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Abstract— This paper provides an introduction and overview
of recent work on control barrier functions and their use to ver-
ify and enforce safety properties in the context of (optimization
based) safety-critical controllers. We survey the main technical
results and discuss applications to several domains including
robotic systems.

I. INTRODUCTION

It is easy to agree that any engineered system should
be designed to be safe. In fact, the term safety-critical
system is many times used to distinguish those systems
for which safety is a major design consideration. But what
exactly is safety? How do we define it and how can we
design systems to achieve it? The notion of safety was first
introduced in 1977 in the context of program correctness
by Leslie Lamport [1] and formalized in [2], see also [3].
Intuitively, safety requires that “bad” things do not happen
while liveness requires that “good” things eventually happen,
e.g., asymptotic stability can be seen as an example of a
liveness property in the sense that an asymptotically stable
equilibrium point is eventually reached. Dually, invariance
can be seen as an example of a safety property in the sense
that any trajectory starting inside an invariant set will never
reach the complement of the set, describing the locus where
bad things happen. Based on the identification of liveness
with asymptotic stability and safety with invariance, it can be
argued that safety has received much less attention in control
theory than liveness. Moreover, the notion of Lyapunov
function has played a predominant role in the investigation
of liveness properties.

The objective of this paper is to refocus the discussion
on safety by introducing control barrier functions that play a
role equivalent to Lyapunov functions in the study of liveness
properties. There are two main reasons driving a surge in
research related to safety and control barrier functions: 1) the
recent interest in autonomous systems has brought safety to
the forefront of systems’ design. In particular, autonomous
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systems are expected to operate in unknown and unstructured
environments which makes it considerably harder to enforce
safety properties; 2) the recent introduction of control barrier
functions suggests that many control design techniques based
on Lyapunov and control Lyapunov functions can be suitably
transposed to address safety considerations. Hence, we have
both the societal need for safety as well as the tools to
raise safety to the same level of maturity than liveness in
the design of control systems.

A. Brief History of Barrier Functions

The study of safety in the context of dynamical systems
dates back to the 1940’s when Nagumo provided necessary
and sufficient conditions for set invariance [4] (see [5] for
a more detailed historical account, and [6] for a modern
proof). In particular, given a dynamical system ẋ = f(x)
with x ∈ Rn, assuming that the safe set C is the superlevel
set of a smooth function h : Rn → R, i.e., C = {x ∈
Rn : h(x) ≥ 0}, and that ∂h

∂x (x) 6= 0 for all x such
that h(x) = 0, then Nagumo’s Theorem gives necessary
and sufficient conditions for set invariance based upon the
derivative of h on the boundary of C:

C is invariant ⇔ ḣ(x) ≥ 0 ∀ x ∈ ∂C.

These conditions have been independently re-discovered on
multiple occasions; in particular, around the 1970s by Bony
and Brezis [7], [8] (the proof in [6] follows Brezis).

In the 2000’s we saw another change of perspective
brought by the need to verify hybrid systems. Barrier cer-
tificates were introduced as a convenient tool to formally
prove safety of nonlinear and hybrid systems [9], [10]; these
results, again, seemed to independently discover Nagumo’s
theorem. The choice of the term “barrier” was motivated by
its use in the optimization literature where barrier functions
are added to cost functions to avoid undesirable regions. In
the case of barrier certificates, one considers an unsafe set
Cu and a set of initial conditions C0 together with a function
B : Rn → R where B(x) ≤ 0 for all x ∈ C0 and B(x) > 0
for all x ∈ Cu. Then B is a barrier certificate if

Ḃ(x) ≤ 0 ⇒ C is invariant

In the notation for C above, by picking the safe set to be the
complement of the unsafe set C = Ccu, with B(x) = −h(x)
the barrier certificate conditions become: ḣ(x) ≥ 0 which
implies that C is invariant. Therefore, these conditions reduce
to those of Nagumo’s theorem on the boundary. Importantly,
the necessity of barrier certificates were studied [11] along
with their extension to a stochastic setting [12].
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As a means to extend the safety guarantees beyond the
boundary of the set, there have been a variety of approaches
that can be best described as “Lyapunov-like.” That is,
Lyapunov functions yield invariant level sets so, if these level
sets are contained in the safe set one can guarantee safety—
importantly, these conditions can be applied over the entire
set and not just on the boundary. In this case, as developed in
[13], one constructs a “barrier Lyapunov function” B much
as above but with the additional requirement that it is, for
all intents and purposes, positive definite. Then, by enforcing
the condition that Ḃ ≤ 0 over the set C, it ensures invariance
of this set and thus safety. The major limitation is that, while
these conditions ensure safety they also enforce invariance of
every level set. Thus, they are overly strong and conservative.

While the above results addressed closed dynamical sys-
tems, i.e., systems without inputs, the work on viability
theory [14], [15], [16] extended them to open dynamical
systems, e.g., control systems given by ẋ = f(x) + g(x)u
for u ∈ U ⊂ Rm. This required moving from invariant sets
to controlled invariant sets: sets that can be made invariant
by suitably designing a controller.

The notion of a barrier certificate was extended to a
“control” version to yield the first definition of a “control
barrier function” [17]—although this definition is different
than the one considered in this paper. In particular, given
a control system and a safe set C as defined above by a
function h, the conditions in [17] are effectively:

∃ u s.t. ḣ(x, u) ≥ 0 ⇒ C is invariant

These ideas were built upon so as to explicitly combine
barrier functions with control Lyapunov functions [18]—
this was done contemporaneously with the development of
the methods presented in this paper which use optimization
based controllers to unify Lyapunov and barrier functions.
In particular, as further developed in [19], conditions were
given on creating “control Lyapunov barrier functions” that
jointly guarantee safety and stability. Yet, in these cases
the conditions in the end reduce to enforcing ḣ(x, u) ≥
0. However, these conditions are stronger than necessary,
and thus motivate the “modern” version of control barrier
functions.

The aforementioned methods all led to the most recent
formulation of certificates of safety, termed control bar-
rier functions, as recognition of the historical developments
outlined above—these were first introduced in [20], and
later refined in [21]. In particular, the idea was to extend
the barrier function conditions (e.g., those discovered by
Nagumo) to the entirety of the safe set. For a control system,
and a safe set C defined by a function h, this new form of
control barrier functions are defined by the condition:

∃ u s.t. ḣ(x, u) ≥ −α(h(x)) ⇔ C is invariant

for α an (extended) class K function. Importantly, this con-
dition is necessary and sufficient (for compact sets) and thus
is minimally restrictive. Finally, because these conditions are
true over the entire set C they give a way to synthesize safe

controllers—in this case, through the use of optimization-
based control methods that modify the desired controller
again in a minimally invasive fashion. This formulation,
therefore, provides a foundational framework for safety-
critical control.

The utility of this new formulation of control barrier
functions is evidenced by the application domains it has
been applied to since its inception, including: automotive
systems [22], [23], [24], mulit-robot systems [25], [26],
[27], quadrotors [28], [29] and robotic systems including
walking robots [30], [31], [32], to name a few. Additionally,
it allows for the unification of safety (via a control barrier
function) and stability (via a control Lyapunov function) in
the context of an optimization based controller—in fact, it
was optimization based controllers using control Lyapunov
functions that motivated the development of this new form of
barrier function. This formulation of control barrier functions
will be the focus of this paper, as motivated by the conceptual
connections with control Lyapunov functions together with a
recognition of the basic differences between control barrier
and Lyapunov functions.

