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Summary. A new approach of parameterization is proposed to construct a general goodness-
of-fit test. It can not only generate traditional tests (including the Kolmogorov–Smirnov, Cramér–
von Mises and Anderson–Darling tests) but also produce new types of omnibus tests, which are
generally much more powerful than the old ones.
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1. Introduction

Let X be a continuous random variable with distribution function F.x/, and X1; X2; : : :; Xn

be a random sample from X with order statistics X.1/; X.2/; : : :; X.n/. We wish to test the null
hypothesis

H : F.x/ = F0.x/; for all x ∈ .−∞;∞/

against the general alternative

H̄ : F.x/ �= F0.x/; for some x ∈ .−∞;∞/

where F0.x/ is a hypothesized distribution function to be tested. In this paper, we discuss only
the basic situation where F0.x/ is completely known. For other cases, see Section 6. Note that

H =
⋂

t∈.−∞;∞/

Ht

and

H̄ =
⋃

t∈.−∞;∞/

H̄ t;

with Ht : F.t/ = F0.t/ and H̄ t : F.t/ �= F0.t/. Then testing H versus H̄ is equivalent to testing Ht

versus H̄ t for every t ∈ .−∞;∞/.
To test Ht versus H̄ t with t fixed, we have a binary random sample based on the indicator

function Xit = I.Xi � t/ .i = 1; 2; : : :; n/ satisfying P.Xit = 1/ = F.t/ and P.Xit = 0/ =
1 − F.t/.
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F.x/ is an arbitrary unknown distribution function, whereas F.t/ with t fixed is just an un-
known parameter. Through the introduction of the new binary sample, the nonparametric test
for H versus H̄ is simplified to a family of parametric tests for Ht versus H̄ t , t ∈ .−∞;∞/. The
simplification is a process of parameterization, through which parametric approaches can be
applied to nonparametric tests. Hopefully, the parameterization loses little information about
F.x/ in the original sample.

For each fixed t ∈ .−∞;∞/ and the corresponding random sample X1t ; X2t ; : : :; Xnt , let Zt

be a statistic for testing Ht versus H̄ t such that its large values reject Ht . Then two types of
statistic for testing H versus H̄ can be defined by

Z =
∫ ∞

−∞
Zt dw.t/;

(1.1)
Zmax = sup

t∈.−∞;∞/

{Zt w.t/};

where w.t/ is some weight function and large values of Z or Zmax reject the null hypothesis H .
The power of Z or Zmax depends on Zt and w.t/. Two natural candidates for Zt are the Pearson

χ2 test statistic and the likelihood ratio test statistic, which are respectively (after simplification)

X2
t = n{Fn.t/ − F0.t/}2

F0.t/{1 − F0.t/} (1.2)

and

G2
t = 2n

[
Fn.t/ log

{
Fn.t/

F0.t/

}
+ {1 − Fn.t/} log

{
1 − Fn.t/

1 − F0.t/

}]
; (1.3)

where Fn.t/ is the empirical distribution function of the original sample X1; X2; : : :; Xn.
A large family of Zt which embeds X2

t and G2
t can be obtained by using the Cressie and

Read (1984) family of divergence statistics 2nIλ for testing the goodness of fit of a multinomial
distribution. For the above binary sample X1t ; X2t ; : : :; Xnt with t fixed, the Cressie–Read family
of divergence statistics for testing Ht versus H̄ t is

2nIλ
t = 2n

λ.λ + 1/

[
Fn.t/

{
Fn.t/

F0.t/

}λ

+ {1 − Fn.t/}
{

1 − Fn.t/

1 − F0.t/

}λ

− 1

]
; (1.4)

which includes X2
t (λ = 1) and G2

t (λ = 0), as well as other important statistics (Cressie and
Read, 1984; Read and Cressie, 1988).

In this paper, we focus on X2
t and G2

t because X2
t is associated with classical tests whereas

G2
t produces new powerful goodness-of-fit tests. In Sections 2 and 3, we shall show by choosing

appropriate weight functions in equations (1.1) that

(a) using X2
t as Zt generates traditional goodness-of-fit test statistics, including the

Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling statistics, and
(b) using G2

t as Zt produces new statistics, which are sometimes substantially more powerful
than the traditional statistics.

