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C 1

INTRODUCTION

1.1 W ?

Turbulence is a omnipresent phenomenon of Nature. In our everyday life, we
either rarely notice it when swimming, driving a car, riding a bike, skating, or
suddenly pay serious attention to it, when the ride gets bumpy on board a plane
on stormy weather or when flying over tall mountains.

Let’s imagine for a second how the early morning cup of coffee would be
without it. If it weren’t for the beneficial effects that come with turbulence, mix-
ing milk and coffee would become a very tricky process. Instead of thoughtlessly
stirring it with the spoon once and then wait shortly for turbulence do the rest
of the work, we would have to repeat the process many times such that the fluid
would be sufficiently folded over itself and the milk evenly split over the cup. Of
course, there is the alternative of not touching the cup for some time and let the
milk slowly diffuse, but then coffee is not enjoyable anymore when it gets cold.

However, designing the most effective method of stirring coffee is not why
turbulence is important to science. Actually, the diversity of situations where we
discover turbulence as an important scientific phenomenon is impressive: flow
around ships and aircrafts, combustion in car engines and plane turbines, flow
in the ocean, atmosphere, air flow in lungs, flow of blood in arteries and heart,
flow in pipelines, even the dynamics of the financial markets can also be viewed
as analogous to turbulent flows. The entire Universe appears to be in a state of
turbulent motion, and turbulence seems to be a decisive factor helping in the
formation of stars and solar systems, as indicated by astronomical observations
and theoretical considerations in astrophysics.

From the large variety of situations mentioned above, many of them are cases
in which turbulence is attractive from the point of view of the engineer, since
studying it leads to technological improvement. It is more fruitful then to model
regions where the turbulent flows interact with boundaries, and then learn how
to control and apply them.

For the physicist, the interesting part is how the small-scale structure of tur-
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bulence is organized, preferably isolated from any boundary effects. This is where
universal aspects can be sought, in the sense that they should be independent of
the nature of the fluid or the geometry of the problem. It is universality that
makes turbulence an exciting research subject for physicists and mathematicians.

1.2 W  ?

Despite of being such a familiar notion, the use of the term “turbulent” is rela-
tively new, as Hinze clarifies in his textbook [45]. Osborne Reynolds himself, a
pioneer in the study of turbulence, called it “sinuous motion”. Skipping over the
dictionary definition, which does not suffice to characterize the modern physical
sense of the word, we stop at the definition given in 1937 by Taylor and Von
Kármán: “Turbulence is an irregular motion which in general makes its appear-
ance in fluids, gaseous or liquid, when they flow past solid surfaces or even when
neighboring streams of the same fluid past or over one another”. To make this
more clear, we need to use the terminology of fluid dynamics. Flows of gases and
liquids can be divided into two very different types: “laminar” flows, which are
smooth and regular, and “turbulent”, totally opposite, in which physical quan-
tities as velocity, temperature, pressure, etc. fluctuate in a sharp and irregular
manner in space and time, the latter being actually the more natural state of
a flow. To illustrate how unpredictable a typical turbulent flow is, we show in
Fig. 1.1 the time evolution of the velocity field simultaneously observed in dif-
ferent locations in the flow. The variety of time-scales and amplitudes of the
velocity seen in this picture illustrates the complexity of turbulence structure. It
is this structure that makes turbulence very efficient in transferring momentum
and therefore an interesting subject for practical applications, such as delaying
the boundary layer separation, which decreases drag forces on objects submerged
in a turbulent flow.

1.3 H  

It appears that Leonardo Da Vinci was probably the first to distinguish this spe-
cial state of the fluid motion and use the term “turbulence”. Modern turbulence
started with the experiments of Osborne Reynolds in 1883, who analyzed the
conditions under which laminar flows of fluids in pipes become turbulent. The
study led to a criterion of dynamical stability based on the “Reynolds number”

Re =
UD

ν
, (1.1)

where U and D are the characteristic velocity and length scales of the flow and ν

is the kinematic viscosity. The Reynolds number may be interpreted as the ratio
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Fig. 1.1: The fluctuations of the velocity in a turbulent flow have a irregular,
complicated and unpredictable evolution in time and space, as captured
in a typical measurement of turbulence produced in the laboratory,
where the different traces are registered at closely spaced points. Tines
were measured relative to the occurence of a violent event.

Fig. 1.2: Drawing of a turbulent eddy by Leonardo da Vinci.
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of inertial to viscous forces present in the fluid, and for an incompressible flow,
it is the only control parameter of that system. Intuitively, as Frisch points out
in his book on turbulence [35], its value can also be seen as an indicator for the
degree of symmetry of the flow. This can easily be imagined in the experimental
situation of a flow past a cylinder. For values of the Reynolds number depart-
ing from 1, visualizations of the flow show a gradual increase of the degree of
asymmetry in the flow surrounding the obstacle, before and after it.

Based on the technological interest raised by the remarkable momentum
transfer properties of the large scales of turbulence, experiments in the begin-
ning of the 20th century led to decisive advances in the theory of turbulence.
Representative of this time are the so-called semi-empirical approaches made by
great fluid-dynamicists, such as G. Taylor, L. Prandtl and T. Von Kármán in the
1920s and ’30s, which were used to solve important practical problems.