B. Overview of Paper

Building upon the history of barrier functions, and moti-
vated by the new developments, this paper aims to establish
the basic theory of safety-critical control and highlight some
important applications.
Theory: We begin in Section II by establishing the founda-
tions of control barrier functions. This is motivated from the
perspective of stabilization with control Lyapunov functions,
leading to the “dual” of stability: safety as enforced by
control barrier functions. The properties of these functions
are discussed, along with the synthesis of optimization-based
controllers. In Section III, the application of CBFs to systems
with actuation constraints is considered. Finally, in Section
IV, the extension of CBFs to constraints with higher relative
degree is considered.
Application: The discussion of the application of CBFs be-
gins in Section V with the consideration of robotic systems.
In particular, we begin by considering the “stepping stone”
problem, wherein a robot must walk safely on a series of
stepping stones. This is followed by a brief discussion of
the experimental implementation of barriers in the context
of automotive safety systems and dynamic robotic systems.
Additionally, the application of CBFs in the context of
long duration autonomy is formulated and demonstrated
experimentally.

II. FOUNDATIONS OF CONTROL BARRIER FUNCTIONS

In this section, we introduce the fundamentals of control
barrier functions. That is, we introduce safety, safety sets, and
a means in which to enforce safety in a minimally invasive
fashion. To motivate these considerations, we will begin by
reviewing control Lyapunov functions (CLFs) and discuss
how they can be used to synthesize controllers that enforce
stability. This naturally leads to the “dual” for safety: control
barrier functions (CBFs). We will formulate optimization
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based controllers from CBFs and conclude by describing how
they can be unified with CLFs.

Throughout this paper, we will suppose that we have a
nonlinear affine control system:

ẋ = f(x) + g(x)u, (1)

with f and g locally Lipschitz, x ∈ D ⊂ Rn and u ∈ U ⊂
Rm is the set of admissible inputs.

A. Motivation: Control Lyapunov Functions
To motivate safety for systems of this form, and hence

control barrier functions, we begin by considering the famil-
iar objective of stabilizing the system. Suppose we have the
control objective of (asymptotically) stabilizing the nonlinear
control system (1) to a point x∗ = 0, i.e., driving x(t)→ 0.
In a nonlinear context, this can be achieved—and, in fact,
understood—by equivalently finding a feedback control law
that drives a positive definite function, V : D ⊂ Rn → R≥0,
to zero. That is, if

∃ u = k(x) s.t. V̇ (x, k(x)) ≤ −γ(V (x)), (2)

where

V̇ (x, k(x)) = LfV (x) + LgV (x)k(x),

then the system is stabilizable to V (x∗) = 0, i.e., x∗ = 0.
Note that here γ : R≥0 → R≥0 is a class K function
defined on the entire real line for simplicity, i.e., γ maps
zero to zero, γ(0) = 0, and it is strictly monotonic: for
all r1, r2 ∈ R≥0, r1 < r2 implies that γ(r1) < γ(r2).
Thus, the process of stabilizing a nonlinear system can be
understood as finding an input that creates a one-dimensional
stable system given by the Lyapunov function: V̇ ≤ −γ(V ),
wherein the comparison lemma (see, e. g., [33]) implies that
the full-order nonlinear system (1) is thus stable under the
control law u = k(x).

The above observations motivate the notion of a control
Lyapunov function wherein a function V is shown to stabilize
the system without the need to explicitly construct the
feedback controller u = k(x). That is, as first observed
by Sontag and Artstein [34], [35], [36], we only need a
controller to exist that results in the desired inequality on
V̇ . Concretely, V is a control Lyapunov function (CLF) if it
is positive definite and satisfies:

inf
u∈U

[LfV (x) + LgV (x)u] ≤ −γ(V (x)), (3)

where γ is again a class K function. The importance of this
definition is that it allows for us to consider the set of all
stabilizing controllers for every point x ∈ D:

Kclf(x) := {u ∈ U : LfV (x) + LgV (x)u ≤ −γ(V (x))}.
(4)

This is an affine constraint in u and thus will allow for
the formulation of optimization based controllers. It also
elucidates conditions on when V is a CLF; for example,
if U = Rm, it is easy to verify that

LgV (x) = 0 =⇒ LfV (x) ≤ −γ(V (x))

=⇒ Kclf(x) 6= ∅

and thus there are stabilizing controllers. More generally, we
have the following central stabilization result for CLFs [37].

Theorem 1. For the nonlinear control system (1), if there
exists a control Lyapunov function V : D → R≥0, i.e., a
positive definite function satisfying (3), then any Lipschitz
continuous feedback controller u(x) ∈ Kclf(x) asymptoti-
cally stabilizes the system to x∗ = 0.

B. Control Barrier Functions

Unlike stability which involves driving a system to a
point (or a set), safety can be framed in the context of
enforcing invariance of a set, i.e., not leaving a safe set. In
particular, we consider a set C defined as the superlevel set
of a continuously differentiable function h : D ⊂ Rn → R,
yielding:

C = {x ∈ D ⊂ Rn : h(x) ≥ 0},
∂C = {x ∈ D ⊂ Rn : h(x) = 0}, (5)

Int(C) = {x ∈ D ⊂ Rn : h(x) > 0}.

We refer to C as the safe set.

Safety. Let u = k(x) be a feedback controller such that the
resulting dynamical system

ẋ = fcl(x) := f(x) + g(x)k(x) (6)

is locally Lipschitz. To formally define safety, due to the
locally Lipschitz assumption, for any initial condition x0 ∈
D there exists a maximum interval of existence I(x0) =
[0, τmax) such that x(t) is the unique solution to (6) on I(x0);
in the case when fcl is forward complete [33], τmax = ∞.
This allows us to define safety:

Definition 1. The set C is forward invariant if for every x0 ∈
C, x(t) ∈ C for x(0) = x0 and all t ∈ I(x0). The system
(6) is safe with respect to the set C if the set C is forward
invariant.

Control Barrier Functions (CBFs). Using control Lya-
punov functions as motivation, we wish to generalize to the
concept of safety. Yet, one must be careful about directly
generalizing Lyapunov (as done, in particular, in [38]). If
there exists a CLF V such that V (x) = 0 =⇒ x ∈ C and
V has a superlevel set Ωc = {x ∈ D : V (x) ≤ c} ⊂ C, then
the corresponding controllers in (4) will render Ωc invariant,
and hence C safe. Nevertheless, this is overly restrictive as
it would render every sublevel set invariant, i.e., Ωc′ for all
c′ < c. Rather, we wish to enforce set invariance without
requiring a positive definite function, i.e., for h to be a
control barrier function it should render C invariant but not
its sublevel sets.

This motivates the formulation of control barrier
functions. Before defining these, we note that an
extended class K∞ function is a function α : R → R that
is strictly increasing and with α(0) = 0; that is, extended
class K∞ functions are defined on the entire real line:
R = (−∞,∞). This allows us to define [21], [22]:
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Definition 2. Let C ⊂ D ⊂ Rn be the superlevel set of a
continuously differentiable function h : D → R, then h is
a control barrier function (CBF) if there exists an extended
class K∞ function α such that for the control system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)). (7)

for all x ∈ D.