Power comparisons are given in Section 4, and simulated percentage points for the new statistics
are tabulated in Section 5. Section 6 gives concluding remarks.
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2. Derivation of traditional goodness-of-fit tests

Using X2
t as Zt in equations (1.1) but choosing different weight functions, we can derive tradi-

tional goodness-of-fit tests. Below are three examples.

2.1. w(t) = n–1F0(t){1 – F0(t)}
Replacing Zt of the second of equations (1.1) with X2

t generates

K2
S = { sup

t∈.−∞;∞/

|Fn.t/ − F0.t/|}2 =
(

max
1�i�n

[
max

{
i

n
− F0.X.i//; F0.X.i// − i − 1

n

}])2

;

where KS is the Kolmogorov–Smirnov statistic, the best-known statistic for goodness-of-fit tests
(Kolmogorov, 1933; Smirnov, 1939; Massey, 1951; Stephens, 1970, 1974; Pratt and Gibbons,
1981; D’Agostino and Stephens, 1986; Gibbons, 1992; Cabaña, 1996; Conover, 1999).

2.2. w(t) = F0(t)
Replacing Zt of the first of equations (1.1) with X2

t generates the Anderson–Darling statistic

A2 = n

∫ ∞

−∞
{Fn.t/ − F0.t/}2 F0.t/−1{1 − F0.t/}−1 dF0.t/

= −2
n

n∑
i=1

[(
i − 1

2

)
log{F0.X.i//} +

(
n − i + 1

2

)
log{1 − F0.X.i//}

]
− n;

one of the most powerful and important goodness-of-fit tests in the literature (Anderson and
Darling, 1952, 1954; Stephens, 1970, 1974; D’Agostino and Stephens, 1986; Sinclair and Spurr,
1988).

2.3. dw(t) = F0(t) {1 – F0(t)} dF0(t)
Replacing Zt of the first of equations (1.1) with X2

t generates the famous Cramér–von Mises
statistic (Cramér, 1928; von Mises, 1931; Smirnov, 1936, 1937; Stephens, 1970, 1974; Knott,
1974; D’Agostino and Stephens, 1986; Csörgő and Faraway, 1996; Spinelli and Stephens, 1997;
Conover, 1999):

W2 = n

∫ ∞

−∞
{Fn.t/ − F0.t/}2 dF0.t/ =

n∑
i=1

{
F0.X.i// − i − 1

2

n

}2

+ 1
12n

:

3. New powerful goodness-of-fit tests

It is well known that, when testing the goodness of fit for a multinomial distribution, the Pearson
χ2-statistic is asymptotically equivalent to the likelihood ratio statistic. Therefore, under the null
hypothesis Ht in Section 1, the χ2-statistic X2

t and the likelihood ratio statistic G2
t are equivalent

in large sample situations, but they behave differently under the alternative H̄ t . We have seen
in Section 2 that traditional tests can be generated by using X2

t as Zt in equations (1.1). In this
section we shall use G2

t to produce new tests by choosing appropriate weight functions.
Let Ui = F0.Xi/ (i = 1; 2; : : :; n) so that U.i/ = F0.X.i//. Note that X1; X2; : : :; Xn are inde-

pendent and identically distributed (IID) from F0 if and only if U1; U2; : : :; Un are IID from
U.0; 1/, the standard uniform distribution. To test H versusH̄ , consider a statistic with the form
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T = T.U1; U2; : : :; Un/, where T.·/ is a given function independent of F0. Since Ui and 1 − Ui

are identically distributed under hypothesis H , a reasonable T should satisfy

T.U1; U2; : : :; Un/ = T.1 − U1; 1 − U2; : : :; 1 − Un/:

In such a case, we say that T is distribution symmetric about the median.
It is obvious that the traditional statistics (2.1)–(2.3) are functions of U1; U2; : : :; Un, and

they are distribution symmetric. To generate new distribution symmetric tests, we must choose
appropriate weight functions. Moreover, we sometimes need to modify Fn.t/ at its discontinuity
points X.i/ .i = 1; 2; : : :; n/ by defining Fn.X.i// = .i − c/=.n + 1 − 2c/, where c is a constant
between 0 and 1. The natural and intuitive choice of c is 1

