• Loading a position from the standard position format (see §A.5.1).

• Dumping a position to the standard position format.

Figure A.3: The development GUI.

The picture of the GUI is given in the Figure A.3.
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Appendix B

Glossary

For further information on terms regarding Arimaa strategy and tactis with example
diagrams see [7].

atari
Term from the game of Go. It is a move which threatens to capture some oppo-
nent’s block of stones in the next move. This block thus has the last liberty after
atari move.

blockade
Situation when the piece cannot move at all (or can move very locally and is
denied access to the other parts of the board) is called a blockade. Example
situation is an elephant blockade. Even though many pieces must be dispatched
to block the elephant it might be well worth it when blocking player manages to
free its elephant from the blockade giving him the strongest mobile piece on the
board.

eye
Term from the game of Go. It is an empty intersection surrounded by the group
of stones and securing life for this group if there is at least one more eye point in
the group (opponent cannot play into the both eye points simultaneously).

frame
A piece standing on the trap square unable to move away is said to be framed.
Typical situation is that framed piece is surrounded from three sides by opponents
pieces and from one side by friendly supporting piece.

goal
A move that gets one of the player’s rabbit on the last row of the board (from his
point of view).

hostage
Situation when a piece is frozen and threatened to be trapped. This typically
happens in the sphere of influence of the owner of a freezing piece. The point is
to force the opponent to dispatch some of his forces to protect the trap in question
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and use the material advantage in the different part of the board. Typical hostage
situations include: elephant taking camel hostage or camel taking horse hostage.

MCTS
Monte Carlo Tree Search. General name for algorithms based on Monte Carlo
simulations.

maturity threshold
Number of simulations necessary for node expansion.

node expansion
Expansion of a given node N (representing position P ) means adding a child node
Ni to N for every possible position Pi reachable from position P by some legal
move. Node can be expanded during the MCTS simulation if it has been already
visited given number of times (maturity threshold) and is not expanded yet.

pin
The piece guarding the framed piece is pinned (it cannot be moved without losing
the framed piece).

playout
A (pseudo) random game from given position simulated by program (usually to
the end of the game or to the point of meeting some criteria). The result of the
playout is then backpropagated to the tree.

simulation
One iteration of the MCTS algorithm. Consists of the descent through the tree
followed by a playout and finished with a backpropagation of the result.

UCT
Upper Confidence bound to Trees. Best-first search algorithm based on theory of
multiarmed bandits. One of first representants of MCTS.
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