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Abstract. While several tools exist for training and evaluating narrow
machine learning (ML) algorithms, their design generally does not follow
a particular or explicit evaluation methodology or theory. Inversely so for
more general learners, where many evaluation methodologies and frame-
works have been suggested, but few specific tools exist. In this paper we
introduce a new framework for broad evaluation of artificial intelligence
(AI) learners, and a new tool that builds on this methodology. The plat-
form, called SAGE (Simulator for Autonomy & Generality Evaluation),
works for training and evaluation of a broad range of systems and allows
detailed comparison between narrow and general ML and Al It provides
a variety of tuning and task construction options, allowing isolation of
single parameters across complexity dimensions. SAGE is aimed at help-
ing Al researchers map out and compare strengths and weaknesses of
divergent approaches. Our hope is that it can help deepen understand-
ing of the various tasks we want Al systems to do and the relationship
between their composition, complexity, and difficulty for various Al sys-
tems, as well as contribute to building a clearer research road map for
the field. This paper provides an overview of the framework and presents
results of an early use case.
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1 Introduction

Many good reasons exist for wanting proper evaluation methods for machines ca-
pable of complex tasks [4], including: (a) To gauge research progress—measuring
difference in performance between two or more versions of the same system can
elucidate limitations and potential of various additions, modifications and ex-
tensions of the same architecture; (b) to compare the performance and potential
of one or more Al systems across a set of tasks; and (¢) to compare different
Al systems on the same or a variety of tasks. The dependent variables in such
evaluation will be conditional on the evaluation’s purpose, whether it’s learning
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a single task or many, to learn quickly, reliably, autonomously, to learn complex
things, causal relations, to handle novelty, or some combination of these—or even
more. Most proposals for evaluating artificial intelligence (AI) systems focus on
subsets of the possible spectrum of dependent variables relevant to general ma-
chine intelligence (GMI), or are narrowly focused on particular tasks or domains.

Good measuring tools and methodologies are necessary to assess progress
in any scientific domain. They should allow comparison of systems of numer-
ous kinds. The vast majority of evaluation methods proposed to date rely on
a single measurement, where a series of multiple measurements could possibly
much better separate between autonomous, general systems and narrow ma-
chine intelligence (NMI). Furthermore, many current evaluation strategies focus
on evaluation of (single) tasks especially chosen to evaluate a particular (narrow)
machine learning algorithm. GMI-aspiring work cannot limit itself to one or a
small set of tasks, especially if they lack a) any sort of real-time or continuous
settings, b) complex causal chains, ¢) a multiple goals, or at least d) variable
feedback (reinforcement), including its absence (except in the form of a top-level
goal). These features (or a subset of them) can be found in most human tasks.

While GMI-aspiring systems should ultimately be able to tackle tasks of those
kinds, most evaluation platforms do not provide any functionality for creating
them. This makes an evaluation of our progress on generality more difficult,
since the same task environments well-suited for testing NMI do not address
such matters; while platforms like OpenAI Gym [5] or the Arcade Learning
Environment (ALE) [2] all provide functionality to test narrow agents, they fail
to offer easy construction of tasks of greater complexity.

The SAGE task-environment simulation platform proposes to bridge the gap
between evaluation of low- and high-level intelligence by providing methods
for constructing and analyzing performance on tasks in a fine-grained manner.
SAGE is based on breaking tasks, and the environments they are performed
in, into variables (observable, unobservable, manipulable, and non-manipulable)
and transition functions that control their changes over time [19, 20]. Task-
environments in SAGE may be constructed with a variety of characteristics
and levels of complexity, including causal and statistical relations, determin-
ism and non-determinism, hidden and partially-observable variables, distracting
variables, noise, and much more.

Puzzle boxes, to take an example of a human-level task, may lie at the far end
of a complexity spectrum, yet are regularly solved by human intelligence. Such
boxes invariably present features that include: a) not giving evidence for whether
a chosen action was “good”, or “bad”, at least not by an easily observable score;
b) containing highly complex, non-observable causal chains which need to be
hypothesized and understood, to some extent, to solve the puzzle, and even
¢) acting independently from outside action, through timers. SAGE makes the
setup of such tasks easier for an evaluator by providing an architecture that
supports continuous changes in task variables and rewards, even with an external
clock. A puzzle box task could be divided into a variety of sub-tasks, each with
increasing complexity. If narrow agents are being evaluated on a subset of such
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a task, the environment can be set up to give direct feedback (reward) about the
value of any chosen action and affected variables possible directly observable.
For GMI-aspiring systems such feedback and observablity can be reduced or
removed, making a task reach human-level complexity.