In a remarkable paper, Lewis Fry Richardson advanced in 1922 the assump-
tion that turbulence is organized as an hierarchy of eddies of various scales, each
generation borrowing energy from its immediately larger neighbor in a “cas-
cade” process of eddy-breakdown [75]. This picture, though more appropriate
in wavenumber space, was poetically immortalized in his book inspired from
observation of clouds and the verses of Jonathan Swift:

“Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity

(in the molecular sense)”

This era culminated with the now fundamental ideas of Andrei Nikolaevich
Kolmogorov in the “theory of locally isotropic turbulence” (1941) [48]. Inspired
by Richardson’s energy cascade description, he assumed that with each step in
the energy transfer towards smaller scales, the anisotropic influence of the large
scales will gradually be lost, such that at sufficiently small scales the flow will be
statistically homogeneous and isotropic. This steady situation, characterized by
a mean flux of energy 〈ε〉, was postulated by Kolmogorov to be universal and
determined by only one parameter, 〈ε〉. Moving further down the scales, there
comes a length-scale where the flow gradients are so large that viscous effects can
no longer be ignored. The scale is determined (in a dimensional argument) from
the viscosity ν and 〈ε〉

η =
(

ν3

〈ε〉

)1/4

. (1.2)

We introduce below the famous self-similarity hypotheses in their original form
(according to Hinze [45]):
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♦ (a)“At sufficiently large Reynolds numbers there is a range of high wave-numbers
(inertial-range) where the turbulence is statistically in equilibrium and uniquely
determined by the parameters 〈ε〉 and ν. This state of equilibrium is univer-
sal.”

♦ (b)“If the Reynolds number is infinitely large, the energy spectrum in the iner-
tial range is independent of ν and solely determined by the parameter 〈ε〉.”

1.4 T     

The equations that govern turbulence are essentially a form of Newton’s law
for the motion of a fluid that is forced (at large scales) and affected by viscous
dissipation (at small-scales)

∂u(r, t)
∂t

+ u(r, t) · ∇u(r, t) = − 1
ρ
∇p(r, t) + ν∇2u(r, t) + F(r, t). (1.3)

Here the vector u(r, t) denotes the velocity field at position r at moment t, p(r, t)
the pressure, F(r, t) the forcing, ρ is the density and ν is the kinematic viscosity,
which for air is 1.5 · 10−5m2s−1 (at standard pressure and temperature conditions).

The equation (1.3) is known as the Navier-Stokes equation, after the physi-
cists who added the viscous term ν∇2u(r, t), C.L.M.H. Navier in 1827 and G.G.
Stokes in 1845. Through this term, the kinetic energy is no longer conserved,
but lost to heat.

The Navier-Stokes equation is a continuum equation. Later on we will learn
that in 3-dimensional turbulence fluid motion occurs on smaller and smaller
scales if the Reynolds number increases. Still, it can be proven that these scales
will never be so small that the scale of molecular graininess of of the fluid is
reached. Remarkably, the argument proving this rests intimately on the Kolmo-
gorov scaling hypotheses of turbulence, the very hypotheses that are under attack
in this thesis.

The flow velocities we consider are much smaller than the velocity of sound,
which gives the incompressibility condition

∇ · u(r, t) = 0. (1.4)

Given an initial state of the flow field, together with the prescription of u(r, t)
at the boundaries, Eq. 1.3 suggests that the evolving field u(r, t > 0) is determin-
istic. However, we are uncertain about the uniqueness of the solution and there-
fore cannot characterize the phenomenon of turbulence as deterministic chaos.
Moreover, the number of degrees of freedom of a turbulent flow is extremely
large, which warrants a statistical rather than a deterministic description. The
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immense magnitude of the number of degrees of freedom N precludes the per-
formance of direct numerical simulations of turbulent flows that can readily be
made in the laboratory. With the number N increasing as Re9/4, it will take many
decades in the evolution of large-scale computing before the experiments of this
thesis can be numerically simulated.

Understanding the nature of the turbulence problem is however a different
story. What we need is “a method of understanding the qualitative content of
equations” (Feynman 1963 [32]). Though it may seem rather pessimistic, Tsi-
nober (2001 [90]) notes that there “is no consensus on what is (are) the prob-
lem(s) of turbulence and what would constitute its (their) solution. Neither is
there agreement on what constitutes understanding”. However, there seems to
be agreement on what the culprits for this situation are:

♦ Nonlinearity - the term ui∂iuj in the Navier-Stokes equations

♦ Existence and smoothness of solutions at all time

♦ Non-locality - to determine the local fields one has to integrate over the
entire space.

A more rewarding approach to deal with the extreme complexity of turbulence is
a statistical description. The Kolmogorov statistical hypotheses form the starting
point of the present thesis. In fact, a major effort will be to prove that the first
hypothesis needs serious amendment.