Remark 3. Note that, as discussed in Section I, the first
notion of a control barrier function [20] was defined in terms
of what are now termed reciprocal barrier functions. These
blow-up on the boundary, hence the use of the term “barrier”:

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞. (8)

wherein the control barrier function condition (7) becomes:

inf
u∈U

[LfB(x) + LgB(x)u] ≤ α
(

1

B(x)

)
. (9)

This class of barrier functions can be more suitable for some
applications, but typically barrier functions, h, are preferable
since they are well defined outside of C.

Remark 4. The idea of extending set invarience conditions,
i.e., the condition that ḣ ≥ 0 for all x ∈ ∂C, to all of C
was first considered in [14] in the form of the following
condition: ḣ ≥ −h for all x ∈ C. This can be viewed as a
very special case of a CBF wherein α(r) = r in (7).

Guaranteed Safety via CBFs. We can consider the set
consisting of all control values that render C safe:

Kcbf(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.
(10)

That is, as in the case of CLFs, we can quantify the set of
all control inputs at a point x ∈ D that keep the system safe.

The main result of [21], and the main result with regard
to control barrier functions, is that the existence of a control
barrier function implies that the control system is safe:

Theorem 2. Let C ⊂ Rn be a set defined as the superlevel set
of a continuously differentiable function h : D ⊂ Rn → R.
If h is a control barrier function on D and ∂h

∂x (x) 6= 0
for all x ∈ ∂C, then any Lipschitz continuous controller
u(x) ∈ Kcbf(x) for the system (1) renders the set C safe.
Additionally, the set C is asymptotically stable in D.

Remark 5. The condition that the gradient of h not vanish
on the boundary is equivalent to requiring that 0 is a regular
value of h [6]. Note that this condition was not explicitly
stated in [21], but the proof of this result utilizes Nagumo’s
theorem [4] which requires this regularity condition [6].

Remark 6. It is important to stress that this result not only
guarantees that the safe set C is invariant, but makes the
set C asymptotically stable. This has beneficial consequences
with regard to practical implementation. While a system will
not formally leave the safe set C, noise and modeling errors
might force the system to leave this set. As a result of the

main CBF theorem, controllers in Kcbf(x) will drive the
system back to the set C.

Necessity for Safety. Finally, we note that control barrier
functions provide the strongest possible conditions for safety
in that they are necessary and sufficient given reasonable
assumptions on C [21]:

Theorem 3. Let C be a compact set that is the superlevel
set of a continuously differentiable function h : D → R with
the property that ∂h

∂x (x) 6= 0 for all x ∈ ∂C. If there exists a
control law u = k(x) that renders C safe, i.e., C is forward
invariant with respect to (6), then h|C : C → R is a control
barrier function on C.

C. Optimization Based Control

Having established that control barrier functions give
(necessary and sufficient) conditions on safety, the question
becomes: how does one synthesize controllers? Importantly,
we wish to do so in a minimally invasive fashion, i.e., modify
an existing controller in a minimal way so as to guarantee
safety. This naturally leads to optimization based controllers:
Safety-Critical Control. Suppose we are given a feedback
controller u = k(x) for the control system (1) and we wish to
guarantee safety. Yet it may be the case that k(x) /∈ Kcbf(x)
for some x ∈ D. To modify this controller in a minimal
way so as to guarentee safety, we start by noticing that the
conditions on safety given in (10) are affine in u. Thus, we
can consider the following Quadratic Program (QP) based
controller that finds the minimum perturbation on u:

u(x) = argmin
u∈Rm

1

2
‖u− k(x)‖2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))

where here we assumed that U = Rm. Thus, when there
are no input constraints, since we have a single inequality
constraint the CBF-QP has a closed-form solution (per the
KKT conditions [39]) given by the min-norm controller; this
was first utilized in the context of CLFs [40], [37].
Unifying with Lyapunov. The QP based formulation of
safety-critical controllers suggests a means in which to unify
safety and stability. In fact, optimization-based controllers
were first utilized in the context of CLFs exactly for the
purpose of multi-objective nonlinear control [41], e.g., com-
bining stability with torque constraints [42]. Concretely, we
consider the following QP based controller:

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (CLF-CBF QP)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ

Lfh(x) + Lgh(x)u ≥ −α(h(x))

where here H(x) is any positive definite matrix (pointwise
in x), and δ is a relaxation variable that ensures solvability
of the QP as penalized by p > 0 (i.e., to ensure the QP has a
solution one must relax the condition on stability to guarantee
safety). In [21] it was established that this controller is
Lipschitz continuous.
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III. CBFS FOR SYSTEMS WITH ACTUATION
CONSTRAINTS

Consider again the nonlinear affine control system (1) and
assume there exists an allowable set of states A = {x ∈ D :
ρ(x) ≥ 0} defined via some performance function ρ : D →
R. Our objective is to construct a CBF h : D → R such that

{x ∈ D : h(x) ≥ 0} ⊆ {x ∈ D : ρ(x) ≥ 0}, (11)

that is, such that the safe set C, corresponding to the
superlevel set of the CBF h, is contained within the set
of allowed states A. Of course, it may be possible to take
h(x) = ρ(x) if this choice satisfies (7) for an appropriate
function α, in which case our objective is met.

However, in this section, we focus on the case when A
cannot be rendered invariant and instead we must find a safe
subset that is a strict subset of the allowable set. The inability
of A itself to be rendered forward invariant could be due to,
e.g., a control set U that restricts the available control actions
or due to dynamics with higher relative degree; an alternative
approach to accommodate the latter is proposed in Section
IV.

We assume that a locally Lipschitz nominal controller
β : D → U (called nominal evading maneuver in [43]) is
known. Intuitively, β encapsulates a controller that, for some
initial conditions, is expected to keep the system within the
allowable set, although no guarantees on the ability of β
to ensure safety are required a priori. For example, for an
autonomous mobile agent, β might be a swerving maneuver
or a rapid deceleration maneuver.

For any t ≥ 0 and x ∈ D, let φβ(t, x) denote the state
of the control system (1) at time t when β is used as input
and the system is initialized at x, that is, φβ(t, x) satisfies
φ̇β(t, x) = f(φβ(t, x)) + g(φβ(t, x))β(φβ(t, x)) with initial
condition φβ(0, x) = x.

A barrier function can be computed from ρ and β as

h(x) = inf
τ∈[0,∞)

ρ(φβ(τ, x)), (12)

that is, the barrier h is constructed by assigning to each point
x ∈ D the infimum value of the performance function ρ
attained along the trajectory initialized at x when the nominal
control strategy β is used. Under mild conditions on ρ and
β, h is indeed a CBF [43].

Theorem 4. Let ρ(x) be a continuously differentiable per-
formance function and let β(x) be a nominal controller such
that f(x) + g(x)β(x) is continuously differentiable. Define
h as in (12) with C the corresponding superlevel set of h
and suppose for each x there exists a unique x∗ such that
h(x) = ρ(x∗) and φβ(τ, x) = x∗ for some τ ≥ 0. Then

1) h is a CBF;
2) C ⊆ A, that is, the safe set is a subset of the allowable

set; and
3) β(x) ∈ Kcbf(x) for all x ∈ C.