The architecture of SAGE is based on a new MVC-A (Model-View-Controller-
Agents) paradigm in the ROS2 framework [14], enabling the whole system to be
physically run on separate processors and computers to reduce interference of
processor loads on simulation integrity. Dividing a simulation logically into these
parts also makes for easier adjustments of each part, independent of the others,
allowing an evaluator to more easily change individual parameters and task de-
sign, up front and at runtime.

The paper is organized as follows: Section 2 covers related work, including
the requirements proposed for such evaluation platforms; section 3 describes how
SAGE has met these requirements; section 4 presents early results of using the
framework, and section 5 draws conclusions.

2 Related Work

To date, methods for evaluating general intelligence tend to either exclusively
target humans, such as IQ tests, or to exclusively target very general (“human-
level”) intelligence—examples include Winograd’s Schema Challenge [10], Lovelace
Test 2.0 [15], and the Toy Box Problem [7]. Others are too domain-specific, e.g.
general game-playing (cf. [17]), or highly dependent on knowledge of human
social conventions or human experience and skills, e.g. Wozniak’s Coffee Test
and the Turing Test [13]. What is needed, as many have argued [1,4,6,19], is
a flexible tool that allows construction of appropriate task-environments (TE),
along with a proper task theory that enables comparison of a variety of tasks
and environments. Thérisson et al. (2015) list eleven dimensions that ideally
should be controllable by a creator of a task-environment for measuring intel-
ligent behaviour [19]; Russell & Norvig (2016) present a somewhat comparable
subset of seven dimensions [16]. The environment can be categorised along differ-
ent dimensions, namely determinism (see [3] regarding the importance of noise
control), staticism, observability, agency, knowledge, episodicity, and discrete-
ness. TE properties include, in addition, ergodicity, asynchronicity, controllabil-
ity, number of parallel causal chains, and periodicity [16,19].

Lately, evaluation methods have focused on (general) game playing using
the ability to play games as an indicator for the systems sophistication. Using
psychometric evaluation like item response theory (IRT) it was shown that the
difference of performance score between different ML techniques does not neces-
sarily correlate with the systems level of abilities [12]. Thus a simple performance
rating like achieved game score cannot describe the progress of Al by itself [6].
By evaluating the ability to handle TE property changes over different learners a
conclusion can be drawn on the abilities of the learner in regards to autonomous
generality. Such conclusions should be accompanied by evaluation strategies like
IRT to show the significance of the progress. By isolating and adjusting single
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parameters of the TE and testing on different learners it is furthermore possible
to describe task difficulties in regards to the properties of the TE.

We have taken the evaluation of NMI and GMI further than current platforms
by (a) providing the possibility to create tasks for NMI and GMI, (b) introduc-
ing changeable complexity dimensions in the generated task-environments, (c)
making novelty introduction possible in any dimension (novel task, novel tran-
sitions, novel state observation, novel controllability), and (d) by making those
changes during runtime without human interference in order to test the systems
autonomy in coping with (b) and (c).

3 SAGE: Overview of Structure & Use

SAGE (Simulator for Autonomy & Generality Evaluation) is built to enable
flexible construction of task-environments for evaluating artificial intelligence
systems. One of its key requirements is that it can be used to evaluate both
narrow Al systems and GMI-aspiring ones. It follows a tradition already laid
out in prior work (cf. [4,18,19]) and is perhaps closest in spirit to Thorarensen’s
FraMoTEC [18]. In SAGE, assessing an Al system’s ability to address novelty
can be done by introducing new undefined variables, possibly with unknown
transition functions, and unknown relations to other variables, either of which
may or may not be similar to the behavior of priorly observed ones. The response
of a learner to variable changes leads to conclusions about its ability to extract
causal relations and its autonomy in exploiting them to achieve goals.

3.1 Requirements

The requirements for SAGE follow closely the eleven desired features listed by
Thoérisson et al. [19] that a task-environment platform for evaluating Al systems
should contain. Any platform that meets these requirements should in theory be
useful to evaluate not only GMI systems but in fact any learner.