There are some other direct theoretical approaches to turbulence, but they
are neither the subject of the thesis nor constitute the mainstream of turbulence
research interests. We will mention that, since it is a system of interacting fields
(but of non-linear nature), turbulence is similar to quantum field theory, there-
fore the use of diagrammatic and functional integrals has been tailored to the
needs of turbulence. The main results and an introduction to this method are
given elsewhere, e.g. Antonov et al. (1999 [3]).

1.5 S   

In principle, the phenomenology of turbulence is characterized by simple statis-
tical quantities, such as averages, probability distribution functions, spectra, cor-
relations, etc., which are calculated from data experimentally measured or from
direct computer simulations. In general, the term “averaging” is never equiv-
alent to a proper ensemble average (over all possible states of the system), but
ergodicity is invoked to replace it by time-averaging or mixed time and limited
spatial averaging. These tools are sufficient to reveal some of the most important
universal features of turbulence.



1.5. Statistical approach and phenomenology 7

1.5.1 S-    

While turbulence at large Reynolds numbers consists of a wide range of dynam-
ical scales that contain its energy, they are bounded naturally by a largest scale
at which turbulence is stirred, and a smallest scale η, defined in Eq. 1.2, where
most of the energy is dissipated. By small scales we will understand the dissipa-
tive range close to η and the inertial range postulated by the first Kolmogorov
hypothesis (a). Phenomenological studies of turbulence are mostly aimed at the
study of the small scales, since it is here that universal properties of turbulence
are seen, and their characterization is considered important for the “turbulence
problem”.

The second hypothesis of Kolmogorov (b) implies that small-scale turbu-
lence is isotropic and homogeneous at sufficiently large Reynolds numbers, and its
statistics will be determined only by the average dissipation rate

〈ε〉 =
ν

2

3

∑
i,j=1

〈(
∂ui
∂xj

+
∂uj
∂xi

)2〉
(1.5)

where ν is the fluid viscosity. If we consider the histogram of the fluctuations of
normalized velocity increments over a small-scale separation ∆u(r)/(r〈ε〉)1/3 , it
follows then from (b) that this statistical quantity should be universal, i.e. inde-
pendent of the flow, Reynolds number or r. We will see next how the Kolmogo-
rov prediction is reflected and can be quantized using simple statistical tools.

1.5.2 S   

One of the most common statistical quantities used in the phenomenology of
turbulence is the structure f unction. We define the structure function of order p
to be

Sp(r) = 〈∆u(r)p〉 =
∫ ∞

−∞
Pr(∆u)∆up d(∆u), (1.6)

where ∆u are the velocity increments and Pr(∆u) is their probability distribution
function. The postulated universality of the normalized Pr(∆u/(r〈ε〉)1/3) implies
that structure functions exhibit scaling behaviour for high Reynolds numbers

Sp(r) = Cp(r〈ε〉)p/3, (1.7)

when the separations r are within the inertial range, with Cp universal constants.
The values of the scaling exponents ζp = p/3 follow from the postulate. The
equivalent form of the above relation for order p = 2 gives the well-known scaling
law for the energy spectrum

E(k) = C〈ε〉2/3k−5/3. (1.8)
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The only known exact relation for structure functions can be derived directly
from the Navier-Stokes equations, namely the Kolmogorov 4/5 law

SL3 (r) = −4
5
〈ε〉r. (1.9)

For high orders p ≥ 4, it is well-known the that scaling exponents ζp deviate
from the Kolmogorov dimensional prediction, that is ζp < p/3. These deviations
are known as anomalous scaling and imply that the form of the probability distri-
butions Pr(∆u) will vary inside the inertial range, such that with the decrease of
the scale towards the dissipative range, their “tails” will be increasingly flared out.
This phenomenon is called intermittency and the anomalous scaling is a measure
of it, since higher orders emphasize increasingly larger velocity excursions ∆u(r).

To account for intermittency, the refined (RSH) versions of the self-similarity
hypotheses were proposed by Kolmogorov (1962) [49], which incorporated the
suggestion of Obukov that the mean energy dissipation rate exhibits strongly
non-Gaussian fluctuations. In the case of anomalous scaling, one defines a local
mean dissipation rate

εr(r, t) =
∫
Vr

ε dV, (1.10)

such that its own scaling exponents

〈εr〉p ∼ rτp (1.11)

will contribute to the new scaling

〈∆up(r)〉 = C′
p(〈εr〉 r)p/3 (1.12)

with exponents

ζp = p/3+ τp (1.13)

Implicitly, the constants C′
p lose their universality (the famous “Landau objec-

tion”, originally formulated in 1944 [52]). The failure of the Kolmogorov the-
ory to explain the anomalous scaling does not stop here however. Continuous
improvement of experiments on intermittency brings increasing evidence that
a description of turbulence beyond the Kolmogorov formulation, which dom-
inated the turbulent research for more than half a century, is acutely needed.
A number of intermittency models were proposed, which attempt to explain in
particular the anomalous scaling exponents. The most popular model to explain
the anomalous scaling exponents is the multifractal model of Frisch (1985 [66]).
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1.5.3 T  