2 so that Fn.X.i// = .i − 1
2 /=n or

{Fn.X.i/ − 0/ + Fn.X.i/ + 0/}=2, which is a common ‘continuity correction’ to the empirical
distribution function. In fact, we can imagine that at point x = X.i/ there are i − 1

2 or n − i + 1
2

observations among X1; X2; : : :; Xn which are less or greater than the x. Finally, the traditional
test statistics in Section 2 also suggest that Fn.X.i// should be .i − 1

2 /=n instead of i=n.
When necessary, we always define Fn.X.i// = .i − 1

2 /=n. Then new distribution symmetric
tests can be generated by choosing weight functions as follows.

3.1. w(t) =1
Let X.0/ =−∞ and X.n+1/ =∞. Replacing Zt of the second of equations (1.1) with G2

t produces

sup
t∈.−∞;∞/

.G2
t / = max

0�i�n

{
sup

X.i/�t<X.i+1/

.G2
t /

}
= max

1�i�n
.G2

X.i/
/;

which is equivalent to

ZK = max
1�i�n

((
i − 1

2

)
log

{
i − 1

2

n F0.X.i//

}
+
(

n − i + 1
2

)
log

[
n − i + 1

2

n{1 − F0.X.i//}

])
: (3.1)

3.2. dw(t) = Fn(t)–1{1 – Fn(t)} –1 dFn(t)
Replacing Zt of the first of equations (1.1) with G2

t produces

2
n∑

i=1

(
n

n − i + 1
2

log

{
i − 1

2

n F0.X.i//

}
+ n

i − 1
2

log

[
n − i + 1

2

n{1 − F0.X.i//}

])
;

which is equivalent to

ZA = −
n∑

i=1

[
log{F0.X.i//}

n − i + 1
2

+ log{1 − F0.X.i//}
i − 1

2

]
: (3.2)

3.3. dw(t) = F0(t)–1{1 – F0(t)} –1 dF0(t)
Replacing Zt of the first of equations (1.1) with G2

t produces
n∑

i=1
[log{F0.X.i//

−1 − 1} − bi−1 + bi]2 + Cn;

where Cn is a constant and bi = i log.i=n/ + .n − i/ log.1 − i=n/.
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Since bi−1 −bi ≈ log{.n− 1
2 /=.i− 3

4 /−1}, the above test statistic is approximately equivalent
to

ZC =
n∑

i=1

[
log

{
F0.X.i//

−1 − 1

.n − 1
2 /=.i − 3

4 / − 1

}]2

: (3.3)

The new statistics ZK, ZA and ZC are distribution symmetric. They appear similar to the
Kolmogorov–Smirnov KS, Anderson–Darling A2 and Cramér–von Mises W2 respectively, but
they are generally much more powerful (see Section 4). Unfortunately, it seems difficult to use
the analogue ZK of KS to construct simultaneous confidence bands for the true distribution
F.x/, which is a useful application of KS.

4. Power comparison by simulation

In this section we shall use the Monte Carlo approach to examine the powers of the new statistics
ZA, ZC and ZK and the traditional Kolmogorov–Smirnov statistic KS, Cramér–von Mises
statistic W2, Anderson–Darling statistic A2 and Pearson’s χ2-statistic X2. For the χ2-test, the
sample observations need to be grouped. Here we use the associated function in S-PLUS with
default values (see, for example, MathSoft (2000)).

The simulation size is 10000, and the significance level or the probability of type I error for
testing the goodness of fit is α = 0:05, at which level the critical values of the tests are simu-
lated independently with 1 million replicates except for the χ2-test built into S-PLUS involving
asymptotic approximation. The actual size of the χ2-test is close to 0.05 even for small samples
according to our simulation. For various null hypotheses H and the alternativesH̄ , all simulated
powers for the seven statistics are illustrated with graphs, where the powers are plotted against
the sample size n for selected values n = 10, 20, 30, 50, 70, 100, 150, 200, 300.