While SAGE is still under development, it already meets all of those eleven re-
quirements, in some way: Determinism, dynamism, observability, episodicity, and
discreteness can be adjusted both beforehand and during the training / learn-
ing / evaluation processes, automatically without human intervention. Stochas-
ticity can be adjusted in the observable variables, agent actions, and in environ-
ment dynamics, with reproducibility being supported through stored random-
ization seeds. Dynamism and episodicity can be changed by either run-time
introduction of different tasks, or changing environmental variables. Observ-
ability and manipulatability of variables can be made at run-time, supporting
ergodicity. Same goes for discreteness of observation and/or action, providing
controllable continuity. These features make evaluation of the effects of sensor
noise on learning, actuator impreciseness, and noise in hidden variables (e.g.
wind forces) possible. Causal chains are constructed by chains of variable de-
pendencies. Training on a variety of sensors before removing causally redundant
ones may test a learner’s capacity for knowledge generalization and extraction
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Fig. 1. Flowchart showing the main SAGE components and their interactions with
each other, following the MVC paradigm, extending it with an Agent component that
enables connecting one or more agents (similar interface as OpenAl Gym [5]). Visu-
alization is via Gazebo [8] 3D rendering, using its standard API. In accordance with
MVC, the Model node handles data storage, and includes an environment-independent
noise generator for simulating stochasticity.

of causal relations. The same holds for modifying controllability with which a
learner could exploit causal relations by applying previously unavailable actions
to causally linked variables.

SAGE is implemented in ROS2 [14]!, which provides for a flexible framework
that allows running a setup on multiple computers. Visualization of any param-
eters can be via Gazebo [8]?, as well as ROS2’s internal rqt-graph function. All
adjustable parameters in SAGE are wrapped in YAML-files, making adjustments
straight forward, by compiling before sessions or changes at run-time.

! https://index.ros.org/doc/ros2/ — accessed Feb. 26" 2020.
2 http://gazebosim.org/ — accessed Feb. 26" 2020.
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3.2 Architecture: Model-View-Controller-Agents (MVC-A)

The architecture of SAGE follows the model-view-controller paradigm, extend-
ing it with an agent component that allows one or more learners and teachers to
connect dynamically to a task-environment. Each part of our MVC-A architec-
ture is implemented as a ROS2-node [14], using ROS2 for platform-independent
inter-process communication (see Fig. 1). The current task-environment state is
stored in the Model node, including all observables, non-observables, manipula-
bles, time, and energy. The Model exposes all observable variables via network
communication to any attached Agent through an interface. The same interface
receives actions chosen by the agent, processes them into manipulables, if needed,
and passes them to the Model node. Noise and discretization can be applied to
any data independently from the rest of the simulation. The Controller manages
the simulation through a network connection.

Simple tasks can be easily added to the system as task modules, while the
controller itself provides an interface to a Gazebo [8] simulation of a 3D world
including a variety of robots, sensors, sensor-noise models, etc. ROS2 as middle-
ware between Agent and evaluation platform makes the learners interface in-
dependent from the task-environment and therefore provides easy attachment
of any learner to the evaluation platform. For communication, either an imple-
mented Python module can be used or the agent can be directly attached to the
ROS2 message system. The View is either provided by Gazebo itself or rqt-graphs
via a standard network connection, but can be served by any external node that
can make use of ROS’s API. The connection to rqt-graph is also established using
network communication enabling remote monitoring during evaluation.

The MVC-A approach provides a straightforward way to introduce more
than one simultaneous learners in the simulation, as any number of agents can
communicate with the world simultaneously through the model interface.

This approach brings many advantages. To name two, the logical separation
of agent and environment makes evaluation of a learner’s resource management
possible, and by dividing Agent, Model and Controller into separate processes,
real-time processing and asynchronous calculations can be added as needed.
These features are especially important when GMIs are evaluated to fulfil the
assumption of limited time and resources in the task environment [22].

4 Proof of Concept

As a proof of concept we tested three learners, an actor-critic (AC) [9], a double-
deep-Q (DDQ) [21] learner, and Open-NARS for Applications (ONA)?, on the
cart-pole task (cf. [5]). While this task is well known in the narrow-AI ML
arena [11], few if any examples of how GMI-aspiring systems do on this task
exist. The experience of attaching ONA to SAGE demonstrates the usefulness
of many of SAGE’s features. Figure 2 shows the performance of each leaner.

3 https://github.com/opennars/OpenNARS-for-Applications — accessed May 10"
2020.
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Fig. 2. Evaluation of an Actor-Critc (AC) and a Double-Deep-Q (DDQ) learner. All
results are the average over 40 trials plotted with a running mean with window-size 10.
a: Different applications of noise on the two learners. Noise on environment dynamics
(3%), noise on the observation (30%), and noise on the actions (40%). Percentage in
percent of the goal state (0 = £12°, & = £2.4m) or commonly occurring min and
max values (v = £2.4m/s, w = £2.3°/s) b: Test with velocity hidden from the agent
and with velocity randomized (u = v,0 = 24.002. c: Noise only on single variables of
the observation. Percentage definition as in a. d: Inverted forces after 500 episodes of
training AC, 2000 episodes of retraining then inverting back. e: Inverted forces after
2000 episodes of training DDQ, 4000 episodes of retraining then inverting back. f:
Performance of the ONA (OpenNARS for Applications - see footnote 3) is outstanding.