In the Richardson cascade picture, when a mother-eddy breaks up into smaller
daughter eddies, they uniformly occupy the entire space. In the fractal descrip-
tion, the resulting eddies will occupy only a fraction 0 < β < 1 of the initial
volume. Therefore, the fraction of the space that remains active at scale r (after
some n breakdowns of the largest eddies r0) is

pr = βn =
(
r
r0

)3−D
(1.14)

Here the notation 3− D justifies the interpretation of D as a fractal dimension.
Then the energy flux (per unit mass) at scale r is

Π ∼ Er
tr

∼ pr ·
v2r
tr

=
v3r
r

(
r
r0

)3−D
(1.15)

which in the inertial range should not depend on the scale and therefore can be
computed at the large energy injection scale

〈ε〉 ∼
v30
r0
. (1.16)

The two relations (1.15) and (1.16) lead to a scaling exponent for the velocity
field

vr ∼ v0

(
r
r0

)h

(1.17)

where
h =

1
3
− 3− D

3
. (1.18)

If rather than being single valued, the turbulent flow is assumed to possess a
continuous range of scaling exponents h, then for each h there is a set Sh ∈ R3

of fractal dimension D(h) in which the velocity scales with this exponent. When
we sum over all sets to compute the total scaling of the structure function

Sp(r)

rp0
∼

∫
dµ(h)

(
r
r0

)ph+3−D(h)
(1.19)

where µ(h) reflect the different weight of different fractal sets. In the limit r → 0,
the power-law with the smallest exponent will dominate, such that the scaling
exponent of the structure function will be

ζp = inf
h

[ph+ 3− D(h)] (1.20)
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Fig. 1.3: Geometries in which structure functions can be measured.

irrespective of the weights. It can be seen that the dimensions D(h) and the
scaling exponents are related by a Legendre transform, such that the inverse

D(h) = inf
h

[ph+ 3− ζ p] (1.21)

can be used to experimentally measure the deviations of the fractal dimension
D(h) ≤ 3 from the scaling exponents. So far, the multifractal model does not ex-
plain the anomalous scaling exponents, other than stating that anomalous scaling
is equivalent to a non-trivial value of the multifractal dimension function D(h).
However, it is possible to construct more explicit models which do predict nu-
merical values of the scaling exponents. One example is the log-Poisson model by
She and Leveque [80], which reproduces the scaling exponents that are measured
experimentally.

1.6 G:     

In the previous section we have encountered a geometric description of the orga-
nization of turbulent fluctuations: the multifractal model. Geometry is a central
theme in this thesis. The velocity field u(r, t) is a vector field that depends on the
position r. So far, we have ignored this circumstance when we have considered
the velocity magnitude ∆u(r) of eddies with size r irrespective of the orientation
of the vectors ∆u and r. Clearly, the turbulent velocity field is much richer and
we will have to bring in its vector character to describe its fluctuations.

A simple extension of the traditional experiments results if we realize that
we can choose a relative orientation of the vectors ∆u and r, with the extremal
situations called longitudinal, if they point in the same direction and transverse
if they are orthogonal. These geometries are illustrated in Fig. 1.3.

The extensive literature on scaling issues in turbulence is dominated by stud-
ies of the statistics of longitudinal increments. The reason is that these are easily
accessed experimentally: a time series of velocity fluctuations measured using a
stationary probe in a turbulent flow with a relatively large mean velocity com-
ponent U suffices. Through invocation of Taylor’s frozen turbulence hypothesis
time differences τ can be translated into spatial separations r as r = Uτ. In Chap-
ter 4 of this thesis we describe a concentrated effort to use more sophisticated
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instrumentation needed to measure the statistics of ∆u(r) at an arbitrary relative
orientation of ∆u and r.

Intermittency is caused by extreme velocity excursions that happen more of-
ten than expected on basis of Gaussian statistics. It is believed that these velocity
excursions are caused by strong concentrated vortical events (the “sinews of tur-
bulence” [56]). In Chapter 3 we devise tools to capture these events in an experi-
ment. Naturally, these tools rely on the geometry of the detection technique. We
argue that some geometrical arrangement is more efficient in capturing concen-
trated vortices than others, and that the measured intermittency depends also on
this arrangement.

At large scales, turbulence is always driven anisotropically. In our experi-
ments, this is the consequence of the way we stir turbulence using special grids
through which we pass our windtunnel flow. In almost all practical applications,
turbulence is stirred anisotropically. This implies that small scales forget the way
in which turbulence is stirred, which is extremely important for the design of
turbulence models for practical calculations of turbulence flows.

At least remnants of anisotropy remain at small scales and the question is
how to describe these weakly anisotropic fluctuations. An exciting recent idea
[55] is to expand these anisotropies in terms of irreducible representations of the
rotation group. There is a beautiful analogy between this description and the
well-known concept of angular momentum in quantum mechanics. In Chap-
ter 4 we critically evaluate these ideas and describe experiments aimed to detect
the irreducible representations in turbulence.