4.1. Example 1: H: X1,: : :, Xn �IID U(0, 1) versus NH: X1,: : :, Xn �IID beta(p, q)
Without loss of generality, we can assume that the underlying distribution F is the standard
uniform U.0; 1/ distribution under the null hypothesis H . Then a natural candidate for F under
the alternative H̄ is the beta distribution beta.p; q/ with parameters p and q, which includes the
uniform U.0; 1/ distribution, or beta.1; 1/ distribution. So, this example is actually a parametric
test for H : .p; q/ = .1; 1/ versus H̄ : .p; q/ �= .1; 1/.

For .p; q/ = .0:6; 0:8/, (0.6, 0.6), (0.8, 0.8), (1.3, 1.3), (1.6, 1.6), (1.3, 1.6), the powers of ZA,
ZC, ZK, KS, W2, A2 and X2 under the alternative hypothesisH̄ are plotted in Fig. 1. We see that
ZA and ZC have the highest power in the cases where p; q > 1 or p; q < 1, and they dominate
all the others. Although ZK is not as powerful as ZA and ZC, it is still more powerful than its
analogue KS.

We also consider the power of the entropy-based test of uniformity proposed by Dudewicz
and van der Meulen (1981). Their method involves choosing the best integer m which depends
on the sample size n, but the power results in their Table 3 are obtained from choosing the best m

not only for different n but also for different alternative distributions. Of course, different tests
fit different models. However, when performing a nonparametric test, we have no idea about the
alternative distribution. Therefore, if a fixed m is used for the same n but different alternative
distributions, the power of such a test is generally lower than that of the Anderson–Darling
test A2.
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Fig. 1. Comparison of powers when testing H: F = U(0, 1) versus NH: F = beta(p, q) at level α = 0.05
(�, ZA; �, ZC; �, ZK; : : : : : : : , X 2; � – � – �, A2; — — —, W 2; � � � – � � � , KS): (a) uniform versus beta(0.8, 0.8); (b)
uniform versus beta(1.3, 1.3); (c) uniform versus beta(0.6, 0.6); (d) uniform versus beta(1.6, 1.6); (e) uniform
versus beta(0.6, 0.8); (f) uniform versus beta(1.3, 1.6)

4.2. Example 2: H: X1,: : :, Xn �IID N(µ; σ2) versus NH: X1,: : :, Xn �IID t(k)
Because of the importance of the normal distribution, F is assumed to be a normal distribution
N.µ;σ2/ under the null hypothesis H . It is interesting to consider that

(a) F also has a symmetric distribution under the alternative H̄ , say t.k/, the t-distribution
with k degrees of freedom, and
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(b) both distributions have the same mean and variance, i.e. µ = 0 and σ2 = k=.k − 2/

.k � 3/.

Since N.0; 1/ = t.∞/, testing H : F = N.µ;σ2/ versus H̄ : F = t.k/ is equivalent to testing
H : k = ∞ versus H̄ : k �= ∞. Fig. 2 compares the powers of the seven statistics ZA, ZC, ZK, KS,
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Fig. 2. Comparison of powers when testing either H: F = N(µ, σ2) versus H̄: F = t(k) or H: F = N(µ, σ2)
versus H̄: F = gamma(r, 1) at level α = 0.05 (�, ZA; ◦, ZC; �, ZK; : : : : : : : , X 2; · – · – ·, A2; −−−−−−, W 2;
· · ·–· · · , KS): (a) normal versus t (10); (b) normal versus gamma(20, 1); (c) normal versus t(5); (d) normal versus
gamma(10, 1); (e) normal versus t(3); (f) normal versus gamma(5, 1)
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W2, A2 and X2 for k = 3; 5; 10. Clearly ZC is the best and ZA, ZC and ZK dominate the others
(sometimes they are much more powerful).

The Cauchy and logistic distributions are also typical examples of symmetric distributions
which can be considered as the underlying distribution under hypothesis H̄ . The power com-
parison for the logistic distribution is like that for t.9/, whereas the Cauchy distribution is t.1/.