In some cases, computing h given in (12) is possible in
closed form; see [43] for examples.

Alternatively, one could approximate h by simulating the
system trajectory for a finite horizon and computing the
infimum in (12) numerically. However, notice that to use
h in a resulting quadratic program as in (CBF-QP) requires
computing the gradient of h, thus such an approach would
also require numerically approximating the gradient of h, and
therefore this approach becomes computationally challenging
as the dimension of the system grows.

Another approach is to parameterize h and search for a
potentially conservative CBF satisfying (11). For example,
we could parameterize h as a fixed degree polynomial and
use sums-of-squares (SOS) programming [44] to enforce the
required conditions on h. To this end, a polynomial s(x)
is a SOS polynomial if s(x) =

∑r
i=1(gi(x))2 for some

polynomials gi(x) for i = 1, . . . , r. Let Σ[x] denote the set of
SOS polynomials in x. The following Proposition is closely
related to results presented in [24], [45].

Proposition 5. Given the affine control system (1), assume
f(x) and g(x) are polynomials. Let ρ(x) be a polynomial
performance function and let β(x) be a polynomial nominal
controller. A polynomial h(x) is a CBF if there exists positive
constants a > 0, ε > 0 and SOS polynomials s1(x), s2(x)
such that

−h(x)− ε+ s1(x)ρ(x) ∈ Σ[x], (13)
Lfh(x) + Lgh(x)β(x) + ah(x)− s2(x)h(x) ∈ Σ[x]. (14)

Moreover, C ⊆ A and β(x) ∈ Kcbf(x) for all x ∈ C.

Condition (13) is sufficient for ensuring that h(x) < 0 for
all x such that ρ(x) < 0, thereby implying C ⊆ A. Likewise,
(14) is sufficient for ensuring that Lfh(x) + Lgh(x)β(x) +
ah(x) ≥ 0 for all x ∈ C. Since β(x) ∈ U for all x ∈ D, this
in turn implies (7) with the choice α(s) = as.

There exist efficient computational toolboxes that convert
certain SOS constraints into semidefinite programs such as
[46]. However, viewing h(x), a, s1(x), and s2(x) as decision
variables in the above, the products ah(x) and s2(x)h(x)
are bilinear in the decision variables and prevent such a
conversion.

Nonetheless, a common approach for accommodating such
bilinearities is to propose an iteration of constraints so that
in each iteration, one element of each problematic product is
fixed, i. e., in each iteration, either a and s2(x) are fixed or
h(x) is fixed, leading to an efficient numerical procedure for
finding a CBF h. For example, in [24], a sequence of SOS
programs is proposed to compute a CBF for lane-keeping
and adaptive cruise control in an autonomous vehicle, and
in [45], a sequence of SOS programs is proposed to compute
a region of safe stabilization.

Variants of the SOS-based approach proposed in Propo-
sition 5 are possible and have been explored in related
contexts, e. g., [24], [45]. For example, it is possible to
compute a new nominal controller after computing a barrier
h(x). Further, the constraints (13)–(14) can be augmented
with an objective function that, e. g., seeks to maximize
the volume of the safe set C. In addition, it is possible to
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consider an allowable set characterized as the intersection
of the superlevel sets of multiple performance functions
by including a constraint like (13) for each performance
function.

IV. EXPONENTIAL CONTROL BARRIER FUNCTIONS

In the previous sections we have seen how control barrier
functions (CBFs) can be (i) used to enforce safety-critical
constraints for nonlinear (control affine) systems, (ii) com-
bined with control Lyapunov functions to arbitrate between
stability and safety, and (iii) used for systems with actuator
constraints. While CBFs offer a powerful methodology, there
is one critical restriction: the safety-critical constraints have
been so far assumed to be of relative-degree one, i.e.,
the first time-derivative of the CBF has to depend on the
control input. However, this is a restrictive assumption that
is typically not held for most safety constraints for robotic
systems. We therefore need a way to enforce arbitrarily
high relative-degree safety constraints. In this section, we
introduce a special type of CBFs called Exponential CBFs
that enable this functionality.

Control barrier functions for high-relative degree safety
constraints were initially studied simultaneously in [47], [30].
However, the results in [47] only extended to position based
safety constraints with relative-degree 2. On the other hand,
the results in [30] extended to arbitrary high relative-degree
using a backstepping based method. However, backstepping
based CBF design for higher relative-degree systems (greater
than 2) is challenging and has not been attempted. Building
off the work in [47], exponential control barrier functions
were first introduced in [48] as a way to easily enforce high
relative-degree safety constraints. The rest of this section
provides an introduction to exponential CBFs.

A. High Relative-Degree Safety Constraints

Consider the nonlinear dynamical system in (1) with initial
condition x0 with the goal to enforce the forward invariance
of the safe set C defined in (5). However, unlike in earlier
sections, we relax the relative-degree 1 assumption on h(x)
and assume h(x) has arbitrarily high relative-degree r ≥ 1.
This translates to the rth time-derivative of h(x) being,

h(r)(x, u) = Lrfh(x) + LgL
r−1
f h(x)u, (15)

with LgLr−1
f h(x) 6= 0 and LgLfh(x) = LgL

2
fh(x) = · · · =

LgL
r−2
f h(x) = 0,∀x ∈ D. Next, we define,

ηb(x) :=


h(x)

ḣ(x)

ḧ(x)
...

h(r−1)(x)

 =


h(x)
Lfh(x)
L2
fh(x)

...
Lr−1
f h(x)

 , (16)

and assume for a given µ ∈ Uµ ⊂ R, u can be chosen
such that Lrfh(x) + LgL

r−1
f h(x)u = µ. This choice of u

is possible since by the relative degree of h(x) we have
LgL

r−1
f h(x) 6= 0,∀x and moreover µ is a scalar (while u ∈

U ⊂ Rm). With this, the above dynamics of h(x) can be
written as the linear system,

η̇b(x) = Fηb(x) +Gµ,

h(x) = Cηb(x), (17)

where

F =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , G =


0
0
...
0
1

 , (18)

C =
[
1 0 · · · 0

]
.

Clearly, if we choose a state feedback style µ = −Kαηb(x),
then h(x(t)) = Ce(F−GKα)tηb(x0). Moreover, by the
comparison lemma, if µ ≥ −Kαηb(x), then h(x(t)) ≥
Ce(F−GKα)tηb(x0).

We now have everything setup to define exponential con-
trol barrier functions.

Definition 7. Given a set C ⊂ D ⊂ Rn defined
as the superlevel set of a r-times continuously dif-
ferentiable function h : D → R, then h is an
exponential control barrier function (ECBF) if there exists a
row vector Kα ∈ Rr such that for the control system (1),

sup
u∈U

[
Lrfh(x) + LgL

r−1
f h(x)u

]
≥ −Kαηb(x) (19)

∀ x ∈ Int(C) results in h(x(t)) ≥ Ce(F−GKα)tηb(x0) ≥ 0
whenever h(x0) ≥ 0.