In recent years, the concept of universality in turbulence came under con-
siderable pressure, triggered not only by the non-unique aspects of scaling (such
as observed in Chapter 3), but also because large-scale anisotropies seem to sur-
vive at dissipative scales, even at very high Reynolds numbers. In Chapter 5,
we examine this possibility by investigating the scaling properties and small-scale
strong events in a flow with a simple large scale anisotropy: homogeneous shear
turbulence. This type of turbulence has a constant mean velocity gradient, but
its (second-order) statistical properties are constant. The question then is if the
large scale gradient survives at small scales. Through the measurement of struc-
tures and structure functions we find that these gradients are actually amplified in
extremely strong events which carry almost all the large-scale velocity difference
over a few Kolmogorov scales.

In Chapter 6 a classical problem of turbulence is treated: the deviations from
Gaussianity of the velocity derivatives statistics. Variations in the derivative statis-
tics are studied in two geometrical configurations (longitudinal and transverse),
over a range of Reynolds numbers Reλ ≈ 450 . . . 800. This investigation is moti-
vated by a suspected transitional behaviour around Reλ ∼ 600 [9], attributed to
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breakdown of small-scale coherent flow structures. Since the transition signifies
the occurrence of another type of turbulence at very large Reynolds numbers, we
deemed it worthwhile to scrutinize this extremely intriguing suggestion. Here
the Reynolds number is defined as

Reλ =
u′λ
ν
, (1.22)

where u′ is the r.m.s. of the velocity fluctuations and the Taylor micro-scale λ is
defined by the relation

u′2

λ2
=

〈 (
∂u
∂x

)2 〉
. (1.23)

We will show that the transition can be caused by insufficient resolution of the
instrumentation, which affects the two experimental geometries used in different
ways.

Our interest in the geometry of turbulence culminates in a final chapter
where we directly explore the fractal geometry of turbulence. If fractals form
indeed a relevant tool to understand turbulent flow, we wonder whether it is
possible to stir turbulence in a fractal manner. In Chapter 7 we stir turbulence
using objects which have a fractal structure. The strong turbulent wakes resulting
from three such objects with different fractal dimensions are studied, in an at-
tempt to relate the self-similar behaviour of turbulence to the inner scaling of the
fractals. We find evidence of the distinct fractal contamination in the dissipative
tail of the spectrum.



C 2

EXPERIMENTAL METHODS

2.1 I

In this chapter we introduce the experimental setup that was used to generate
and measure high Reynolds number windtunnel turbulence. Before we proceed
with the actual description, it is useful to go over some of the factors that were
taken into account prior to establishing the experimental method. Since the
geometric facets of turbulence are central in this work, it is essential to employ an
experimental technique that probes the spatial structure of the turbulent velocity
field. Experimentally, this is achievable if the velocity fields can be captured
simultaneously at different locations in the flow. Large Reynolds numbers, a
prerequisite for observation of universal aspects in turbulence, are synonymous
to a large dynamical range of scales. It is important that they can all be properly
resolved experimentally.

These requirements prompted us to choose multipoint hot-wire anemometry
as the measurement technique. We will start this chapter with introducing this
reliable experimental method (section 2.2).

In section 2.2.1 we present the windtunnel facility and the mechanism used
for stirring turbulence. The characteristics of the turbulent flows studied in this
thesis can vary significantly, depending on the particular aspect of turbulence
that is investigated. We will therefore restrict the discussion here to general con-
siderations, but we will treat each new experimental configuration as the thesis
progresses.

In section 2.2.2 we describe the array of hot-wire probes that is employed for
capturing the turbulent velocities. The use of such a tool will be justified, when
we evaluate (section 2.2.3) the Reynolds number and the size of the small-scales
that are expected in our windtunnel, and the accuracy with which they will be
resolved in our experiments.

The use of sensors arrays is a next step in turbulence instrumentation, that
has, so far, been based on precise point measurements of the velocity field. Arrays
of probes require accurate velocity calibration of the probes. We will describe a
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new technique to achieve this. The prime quantity of interest is the structure
function; it turns out that our calibration technique greatly improves the quality
of measured structure functions.

In section 2.3.3 we analyze the problems inherent to computing structure
functions of high orders. We see that long duration experiments are needed to
insure the convergence of high-order statistics.

2.2 H- 

A velocity sensor for hot-wire anemometry essentially consists of a very thin (of
the order of microns in diameter) wire of tungsten which is electrically heated.
When the sensor, with a length of the order of 200 µm, is exposed to a flow of
air, the cooling of the wire is compensated by an electronic device, usually an
electronic bridge that monitors the variations of the wire’s resistance. A fast ad-
justment in the voltage supplied to the wire, needed to restore its temperature
to a constant initial value, reflects the velocity of the flow at the sensor loca-
tion. When the hot-wire sensors are small enough and they are accompanied by
suitable fast-response electronics, they can resolve the instantaneous turbulent
velocity fluctuations in high Reynolds-number flows. This technique is called
constant temperature anemometry (CTA).