1. Three different learners on a common task: Although the cart-pole
task has only a few parameters, and may seem too simplistic for GMI-
aspiring learners, for the purpose of cross-learner comparison it is a rea-
sonable one, in our opinion. The results were surprising on two accounts.
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Firstly, we were surprised that the DDQ learner did better than expected on
a doubly-inverted version of it (testing for transfer learning by 180-degree
reversal of the control dimension). Secondly, we were surprised by ONA’s
sensitivity to the format of the data (tuned by the discretization features
in SAGE). In both cases the SAGE framework proved its value by allowing
systematic modifications and testing automation.

. The influence of noise: The first few graphs shows the differences in

learning between environmental noise (noise on dynamics of the inverted-
pendulum) and noise in the observations and actions received/given by the
agent. Environmental noise simulates noise outside the agent, observation
noise simulates sensor noise and action noise simulates actuator imprecision,
respectively, for DDQ and AC. The results show that observation noise has
less of an impact on performance than the dynamics, and noise on actions
has no effect on learning performance at all.

. Coping with hidden random variables: The DDQ-learners capability

to cope with unreliable variables was tested by turning off one observable
(velocity) or randomizing it with a standard deviation of 24 m/s (10x the
usually occurring values). The data shows that an extremely randomized
variable has a higher negative impact on learning, than hiding this variable
completely resulting in the conclusion, that the DDQ learner cannot identify
unreliable variables and exclude them from decision making.

. Influence of noise on a single variable: To assess the importance of the

correctness of the values of observables, noise was applied to a single variable.
Results show, that against expectation the correctness of the velocity is of
higher importance, than the correctness of the angle theta, even though
velocity is not part of the failure constraint.

. Inversion / transfer learning: As a test of the generality of their ac-

quired knowledge, after training on the cart-pole we inverted the action
direction (making left rigth and right left)—how would they adapt to a
doubly-inverted pendulum task? The results show, that it takes almost four
times as long as during the initial training to retrain the AC learner on the
novel circumstances. Inverting it back after 2000 episodes of inverted training
shows, that the original policy was mostly forgotten during re-training. The
DDQ-learner on the other hand shows almost immediate return to previous
performance, showing, that its generalization is better than that of the AC.

. Evaluating a GMI-aspring system: We ran the GMI-aspiring ONA sys-

tem to demonstrate SAGE’s usefulness when comparing narrow and general
AT systems. ONA learns the task faster than the others and handles transfer
of learning much better.

These tests provide new insights into the methodologies of the three learn-

ers and current evaluation strategies. Modulation with noise of the observation
and/or action variables assesses learning with noisy data; testing knowledge
transfer via inversion, or hiding of variables, makes evaluating the generality
and autonomy evaluation of the learners possible. When generalizing knowledge,
any random variable should be excluded from future decision making to gener-
ate an expected behaviour. Further, the generality of a learner can be assessed
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by changing the task-environments nature. While it is expected that inverting
the forces applicable by the learner leads to an immediate performance loss, the
time it takes to learn this new task (4 times the training time) in the narrow-
AT systems shows that cause-effect-chains were not extracted; rather, a simple
state-to-action mapping took place. The GMI-aspiring system ONA clearly out-
performs the others; we are excited to see future results with varying levels of
noise and inverted forces. Given the results in Figure 2 one also wonders how
a human would compare, something that could be tested via visualization via
Gazebo and keyboard or mouse input; other things staying exactly the same in
this setup of SAGE.

5 Conclusions & Future Work

SAGE shows potential for evaluating Al architectures that follow various method-
ologies, bridging the gap between general and narrow Al. Our own interest in
SAGE is the need to assess the progress of Al research towards general machine
intelligence (GMI), however, as the examples presented here show, other uses are
entirely justified. First evaluation results demonstrate some of the possibilities
of this platform. A comparison of GMI-aspiring systems to narrow-Al ones not
only helps highlight differences in performance and the nature of the learning
of such systems, it also helps isolate their points of divergence related to deeper
methodological issues, background assumptions and theoretical underpinnings.

The performance results from the learners presented here are preliminary; a
future publication will present extensive tests and discuss the differences between
the learners, all using SAGE of course. Future work will also include evaluating a
more extensive set of learners, improve the automatic running of sets of training
and evaluation sessions, and implement a library of tasks. Then we plan on
making the source code available online.
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