Remark 8. Note that Kα in the above definition needs
to satisfy certain specific properties. As we will see, we
will require Kα to make the closed-loop system matrix
stronger than Hurwitz (total negative) and additionally satisfy
a condition based on the initial conditions ηb(x0). These will
be presented in more detail in the subsequent subsection on
designing ECBFs.

Remark 9. Note that when the relative-degree r = 1,
−Kαηb(x) in (19) reduces to −αh(x) with α > 0. Thus,
Definition 2 defines a relative-degree 1 exponential CBF
when α(h(x)) = αh(x) (with a small abuse of notation),
α > 0. In this sense, the above definition is a generalization
of the definition of CBFs for higher relative-degree functions
h(x).

Given an ECBF, we can implement a controller that
enforces the condition given in Definition 7 by extending
the optimization based control methodology presented ear-
lier. Concretely, we can consider the following QP based
controller:

u(x) = argmin
(u,µ,δ)∈Rm+2

1

2
uTH(x)u+ pδ2 (CLF-ECBF QP)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ

Lrfh(x) + LgL
r−1
f h(x)u = µ

µ ≥ −Kαηb(x).
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B. Designing Exponential Control Barrier Functions

In order to design an exponential CBF, we begin by
noting that (17) is in controllable canonical form and if
Kα =

[
α1 · · · αr

]
then the characteristic polynomial of

F − GKα is λr + αrλ
r−1 + · · · + α2λ + α1 = 0, whose

roots we will denote by p1, · · · , pr. Note that there is a well
established relation between the coefficients of a polynomial
and its roots.

We next define a family of functions νi : D → R and
corresponding superlevel sets Ci for i = 0, · · · , r, as follows:

ν0(x) = h(x), C0 = {x : ν0(x) ≥ 0},
ν1(x) = ν̇0(x) + p1ν0(x), C1 = {x : ν1(x) ≥ 0},

...
...

νr(x) = ν̇r−1(x) + prνr−1(x), Cr = {x : νr(x) ≥ 0}.

Note that C0 is identical to C. Our goal is to design Kα to
ensure C is forward invariant. We begin with the following
result.

Proposition 6 ([48]). For a given i ∈ {1, · · · , r}, if Ci is
forward-invariant then Ci−1 is forward-invariant whenever
pi > 0 and x0 ∈ Ci ∩ Ci−1.

The above result follows from noting that under the given
conditions when x(t) reaches the boundary of Ci−1, we
have ν̇i−1 ≥ 0 resulting in forward invariance of Ci−1. The
recursive application of the above proposition then motivates
the following result:

Theorem 7 ([48]). If Cr is forward-invariant and x0 ∈⋂r
i=0 Ci then C is forward-invariant.

From the above results, for invariance of C, we require
two conditions for each i: (a) pi > 0 and (b) x0 ∈ Ci. The
first condition on pi implies that the poles of the closed-loop
F−GKα need to be real and negative. The second condition
on x0 and the definition of Ci implies we require νi(x0) ≥
0 ⇐⇒ ν̇i−1(x0) + piνi−1(x0) ≥ 0 ⇐⇒ pi ≥ − ν̇i−1(x0)

νi−1(x0) .
Both these conditions can be achieved by choosing Kα as
specified in the main result below.

Theorem 8 ([48]). Suppose Kα is chosen such that F −
GKα is Hurwitz and total negative (resulting in negative
real poles) and the eigenvalues satisfy λi(F − GKα) ≥
− ν̇i−1(x0)
νi−1(x0) , then µ ≥ −Kαηb(x) guarantees h(x) is an

exponential CBF.

Thus, an exponential CBF can be designed using classical
pole placement strategies from linear feedback theory. The
location of the poles is specified to be both real and negative
as well as dependent on the higher time-derivatives of the
barrier function at initial time.

V. APPLICATIONS: CBFS FOR ROBOTIC SYSTEMS

Having seen the theoretical development of control barrier
functions in the earlier sections, we will now present prac-
tical uses of CBFs in various robotic application domains.
Sections V-A to V-C will introduce CBFs for single-agent

Fig. 1. (a) Foreground: The problem of dynamically walking over a
terrain of stepping stones in 3D—a safety-critical problem. (b) Back-
ground: Geometric depiction of step length foot placement constraint. Here,
(O1, R1), (O2, R2) are the centers and radii of the outer and inner circles
respectively, while O is the position of the stance foot, lf , hf denote the
horizontal and vertical position of the swing foot with respect to the stance
foot, and the red thick line between the distances of lmin and lmax from
O denote the stepping stone.

robotic systems: we will look at three sufficiently different
types of robotic systems, i. e. walking robots, cars, and
Segways. Section V-D will introduce CBFs for multi-agent
robotic systems.

A. Dynamic Walking on Stepping Stones

Legged robots are unique in the sense that these systems
are able to locomote over discrete terrains - such as a terrain
with steeping stones with discrete gaps between the steps
(see Fig. 1a). Precisely stepping on the footholds is critical
and missing the foothold even by a few centimeters will
cause a dramatic fall of the robotic system. In this sense,
stepping stones are examples of safety-critical control that
have to be strictly enforced. While this is challenging, in the
preceding sections we have developed the theory to specifi-
cally attack such safety-critical problems. Dynamic walking
over stepping stones using CBFs was first demonstrated in
[49]. Here, we present results on the DURUS bipedal robot
reported in [31].

Legged systems are modeled as multi-domain hybrid
systems with walking consisting of a single-support phase
when one (stance) foot is in contact with the ground and
an instantaneous double-support phase when the swing foot
impacts ground. The single-support phase is modeled as
a continuous-time differential equation while the double-
support phase is modeled as an instantaneous impact due to
the swing foot impacting on the ground. The impact causes
an instantaneous jump in the system state. Mathematically,
this is represented as the hybrid system

Σ :

{
ẋ = f(x) + g(x)u, x /∈ S,
x+ = ∆(x−), x ∈ S,

(20)

with S representing the switching surface that denotes swing
foot contact with the ground.
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For the above system, a hybrid zero dynamics (HZD)
based approach (see [50] for details) is used to design a
stable periodic orbit—representing walking—by means of an
offline nonlinear constrained optimization, in order to find a
set of outputs y : Rn → Rm that are then regulated by con-
structing a Lyapunov function V (x) =

[
y ẏ

]
P
[
y ẏ

]T
such that driving V (x)→ 0 results in driving the outputs to
zero, resulting in stable walking. This is achieved by the CLF
based approach detailed in Section II-A, with the difference
for a hybrid system being that rapid exponential stability is
sought through a RES-CLF [37] s.t. V̇ (x, u) ≤ − 1

εγ(V (x)),
where 0 < ε < 1. This ensures that the controller contracts
faster than the potential expansion that happens at impacts.
See [37], [42] for more details.