While it appears to have been used as early as 1909 (according to Tsinober
(2001 [90])) and despite its conceptual simplicity, constant temperature hot-
wire anemometry remains a very flexible and wide-spread measurement method
of fluid dynamics. For the measurements of turbulence of moderate intensity,
a decisive factor that makes it so popular is the ability to capture intermittency
effects. In fact, hot-wire anemometry is still the only reliable technique to study
intermittency in strong turbulence, no wonder it is the measurement technique
of choice in this thesis. Let us briefly contrast it to other modern techniques
and argue why these are unsuited. Modern, non-intrusive optical techniques are
laser-Doppler anemometry and particle image velocimetry.

Laser-Doppler velocimetry is based on the scattering of light off a particle
that passes a narrow and well-defined scattering volume. The velocity of the
particle is inferred from a Doppler shift of the scattered light. Measuring inter-
mittency is concerned with measuring statistical properties of the velocity field.
The problem with laser-Doppler velocimetry is that in high velocity regions,
more particles pass the measurement volume in a given time interval than in
low velocity regions. Therefore, high velocity episodes have a larger weight in
the statistics than low velocity spells. There is no way to correct measured high-
order statistics for this effect. Thus, laser-Doppler velocimetry is unsuited for
intermittency studies.
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�
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Fig. 2.1: The hot-wire sensor is sensitive only to the velocity component per-
pendicular to it, U⊥, if the fluctuations u, v,w are small relative to the
mean velocity U.

Particle image velocimetry (PIV) is a technique in which (a planar cut of )
the velocity field is inferred from snapshots of the distribution of particles in the
measurement plane. By correlating these snapshots it is possible to obtain a 2-
dimensional projection of the velocity field in the measurement plane. Since, as
laser-Doppler velocimetry, PIV is also based on seeding the flow with particles, a
first problem is that the particle density needs to be large enough to resolve the
smallest scales in the flow. In air flow, where the generation of strong turbulence
can be done most readily, this demands a very high density of added scatterers.
A second problem is that the deduction of velocity vectors from the correlated
images is not always unambiguous and particle image velocimetry must involve
a validation step in which the “improbable” velocity vectors are rejected. The
trouble is that such velocities may precisely be caused by intermittency.

The precision of hot-wire anemometry as a measurement method has im-
proved considerably since its introduction, but it should be noted that its ap-
plication can be a very frustrating experience. A.E. Perry, who is internationally
renowned for his contribution to this measurement technique, argued that “it
leads many people not only to worry about the calibration of the instrument,
but also about the calibration of the person carrying the measurements”. His
book (1982 [69]), together with that of Bruun (1995 [13]), provide an intro-
duction to the technique and an extensive bibliography.

It is obvious that the cooling of a heated wire is quite insensitive to the di-
rection of the incoming velocity vector in the plane perpendicular to the wire.
However, if there is a relatively large mean flow in this plane, mainly the com-
ponent in the direction of the mean flow is detected. As Fig. 2.1 illustrates, the
velocity U⊥ that determines the cooling of the wire is the vector sum of the mean
U and fluctuating (u, v) components, and has the size

U⊥ =
(
(U + u)2 + v2

)1/2
, (2.1)

which equals U⊥ = U + u to first order in u/U and v/U. With a single wire,
therefore, an unambiguous assignment of the signal to the u−component of the
velocity field is only possible if the turbulent fluctuations are relatively small. It is
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Fig. 2.2: (a) Sketch of the windtunnel facility where the experiments were per-
formed. (b) Close-up of the array arrangement of the 10 hot-wire sen-
sors used to measure turbulent velocity fluctuations.

also possible to construct probes with more sensing parts, the simplest one con-
sisting of two perpendicular hot wires (often called ×-probe), which can measure
simultaneously two components of the fluctuating velocity.

2.2.1 W 

Generating an appropriate turbulent flow is of great importance in this work. A
relevant example is given in chapter 5, where observation of novel scaling proper-
ties in homogeneous shear turbulence owes mainly to the special care with which
we designed the turbulence stirrer. The form of the stirrer can vary significantly
depending on the type of turbulent flow that is investigated, therefore it will be
described in detail with every new experimental setup.

Our principal method of creating turbulence is to pass the laminar flow of
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a windtunnel through a planar passive grid, which serves as turbulence genera-
tor (see Fig. 2.2(a)). A classical example of a grid, which will however not be
used here, consists of equally spaced vertical and horizontal rods that cover the
windtunnel cross-section. The grids that we will employ can depart more or less
from this design, but they all serve the same purpose, that of creating a strong
turbulent wake behind them. The only slightly different situation will be en-
countered when fractal objects are used to play the role of the grid (chapter 7),
but then the stirrer has a 3-dimensional structure. The turbulent flow achieves a
stationary state at some position downstream, where it is intercepted by an array
of 10 single hot-wire sensors, which will be described in the next section.

The width of the recirculating windtunnel, not shown in Fig. 2.2(a), is W =
0.7m. The air flow is driven by an electric turbine that can produce a laminar flow
with a maximum velocity of 22m/s. When a grid is used, its solidity (obstructing
areas) cause the mean velocity of the flow to decrease substantially, such that the
mean velocity of our flows will always be less than 15m/s.