4.3. Example 3: H: X1,: : :, Xn �IID N(µ, σ2) versus NH: X1,: : :, Xn �IID gamma(r, 1)
In this example F is also assumed to be N.µ;σ2/ under hypothesis H , but it has an asymmetric
distribution underH̄ , such as gamma.r; 1/, the gamma distribution with shape parameter r and
scale parameter 1, which includes exponential and χ2-distributions. We also assume that both
distributions have the same mean and variance, i.e. µ = r and σ2 = r.

Similarly, since the asymptotic distribution of gamma.r; 1/ is normal when r → ∞, testing
H : F = N.µ;σ2/ versusH̄ : F = gamma.r; 1/ is equivalent to testing H : r = ∞ versusH̄ : r �= ∞.

Simulated powers of the seven statistics for r = 5; 10, 20 are also plotted in Fig. 2, which
shows that

(a) ZA; ZC and ZK dominate the others and
(b) the powers of ZA and ZC are sometimes substantially higher than those of the tradi-

tional statistics.

Other asymmetric distributions, such as the log-normal, Weibull, F - and beta distributions,
were also considered as alternative distributions against the normal distribution. These situa-
tions are similar to that of the gamma distribution.

4.4. Example 4: H: X1,: : :, Xn �IID N(0, 1) versus NH: X1,: : :, Xn �IID N(µ, σ2)
In the last example, F is assumed to be normal under both hypotheses H and H̄ . Without loss
of generality, we need to consider only the test for H : F = N.0; 1/ versus H̄ : F = N.µ;σ2/, or
equivalently H : .µ;σ2/ = .0; 1/ versus H̄ : .µ;σ2/ �= .0; 1/.

Six cases are considered with alternatives

(a) N.0:1; 1/,
(b) N.0:4; 1/,
(c) N.0; 1:5/,
(d) N.0; 2/,
(e) N.0:1; 2/ and
(f) N.0:4; 1:5/:

In cases (a) and (b), the two distributions have the same variance but different means, and in
cases (c) and (d) they have the same mean but different variances. In cases (e) and (f), the means
and variances are both different.

For normal distribution models, the distributions differ in the mean and variance only. There
is no shape difference in terms of skewness and kurtosis. For each case Fig. 3 compares the
powers of the seven tests, as well as the optimal parametric t-test and the χ2-test for a normal
mean and variance.

It is clear that for cases (a), (b) and (f) where the major difference between the two distributions
arises from their means rather than variances, there is no significant difference in power between
the new tests and their analogues A2, W2 and KS. Conversely, for the other three cases, the
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Fig. 3. Comparison of powers when testing H: F = N(0, 1) versus H̄: F = N(µ, σ2) at level α = 0.05 (�, ZA;◦, ZC; �, ZK; : : : : : : : , X 2; · – · – ·, A2; — — —, W 2; · · · –· · · , KS; - – - –, t; .........., χ2): (a) N(0, 1) versus
N(0.1, 1); (b) N(0, 1) versus N(0.4, 1); (c) N(0, 1) versus N(0, 1.5); (d) N(0, 1) versus N(0, 2); (e) N(0, 1) versus
N(0.1, 2); (f) N(0, 1) versus N(0.4, 1.5)

advantage of the new tests is obvious. When the difference in distribution arises from their
means only, such as cases (a) and (b), the six tests are almost as powerful as the optimal t-test.
In cases (c) and (d) where the only difference comes from the variances, the power lost by using
the new tests over the χ2-test is much less than that by using their analogues. Of A2, W2 and
KS, A2 is the best in almost all cases, which is also true for other examples.
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Table 1. Percentage points for 10ZA � 32

n Percentage points for the following levels α:

0.001 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999

5 −0:1639 0.140 0.666 1.094 1.824 2.549 3.334 4.235 5.317 6.71 8.70 12.24 15.98 25.43 39.77
6 0.0718 0.358 0.836 1.224 1.875 2.514 3.200 3.989 4.929 6.14 7.86 10.88 14.04 22.10 34.55
7 0.2386 0.506 0.942 1.292 1.879 2.452 3.064 3.763 4.599 5.67 7.18 9.83 12.62 19.68 30.39
8 0.3532 0.613 1.015 1.335 1.872 2.392 2.946 3.574 4.322 5.28 6.63 9.01 11.49 17.69 27.46
9 0.4454 0.683 1.061 1.359 1.854 2.327 2.834 3.405 4.084 4.95 6.18 8.32 10.54 16.17 24.74