Now, let us look into the problem of how we can guarantee
the safety-critical constraint of precisely placing the feet on
the stepping stone on each step. In Fig. 1b, the start of the
step is shown as the dotted stick-figure with the stance foot at
O. The goal is to move the swing leg and precisely impact
the ground within the solid red foothold at the end of the
step. This is a constraint at the step end-time which can not
be directly enforced as a barrier. We convert this end-time
constraint into a barrier constraint that is enforced point-wise
in time. In particular, if the swing foot position, denoted
by F in the Fig. 1b, is maintained within the outer circle
(with center O1 and radius R1) and outside the inner circle
(with center O2 and radius R2), then the foot follows the
red trajectory and impacts the foothold at the end of step.
This can be formulated through enforcing the nonnegativity
of the following CBFs:

h1(x) = R1 −O1F (x) ≥ 0,

h2(x) = O2F (x)−R2 ≥ 0,

where O1F (x) and O2F (x) are the distances between the
swing foot F and the centers of the two circles at O1

and O2 respectively. Since hi(x), i ∈ {1, 2} are position
constraints, they have relative-degree 2. We thus use the tools
of the exponential CBF to design αi,1, αi,2 and pick u s.t.,
L2
fhi(x, u) + LgLfhi(x)u ≥ −αi,1hi(x) − αi,2ḣi(x). This

results in enforcing hi(x) ≥ 0 resulting in dynamic walking
on stepping stones. Fig. 2a shows h1, h2 plotted against time
to illustrate that they are non-negative. Fig. 2b illustrates
snapshots from simulation of walking over a stepping stone
terrain with different step lengths. This method can also be
used to walk over a terrain of stepping stones with changing
step width or step height.

B. Automotive Systems: Automatic Cruise Control and Lane
Keeping

Our next example is from the automotive domain. Many
modern Advanced Driver Assistance Systems (ADAS) pro-
vide prime examples of safety-critical constraints. For in-
stance, in Adaptive Cruise Control (ACC) the vehicle’s
speed is regulated to a user-set speed when there is no
vehicle immediately ahead in the lane, yet if a vehicle is
detected ahead then a safe following distance is maintained.

(a)

(b)

Fig. 2. Simulation results of dynamic walking over a terrain of stepping
stones with varying step lengths. (a) Plots of the ECBFs h1, h2 being
enforced. (b) Snapshots of walking from simulation. Simulation video:
https://youtu.be/yUSTraDn9-U.

On the other hand, in Lane Keeping (LK) the vehicle’s
steering is controlled so as to maintain the vehicle within a
lane. Furthermore, two or more ADAS control modules can
be simultaneously activated and designing provably correct
controllers for simultaneous operation becomes critical; this
subsection follows from [23], but see also [21].

In order to demonstrate adaptive cruise control and lane
keeping in an experimental setting, we will consider a
Khepera robot modeled as a unicycle model

ṗx
ṗy
v̇

ψ̇
ω̇

 =


v cos(ψ)− aω sin(ψ)
v sin(ψ) + aω cos(ψ)

ul
m − aω

2

ω
ua
Iz

 , (21)

where (px, py), ψ, v, ω represent the 2D position, orientation,
and longitudinal and angular velocities of the robot respec-
tively, with x ∈ R5 the resulting state vector. Further, ul is
the longitudinal force and ua is the angular torque and serve
as control inputs. The mass and inertia are m, Iz respectively
and a represents the distance from the center of the wheel-
base to the point of interest (px, py). This model can be
written as a nonlinear control affine system as given in (1).

As mentioned, adaptive speed regulation comprises of
following a user-set speed when there is no vehicle ahead in
the lane. This will be formulated as a soft constraint through
a CLF. However, when there is a vehicle ahead, the speed
needs to be adaptively reduced so as to maintain a fixed
time-headway based follow distance. This will be enforced
as a safety-critical constraint through the following CBF:

hasr(x) = D − τvf .

Here, D is the distance to the vehicle ahead, τ is minimum
time-headway to be maintained, and vf is the velocity of the
vehicle (follower)—see [20] for the derivation.

Similarly, the objective of lane keeping is to maintain the
vehicle within the lane. We need to enforce a safety-critical
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(a) (b)

Fig. 3. Experimental demonstration of adaptive speed regulation and lane
keeping for automotive systems. (a) The robot is kept inside a lane due
to the lane keeping CBF and follows another robot ahead by maintaining a
fixed time-headway through the adaptive speed regulation CBF. (b) Value of
lane keeping, hlk , and adaptive speed regulation, hasr , CBFs for simulation
and experiment. Non-negativity of these values demonstrate enforcement of
the constraints. Video at https://youtu.be/n_tTBq0TCYY.

constraint of the form ylat ≤ dmax, where ylat is the lateral
distance w.r.t. the center of the lane and dmax is the distance
from the center of the lane to either end of the lane that
captures the lane width. We enforce this safety constraint
through the following CBF:

hlk(x) = dmax − sign(vlat)ylat −
1

2

v2
lat

amax
.

Here, amax is the maximum lateral acceleration and vlat is
the lateral velocity of the vehicle. More details about the
properties of this CBF are detailed in [21], [23].

Finally, the performance objectives such as driving the
longitudinal velocity to a user-defined velocity (v → vd),
creating a smoother path following (ω → 0), and following
the desired path ((x, y)→ Rd) are specified through output
functions that are regulated to zero through CLFs. As earlier,
the CLF and CBF conditions are unified into a single
controller via (CLF-CBF QP) given in Section II-C. Fig. 3a
shows experimental results on the Khepera robot where si-
multaneous enforcement of lane keeping and adaptive speed
regulation safety constraints are enforced. Fig. 3b illustrates
the value of the CBFs in experiments and simulation.

C. Dynamic Balancing on Segways

To demonstrate the application of control barrier func-
tions as “safety filters,” we will consider their experimental
realization on a Segway type robot, i.e., a two-wheeled
inverted pendulum. In particular, this subsection summarizes
the results of [32] which provided the first experimental
evaluation of CBFs on a robotic system that is not statically
stable. To realize these results, a Ninebot Segway was rebuilt,
with only the original chassis and motors remaining—all
of the electronics were customized to allow for the real-
time control of the system via optimization based controllers.
The objective is to ensure “safe” operation of the Segway,
defined in this case as the robot not tipping over, i.e., always

staying upright. Additionally, the goal is to achieve this
safety condition even while using a nominal controller for
the system (that may not be safe) and thus modifying the
controller in a minimally invasive fashion so as to ensure
safety. The result will be a safety filter, or an Active Set
Invariance Filter (ASIF) of the form illustrated in Fig. 4,
where the nominal control input, udes, is filtered through a
QP of the form (CBF-QP) to ensure safety in the system.

Fig. 4. Figure illustrating the filtering of a desired control input through
a safety filter, or Active Set Invariance Filter (ASIF).

The dynamics of the Segway can be written in the standard
form given in (1), where in this case the input, u, is the
voltage input into the motors and x = (v, φ, φ̇)T , where
v is the forward velocity of the Segway, φ is the angle of
the pendulum from upright, and φ̇ is the rate of change of
this angle. Correspondingly, there are input bounds on the
system of the following form: u ∈ [−15, 15]V (this input
bounds will play a role in determining the CBF that will
be implemented on hardware). The safety constraint for the
system is that the pendulum component of the robot stays
upright, i.e., that the Segway does not tip over. This can be
captured by the condition that the angle of the pendulum,
φ, stays within a bounded region, in this case chosen to be
φ ∈ [− π

12 ,
π
12 ]rad. Finally, to ensure valid inputs, we also

restrict the rate of change of the angle of the pendulum to be
φ̇ ∈ [−2π, 2π]rad/s, and the forward velocity of the Segway
to be v ∈ [−5, 5]m/s. Finally, the nominal controller for the
system, udes = k(x), is chosen to be a standard PD controller
that tracks a desired signal, i.e., an angle of the pendulum
and velocity for the wheels.