2.2.2 T - 

A closer look at the array of sensors is given in Fig. 2.2(b), where we can see
that the 10 probes are positioned at various separations, such that each of the
45 pairs is characterized not only by a different spacing, but also that increasing
separations are approximately exponentially spaced. The scaling properties of
structure functions refer to an algebraic dependence of velocity differences on
the distance over which they are registered. This dependence can be studied in
log-log graphs, in which exponentially spaced distances come equidistantly.

The smallest and largest separations between two probes are chosen to resolve
(if possible) the dissipative scales of the turbulent flow and the homogeneity of
the large forcing scales. To avoid cross-talking of different sensors, the separation
of probes in the closest pair, situated in the center of the array, was limited to
approximately 1mm.

The support of the array is approximately 25cm wide (which is also the largest
separation of a pair of probes) and can be rotated in various positions and ad-
ditionally translated vertically by a computer-controlled stepper motor. This
feature serves for checks of flow homogeneity.

Each of the sensors in the array is made of tungsten/platinum wire of 2.5µm
diameter and has a sensing part of 200µm. The remaining length of the wire
and the welding to the supporting prongs are gold-plated to improve electrical
conduction.

The sensors are controlled by 10 digital constant temperature anemometers
(CTA channels) that were manufactured in our group. Their signals are digitized
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using a 10-channel 12-bit analog-to-digital converter (ADC) that samples them
simultaneously at 20kHz each, after they have been appropriately low-pass fil-
tered. The CTAs have been adjusted and the turbulence frequency spectra that
they measure are checked against a high-quality CTA produced by the Danish
company Dantec Dynamics. Finally, data which routinely amount to more than
109 velocity samples are stored on the hard-disks of a computer. Before each
measurement, the array of wires is calibrated in laminar flow, by using either the
flow produced by a separate nozzle or the flow of the unobstructed windtunnel.
For the first method, a computer-controlled calibration unit (producing variable
speed laminar flow) is mounted on a positioning system that moves sequentially
in front of each sensor and calibrates it. The calibration itself consists of varying
the known laminar velocity to which the sensor is exposed and recording the
corresponding changes of the wire voltage in calibration curves. The entire pro-
cedure, including the readings of a built-in Pitot tube that monitors the laminar
flow, was automated such that in a relatively short time a large number of sensors
can be handled .

Comparable results are obtained when the calibration is done with the wind-
tunnel flow in the absence of a grid, when the procedure is considerably short-
ened, but the flow can be slightly turbulent even when the sensor array is far
from the boundary layers.

For the translation of the calibration curves from each sensor into velocities
in an actual measurement, we use the “look-up” table method. To simplify the
procedure, we keep from the calibration voltage-velocity curves only the coeffi-
cients of a 4th order polynomial fit.

Since the windtunnel is of recirculating type, the continuous energy injection
will cause a slow rise in the air temperature inside it. This has a small effect on
the amplitude of the measured turbulent velocity fluctuations, but causes errors
in the determination of the mean velocity of the flow (Fig.2.3). This effect can
be understood from the working principles of hot-wire anemometry. Since the
calibration of the hot-wires is performed at a different initial temperature, the
overheating factor of the sensors will slowly change when the temperature in
the windtunnel varies. To implement an appropriate correction for this effect,
we additionally sampled the air temperature in the windtunnel at short time
intervals. When analyzing registered time-series, all probe calibration tables are
recomputed every few seconds using the recorded windtunnel temperatures.

2.2.3 R - 

Our flow diagnostics was designed to resolve both the smallest and the largest
scales in turbulence, the largest scale L was set by the typical size of a grid mesh
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Fig. 2.3: Correction for the air temperature drift in the windtunnel during an
extended experimental run prevents a measuring a wrong value (dashed
curve) of the mean velocity. The noise in the curves reflects the short
time intervals from which the “local” mean velocity is calculated (ap-
proximately 5 seconds).

which is L ∼ 0.1m. With a mean velocity of 15ms−1, this gives a large-scale
Reynolds number of

Re =
L ·U

ν
≈ 105, (2.2)

Since the ratio of the forcing and dissipation scales grows like L/η ∼ Re3/4, we
estimate the dissipative scales in our windtunnel to be as small as

η ≈ 10−4m, (2.3)

with actual measurements slightly larger than this value (η ≥ 1.5 · 10−4m). This
scale is several times smaller than the separation between the closest sensors, but
from the high value of the frequency used for sampling the time-signals, we can
resolve comparable time-scales

1/τ =
U
2πη

∼= 1.6 · 10−4m. (2.4)

It is obvious that the accuracy in resolving the dissipative scales using this con-
figuration will be slowly lost when the Reynolds number grows. The manner
in which this phenomenon develops and affects specific dissipative statistics is
described in detail in chapter 6. To avoid such complications, an ideal situation
would be to construct sensors that are an order of magnitude smaller than the es-
timated dissipative scales. Using conventional (micro-) mechanical engineering,
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this is an impossible task as it would require handling of wires that have a mere
thickness of 0.25µm. In the past decade there have been several serious attempts
to produce velocity sensors using micro-machining. However, these sensors have
not yet matured.