10 0.5140 0.742 1.095 1.374 1.831 2.270 2.736 3.261 3.887 4.69 5.80 7.75 9.79 14.89 22.74
12 0.6158 0.823 1.137 1.381 1.782 2.164 2.566 3.017 3.554 4.23 5.19 6.86 8.60 12.89 19.64
14 0.6861 0.872 1.156 1.375 1.732 2.071 2.427 2.824 3.294 3.89 4.73 6.19 7.70 11.46 17.32
16 0.7350 0.906 1.164 1.364 1.686 1.989 2.309 2.665 3.087 3.62 4.37 5.67 7.01 10.35 15.47
18 0.7659 0.929 1.168 1.351 1.645 1.923 2.214 2.536 2.917 3.40 4.07 5.24 6.46 9.47 14.11
20 0.7964 0.945 1.167 1.336 1.607 1.862 2.127 2.421 2.769 3.21 3.82 4.89 5.99 8.69 12.84
25 0.8427 0.972 1.159 1.301 1.528 1.741 1.961 2.204 2.490 2.85 3.35 4.23 5.13 7.32 10.71
30 0.8668 0.982 1.147 1.271 1.467 1.650 1.838 2.047 2.291 2.60 3.03 3.76 4.53 6.39 9.22
40 0.8980 0.990 1.122 1.220 1.377 1.521 1.668 1.831 2.022 2.26 2.59 3.16 3.75 5.17 7.37
50 0.9120 0.990 1.102 1.184 1.314 1.433 1.555 1.689 1.845 2.04 2.31 2.77 3.25 4.41 6.16
70 0.9233 0.983 1.070 1.132 1.230 1.319 1.410 1.510 1.626 1.77 1.97 2.31 2.65 3.49 4.75

100 0.9270 0.974 1.038 1.085 1.157 1.222 1.289 1.361 1.445 1.55 1.69 1.93 2.18 2.78 3.70
150 0.9272 0.960 1.007 1.040 1.092 1.138 1.184 1.234 1.292 1.36 1.46 1.63 1.80 2.20 2.81
200 0.9246 0.951 0.988 1.014 1.054 1.089 1.125 1.164 1.209 1.26 1.34 1.47 1.59 1.90 2.35
300 0.9207 0.940 0.966 0.985 1.013 1.037 1.062 1.089 1.120 1.16 1.21 1.30 1.38 1.59 1.90
500 0.9156 0.928 0.945 0.957 0.975 0.991 1.006 1.023 1.042 1.07 1.10 1.15 1.20 1.33 1.52

1000 0.9097 0.917 0.926 0.933 0.942 0.951 0.959 0.968 0.978 0.99 1.01 1.03 1.06 1.13 1.22
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Table 2. Percentage points for ZC

n Percentage points for the following levels α:

0.001 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999

5 0.319 0.801 1.63 2.26 3.24 4.13 5.04 6.03 7.18 8.61 10.6 14.2 18.3 30.6 54.6
6 0.437 0.977 1.86 2.51 3.54 4.46 5.41 6.44 7.63 9.11 11.2 14.8 18.9 31.1 54.9
7 0.536 1.118 2.04 2.72 3.78 4.74 5.71 6.76 7.98 9.50 11.6 15.3 19.4 31.5 54.4
8 0.621 1.241 2.20 2.91 3.99 4.97 5.97 7.05 8.29 9.84 12.0 15.7 19.9 31.8 54.8
9 0.703 1.352 2.34 3.06 4.18 5.18 6.19 7.29 8.56 10.14 12.3 16.1 20.2 32.1 55.6