Since the safety constraint is to keep the Segway upright,
i.e., keep φ ∈ [− π

12 ,
π
12 ]rad, one might be tempted to simply

utilize two control barrier functions of the form:

h1(φ) = −φ+
π

12
, h2(φ) = φ− π

12
.

Yet, while these could be implemented via a CBF-QP to
enforce these conditions, they will not enforce all of the
additional constraints necessary to guarantee experimental
implementation. Therefore, the Hamilton-Jacobi method [51]
was utilized to determine the safe set C resulting by en-
forcing all the above-mentioned constraints. In particular, a
reachability analysis was performed over a 75x75x75 grid
of the state space with the edges of the grid at the state
constraints given in the previous paragraph. The resulting
safe set can be seen in Fig. 5a. A control barrier function can
then be synthesized from this set—in this case, polynomial
regression was used to create an analytic expression that can
be used in the safety filter.

The safety filter was implemented on hardware using the
general framework indicated in Fig. 4. In particular, the
CLF-QP was solved onboard the hardware on a BeagleBone

3428



(a) (b)

(c)

Fig. 5. Experimental results for CBFs realized on a Segway robot to
enforce safety defined as keeping the Segway upright, i.e., keeping the
angle of the pedulum φ ∈ [− π

12
, π
12

]rad, while satisfying additional
phyiscal constraints. (a) The safe set C as calculated using Hamilton-Jacobi
methods so that all physical realizability constraints are valid. (b) Plots
of the angle φ without and with the CBF (enforced via the ASIF). (b)
Snapshot of experiment with and without the CBF implemented with an
external disturbance (a kick)—in the case of no CBF, the Segway falls
over. Experimental video: https://youtu.be/RYXcGTo8Chg.

Black with an average computation time of 0.4 ms, with
the resulting signal uact passed to the motor controller. To
demonstrate the ability of the ASIF to enforce safety, the
desired pendulum angle was passed to the system in the
form of a sinusoidal signal with an amplitude exceeding the
π
12 angle constraint. Two experiments were then performed,
one without and one with the ASIF, i.e., the CLF-QP active.
The results can be seen in Fig. 5b, wherein the system
remains safe only when the safety filter, implementing the
CBF, is active. Finally, to show the potential power of CBFs,
a disturbance is added to the system in the form of a kick—
the system is able to stay upright, and hence safe, with CBFs
while the systems fails without them (illustrated in Fig. 5c).

D. Long Duration Autonomy

Another robotic application of CBFs involves the long
duration autonomy problem for multi-robot systems. This
problem considers a team of robots deployed over long time
scales which are asked to execute tasks (such as environmen-
tal monitoring, search and rescue, or precision agriculture)
that require more than a single charge of the battery of the
robots. An effective control paradigm to use in this case is
the constraint-based control [52], where survivability con-
straints, i.e., conditions for the robots to remain operational
over long temporal scales, can be enforced by means of CBFs
and included in a single constrained optimization problem.

Consider a collection of N mobile robots, whose dynamics

are modeled by the following control affine system:

ẋi = f(xi) + g(xi)ui,

where xi ∈ Rn and ui ∈ Rm, i = 1, . . . , N , are the state
and the input of robot i, respectively, and f and g are locally
Lipschitz. As the energy plays an important role in ensuring
persistent operation, we augment the state xi by the energy
Ei stored in robot i’s battery obtaining: χi = [xTi , Ei]

T . The
energy dynamics are given by

Ėi = f̂(χi) + ĝ(χi)ui,

where f̂ and ĝ are also assumed to be locally Lipschitz. The
dynamics of the augmented state χi are then:

χ̇i =

[
f(xi)

f̂(χi)

]
+

[
g(xi)
ĝ(χi)

]
ui = F (χi) +G(χi)ui.

We assume the robot workspace is endowed with charging
stations, interpreted as regions of the state space where robots
can charge their batteries. Letting

p : xi ∈ Rn 7→ pi ∈ Rd

be a static mapping from robot i’s state to its position pi ∈
Rd, d = 2 for ground robots or d = 3 for aerial robots, we
define

ρi : pi ∈ Rd 7→ ρi(pi) ∈ R≥0

as the function that evaluates the energy that robot i requires
to reach a charging station starting from position pi.

We are now ready to encode the survivability constraints
mentioned above. Following what has been done in [53],
survivability, realized by ensuring that each robot never
gets stranded away from a charging station, is encoded by
ensuring that the following always holds:

hc,i(χi) = Ei − Emin − ρi(p(xi)) ≥ 0 ∀i ∈ {1, . . . , N},

i. e. each robot always has enough energy to reach a charging
station with a minimum desired amount of energy, Emin.
Moreover, to prevent overcharging, we also want the follow-
ing inequality to be always satisfied:

ho,i(χi) = Emax − Ei ≥ 0.

We can combine these two objectives by defining the logical
and of these constraints, he,i = hc,i ∧ ho,i, as

he,i(χi) = min{hc,i(χi), ho,i(χi)}, (22)

and enforcing differential constraints affine in the control
variable ui, which are analogous to (7), as shown in [54].

Considering the environmental monitoring task, we refor-
mulate the task itself using CBFs which can be then com-
bined with the ones related to survivability introduced above
in order to implement persistent environmental monitoring
[55]. Consider N robots tasked with monitoring a compact
and convex set Ω ⊂ Rd. We can define a measure of the
coverage quality by [56]:

J(x) =

N∑
i=1

∫
Ωi

‖p(xi)− q‖2φ(q)dq, (23)
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where x is the ensemble state of the robots, {Ω1, . . . ,ΩN}
is the Voronoi tessellation of the set Ω, the value φ(q) ∈
R, φ(q) ≥ 0 ∀q ∈ Ω, encodes the importance of the point
q, and where the quality of the sensor coverage associated
with the point q decreases quadratically with the distance
‖p(xi) − q‖. The further away the point to monitor is, the
worse the coverage is, and the higher the coverage cost J is.
Defining the barrier function related to the task as ht(χ) =
−J(x), where χ represents the ensemble compound state
of the robots, containing xi and Ei of each robot, we can
express the constraint (7) as

LFht(χ) + LGht(χ)u ≥ −α(ht(χ)). (24)

As shown in [22], the constraint (24) ensures that the zero
superlevel set of the function ht(χ) is asymptotically stable,
with the effect of minimizing the coverage cost J defined
above [55].

Additionally, safety, specifically intended as collision
avoidance, can be guaranteed by ensuring that

hs(χi, χj) = ‖p(xi)− p(xj)‖2 −∆2 ≥ 0

∀ i, j ∈ {1, . . . , N}, i 6= j, where ∆ > 0 is the safety
distance to be maintained between any two robots, i and
j, located at positions p(xi) and p(xj). Similarly to what
has been done to obtain (22), we can define

hi(χi) = min

min
i
{he,i(χi)} ,min

i,j
i 6=j

{hs(χi, χj)}

 ,

which combines energy and safety constraints, in order to
formulate a differential constraint analogous to (24).