10 0.762 1.444 2.46 3.20 4.34 5.36 6.40 7.52 8.81 10.42 12.6 16.5 20.6 32.4 55.1
12 0.892 1.625 2.68 3.45 4.63 5.68 6.75 7.90 9.22 10.85 13.1 17.0 21.2 32.9 56.2
14 1.002 1.763 2.86 3.65 4.87 5.95 7.04 8.21 9.56 11.24 13.5 17.5 21.7 33.4 56.2
16 1.087 1.893 3.02 3.83 5.07 6.18 7.29 8.48 9.86 11.57 13.9 17.9 22.2 33.8 56.3
18 1.168 1.999 3.15 3.99 5.26 6.38 7.51 8.73 10.13 11.85 14.2 18.3 22.6 34.3 56.8
20 1.232 2.087 3.27 4.12 5.41 6.55 7.69 8.93 10.35 12.10 14.5 18.6 22.9 34.5 57.1
25 1.408 2.286 3.53 4.41 5.75 6.93 8.11 9.38 10.82 12.62 15.1 19.3 23.6 35.4 57.6
30 1.520 2.472 3.74 4.65 6.02 7.24 8.44 9.74 11.22 13.05 15.5 19.8 24.2 35.8 57.4
40 1.720 2.714 4.07 5.03 6.46 7.72 8.97 10.32 11.86 13.75 16.3 20.7 25.2 36.9 59.1
50 1.907 2.928 4.33 5.32 6.79 8.09 9.39 10.76 12.34 14.26 16.9 21.3 25.9 37.5 59.4
70 2.130 3.244 4.72 5.76 7.31 8.66 9.99 11.42 13.05 15.03 17.7 22.3 26.9 38.6 60.2

100 2.390 3.583 5.15 6.23 7.84 9.25 10.64 12.12 13.79 15.84 18.6 23.3 28.0 39.8 61.4
150 2.701 3.981 5.63 6.78 8.47 9.95 11.38 12.93 14.67 16.79 19.6 24.4 29.2 41.1 62.2
200 2.939 4.256 5.98 7.16 8.90 10.41 11.90 13.48 15.26 17.43 20.3 25.2 30.1 42.2 63.5
300 3.269 4.662 6.48 7.71 9.54 11.11 12.66 14.29 16.13 18.36 21.4 26.3 31.3 43.5 64.7
500 3.630 5.178 7.11 8.41 10.33 11.97 13.60 15.30 17.21 19.52 22.6 27.7 32.8 45.1 66.1

1000 4.217 5.867 7.96 9.37 11.42 13.17 14.86 16.65 18.66 21.06 24.3 29.6 34.8 47.3 68.5
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Table 3. Percentage points for ZK

n Percentage points for the following levels α:

0.001 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999

5 0.0385 0.0952 0.190 0.268 0.402 0.532 0.672 0.829 1.02 1.25 1.59 2.16 2.74 4.10 6.01
6 0.0572 0.1225 0.229 0.316 0.461 0.601 0.749 0.916 1.11 1.36 1.71 2.30 2.90 4.30 6.29
7 0.0740 0.1462 0.263 0.356 0.510 0.658 0.812 0.985 1.19 1.45 1.81 2.42 3.03 4.46 6.45
8 0.0870 0.1670 0.293 0.392 0.554 0.708 0.868 1.048 1.26 1.52 1.89 2.51 3.13 4.57 6.59
9 0.1014 0.1865 0.319 0.423 0.592 0.751 0.916 1.100 1.32 1.59 1.96 2.59 3.22 4.69 6.70

10 0.1130 0.2041 0.344 0.451 0.626 0.790 0.960 1.148 1.37 1.64 2.02 2.66 3.30 4.77 6.83
12 0.1380 0.2370 0.387 0.502 0.686 0.857 1.034 1.228 1.46 1.74 2.13 2.78 3.43 4.94 7.08
14 0.1575 0.2634 0.422 0.542 0.734 0.911 1.095 1.295 1.53 1.82 2.22 2.88 3.54 5.06 7.20
16 0.1740 0.2873 0.453 0.578 0.775 0.957 1.145 1.350 1.59 1.88 2.29 2.96 3.63 5.16 7.31
18 0.1900 0.3094 0.480 0.610 0.814 1.000 1.191 1.400 1.64 1.94 2.35 3.04 3.71 5.25 7.41
20 0.2039 0.3268 0.504 0.637 0.844 1.034 1.229 1.441 1.69 1.99 2.41 3.10 3.78 5.32 7.48
25 0.2367 0.3683 0.555 0.694 0.910 1.108 1.309 1.527 1.78 2.09 2.51 3.21 3.90 5.47 7.67
30 0.2589 0.3986 0.596 0.741 0.964 1.167 1.373 1.597 1.85 2.17 2.60 3.31 4.01 5.58 7.78
40 0.3001 0.4492 0.660 0.811 1.047 1.259 1.473 1.703 1.97 2.29 2.73 3.46 4.17 5.78 7.97
50 0.3298 0.4879 0.707 0.866 1.108 1.326 1.544 1.781 2.05 2.38 2.82 3.55 4.27 5.89 8.13
70 0.3756 0.5460 0.778 0.943 1.195 1.420 1.645 1.887 2.16 2.50 2.96 3.70 4.42 6.05 8.31

100 0.4208 0.6040 0.850 1.022 1.285 1.517 1.750 1.998 2.28 2.62 3.09 3.84 4.57 6.23 8.52
150 0.4728 0.6665 0.926 1.108 1.381 1.623 1.861 2.117 2.41 2.76 3.22 3.99 4.73 6.40 8.67
200 0.5075 0.7091 0.977 1.164 1.444 1.689 1.933 2.191 2.48 2.84 3.31 4.08 4.83 6.51 8.84
300 0.5564 0.7702 1.051 1.243 1.531 1.782 2.031 2.296 2.59 2.95 3.43 4.21 4.96 6.65 8.97
500 0.6174 0.8414 1.134 1.335 1.633 1.891 2.145 2.415 2.72 3.08 3.56 4.35 5.10 6.80 9.16

1000 0.6859 0.9332 1.239 1.449 1.757 2.024 2.284 2.557 2.87 3.23 3.72 4.52 5.28 6.99 9.35
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5. The distributions of ZA, ZC and ZK

Like the Anderson–Darling A2, Cramér–von Mises W2 and Kolmogorov–Smirnov KS, the new
statistics ZA, ZC and ZK are distribution free. Our simulation for skewness and kurtosis shows
that the sampling distributions of ZA, ZC and ZK converge very slowly. Therefore, it is of limited
practical value to study their asymptotic distributions. Just as for A2, W2 and KS, it is difficult
to find their exact null distributions for finite sample cases except for small sample sizes.

Again Monte Carlo simulation is used to approximate the percentage points of ZA, ZC and ZK
for some selected sample sizes. Tables 1, 2 and 3 respectively give their approximate percentage
points at different levels, which are based on a simulation of size 1 million. The simulation error
can be estimated in terms of percentage levels rather than percentage points. Specifically, the
standard error or deviation of the simulation at percentage level α is

√{α.1 − α/=N}, where
N = 1000000 is the number of replicates of the simulation.

6. Concluding remarks

In this paper, we have established powerful goodness-of-fit tests for the basic situation where the
hypothetical distribution F0.x/ is completely known. If F0.x/ has some unknown parameters,
we need to estimate the parameters first and then to apply the tests. This is a common approach
for general goodness-of-fit tests for parametric models. However, the test statistics are then
no longer distribution free. In such a case, we are testing the goodness of fit for a family of
distributions rather than a specific distribution. As a result, for different families, the sampling
distributions of the statistics are different.

For example, if F0.x/ = Φ{.x − µ/=σ}, the distribution function of a normal population
N.µ;σ2/ with µ and σ2 unknown, we can use the sample mean and the sample variance to
estimate µ and σ2 respectively. Then ZA, ZC and ZK in equations (3.1)–(3.3) can be applied
to test the goodness of fit for normality. In such a case, our simulation results (Zhang, 2001)
show that ZA and ZC outperform the best tests of normality in the literature, including the
Shapiro–Wilk W (Shapiro and Wilk, 1965) and the Anderson–Darling A2; see D’Agostino and
Stephens (1986).

The parameterization approach in this paper has been developed and applied to the general
two-sample and even k-sample tests, where the underlying distribution of each population is
totally unknown. Parallel results are obtained (Zhang, 2001).
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