Thus, each robot executes the input ui solution of the
following QP:

min
u1,...,uN ,δ

N∑
i=1

‖ui‖2 + κ|δ|2 (25)

s.t. LFhi(χi) + LGhi(χi)ui ≥ −α(hi(χi)), ∀i (26)
LFht(χ) + LGht(χ)u ≥ −α(ht(χ))− δ

where κ > 0 is a weighting factor and the gradients involved
in the computation of the Lie derivatives are intended as
a particular class of generalized gradients (see [54]). Note
that introducing the relaxation variable δ, as discussed in
Section II, allows us to trade the execution of the coverage
task for safety and energy, i. e., survivability.

The persistent environmental monitoring strategy has been
implemented on the Robotarium [27], where six ground
mobile robots have been asked to monitor a given domain
over a time horizon that is longer than their (simulated)
battery life (see Fig. 6). The robots perform coverage control
by minimizing the cost (23) by enforcing the constraint
(24). Additionally, they have to avoid two obstacles moving
in the environment (robots circled in red in Fig. 6) and
never run out of energy. This is realized by means of the
constraint (26). Six charging stations (blue circles, which
turn yellow when the robots are charging) allow the robots
to recharge their battery. The charging stations are projected

(a) (b)

(c) (d)

Fig. 6. A team of six robots is tasked with monitoring a rectangular domain
on the Robotarium, by performing coverage control. The boundary of the
Voronoi partition is depicted using black thick lines. The robots are asked
to perform this task over a time horizon which is much longer than their
(simulated) battery life. Additionally, two more robots, circled in red, act
as obstacles which have to be avoided by the remaining six robots. These
execute the controller solution of (25) to avoid the obstacles, go and recharge
their batteries at the dedicated charging stations (blue circles on the left of
the figures that turn yellow when the robots are charging), while always
covering the given domain. A video of the experiments is available online
at: https://youtu.be/h-OTe4ieOrI.

onto the testbed, together with the boundary of the Voronoi
tessellation of the domain to cover. The execution of the
controller solution of (25) is summarized in Fig. 6.

VI. CONCLUSIONS

This paper presented a summary of recent results in safety-
critical control based upon a novel form of control barrier
functions. The basis theoretic foundations of this formulation
were reviewed, all with selected application domains. Due to
the recent activity in this domain, and the pressing need for
safety in the context of autonomous systems, the authors
imagine control barrier functions to become an essential
component of modern control system design.
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[17] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467,
2007.

[18] M. Z. Romdlony and B. Jayawardhana, “Uniting control lyapunov and
control barrier functions,” in Decision and Control (CDC), 2014 IEEE
53rd Annual Conference on. IEEE, 2014, pp. 2293–2298.

[19] ——, “Stabilization with guaranteed safety using control lyapunov–
barrier function,” Automatica, vol. 66, pp. 39–47, 2016.

[20] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference
on. IEEE, 2014, pp. 6271–6278.

[21] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[22] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of con-
trol barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[23] X. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada,
J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping
and adaptive speed regulation on accessible mobile robot testbeds,”
in IEEE Conference on Control Technology and Applications, Mauna
Lani, HI, August 2017, pp. 1769–1775.

[24] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
guarantees for the composition of lane keeping and adaptive cruise
control,” IEEE Transactions on Automation Science and Engineering,
vol. 15, no. 3, pp. 1216–1229, 2018.

[25] U. Borrmann, L. Wang, A. D. Ames, and M. B. Egerstedt, “Control
barrier certificates for safe swarm behavior.” Georgia Institute of
Technology, 2015.

[26] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[27] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1699–1706.

[28] G. Wu and K. Sreenath, “Safety-critical control of a planar quadrotor,”
in American Control Conference (ACC), 2016. IEEE, 2016, pp. 2252–
2258.

[29] L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based
maneuvers for teams of quadrotors using differential flatness,” in IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[30] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
American Control Conference, 2015.

[31] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
IEEE International Conference on Decision and Control (CDC), Las
Vegas, NV, December 2016, pp. 827–834.

[32] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. D.
Ames, “Towards a framework for realizable safety critical control

through active set invariance,” in Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems. IEEE Press,
2018, pp. 98–106.

[33] H. K. Khalil, Nonlinear control. Pearson New York, 2015.
[34] E. Sontag, “A Lyapunov-like stabilization of asymptotic controllabil-

ity,” SIAM Journal of Control and Optimization, vol. 21, no. 3, pp.
462–471, 1983.

[35] ——, “A ’universal’ contruction of Artstein’s theorem on nonlinear
stabilization,” Systems & Control Letters, vol. 13, pp. 117–123, 1989.

[36] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 7, no. 11, pp. 1163–1173, 1983.

[37] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[38] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918 – 927, 2009.

[39] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[40] R. Freeman and P. V. Kokotovic, Robust nonlinear control design:
state-space and Lyapunov techniques. Springer Science & Business
Media, 2008.

[41] A. D. Ames and M. Powell, “Towards the unification of locomotion
and manipulation through control lyapunov functions and quadratic
programs,” in Control of Cyber-Physical Systems. Springer, 2013,
pp. 219–240.

[42] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle, “Torque sat-
uration in bipedal robotic walking through control lyapunov function-
based quadratic programs,” IEEE Access, vol. 3, pp. 323–332, 2015.

[43] E. Squires, P. Pierpaoli, and M. Egerstedt, “Constructive barrier cer-
tificates with applications to fixed-wing aircraft collision avoidance,”
in 2018 IEEE Conference on Control Technology and Applications
(CCTA), Aug 2018, pp. 1656–1661.

[44] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical Programming Ser. B, vol. 96, no. 2, pp. 293–
320, 2003.

[45] L. Wang, D. Han, and M. Egerstedt, “Permissive barrier certificates
for safe stabilization using sum-of-squares,” in American Control
Conference, 2018, pp. 585–590.

[46] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo,
SOSTOOLS: Sum of squares optimization toolbox for MATLAB,
http://www.cds.caltech.edu/sostools, 2018.

[47] G. Wu and K. Sreenath, “Safety-critical and constrained geometric
control synthesis using control lyapunov and control barrier functions
for systems evolving on manifolds,” in American Control Conference
(ACC), Chicago, IL, July 2015, pp. 2038–2044.

[48] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference (ACC), Boston, MA, July 2016, pp. 322–328.

[49] ——, “Safety-critical control for dynamical bipedal walking with
precise footstep placement,” in IFAC Analysis and Design of Hybrid
Systems (ADHS), Atlanta, GA, October 2015.

[50] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. Choi, and B. Mor-
ris, Feedback Control of Dynamic Bipedal Robot Locomotion, ser.
Control and Automation, Boca Raton, FL, June 2007.

[51] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp.
947–957, 2005.

[52] M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot
ecology: Constraint-based control design for long duration autonomy,”
Annual Reviews in Control, 2018.

[53] G. Notomista, S. F. Ruf, and M. Egerstedt, “Persistification of robotic
tasks using control barrier functions,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 758–763, 2018.

[54] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier func-
tions with applications to multi-robot systems,” IEEE control systems
letters, vol. 1, no. 2, pp. 310–315, 2017.

[55] G. Notomista and M. Egerstedt, “Constraint-driven coordinated control
of multi-robot systems,” arXiv preprint arXiv:1811.02465, 2018.

[56] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

3431