Insufficient resolution of the small-scales is an acute problem of present-day
experimental turbulence, since an increase in the Reynolds number invariably
decreases the dissipative scale η ∼ Re−3/4. High Reynolds numbers are however
indispensable to the study of universal aspects of turbulence. Only in such flows,
a clear separation from the anisotropic effects of the large forcing scale and the
viscous scale can be achieved, and without it, it is very difficult to argue that we
measure universal aspects and not some finite-size exotic behaviour.

Using high energy injection, or using gases with a smaller kinematic viscosity
than air at room temperature and atmospheric pressure, it is possible to create
large Reynolds-number flows in the laboratory. Examples are the experiments on
cryogenic helium gas by Tabeling et al. [87, 29], who reached Reynolds numbers
of Reλ

∼= 5000, and the possibility to work with air at high pressure. However,
with laboratory-size injection scales, the dissipative scales in these flows will be
very small, so small that no adequate instrumentation exists to resolve them. A
natural, but expensive solution would be to move to very large scale setups. In
this respect we mention the experiments performed by Gagne et al. [39] in the
return channel of the ONERA S1 high-speed windtunnel in France, which has a
cross-section of 45m2and has a Taylor-microscale Reynolds number Reλ ∼ 2500,
but where the dissipative scales remain large (η ∼ Re−3/2λ ). The construction
scales related with such projects translate in an inflexibility in controlling the flow
properties; actually the gain in the Reynolds number domain is less impressive.
Combined with an ingenious design of the stirrer, the turbulence achieved in the
present work will have a Reλ as high as 860.

However, clear steps ahead in the progress of experimental turbulence will
not be made unless new measurements methods emerge. There are however posi-
tive signals that we are going in the right direction: for example, positron-collider
detector technology was borrowed to resolve microscopic scale trajectories of a
particle carried by turbulence at an incredible rate of 70,000 frames per second
(see Porta et al. [71]). Another exciting technology is to spectroscopically tag
molecules at small scales in turbulent air flow (Noullez et al. [61]). This is a non-
intrusive optical method that does not suffer from either velocity bias or seeding
problems that plague laser-Doppler anemometry or particle image velocimetry.
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Fig. 2.4: Methods of calculating velocity differences using a transverse sensor
array.

2.3 M  

2.3.1 V 

For the measurements of the structure functions of some order p, one needs to
compute the time-average of the velocity differences over a separation r

Sp = 〈[u(x+ r, t) − u(x, t)]p〉. (2.5)

To achieve this, there are essentially two alternatives, whenever an array of sen-
sors is used. The simplest method to evaluate velocity differences is by consider-
ing time-delays u(r, t0 + t) − u(r, t0), when only the time-series of single sensors
(placed at some fixed position r) are involved. The typical low-intensity of wind-
tunnel turbulence justifies the re-interpretation of the time-lags as longitudinal
separations, or what is known as the Taylor hypothesis. If the intensity of turbu-
lence is u/U  1, then

u(t0, x) = u′(t0, x−Ut), (2.6)

or simply ∆x = U · t. This situation and the choice of the coordinates are illus-
trated in Fig. 2.4(a). Then the velocity difference is

u(x + ∆x, t0) − u(x, t0) = ∆u(∆x) ≡ ∆uL(r), (2.7)

and we can construct the longitudinal structure functions.
The most obvious way to construct velocity increments in the present config-

uration is when the velocities u recorded by different sensors situated at locations
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Fig. 2.5: Small differences in the dynamical response of different sensors are re-
vealed by the turbulence spectra measured in homogeneous flow exper-
iments.

yi, yj are compared at equal time, which is equivalent to saying that the vector r
points transversely to the measured velocity component

u(yi , t0) − u(yj, t0) = ∆u(∆y) ≡ ∆uT(r), (2.8)

such that we can calculate transverse structure functions (see Fig. 2.4(b)). The
obvious benefit is that the Taylor hypothesis is not needed in this case.

In general, in longitudinal velocity increments the vector r points in the same
direction as the measured velocity component, whereas they are at right angles
in the transverse case. In chapter 4 we will explain how to measure increments at
any angle (Fig. 2.4(c)). Of course, when we want to capture the spatial structure
of the flow in a direction perpendicular to the mean flow, we have to use an array
of hot-wire sensors.

2.3.2 C   

One of the great advantages of the used transverse arrangement is that spatial
separations are explicit, and do not follow implicitly from Taylor’s hypothesis. A
problem is, however, that velocities at different points are measured by different
probes whose characteristics may slightly differ. This problem is absent in the
longitudinal direction, where these velocities are measured using the same probe
through time delays.

In principle, the calibration procedure that precedes each experiment takes
care of the different probe characteristics. However, the calibration procedure
only pertains to the static response of the wires, and it would apply at all fre-
quencies if the wires and the control electronics would not have any dynamics of
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Fig. 2.6: The effect of instrumentation noise on transverse structure functions,
before (left) and after (right) correction using Eq. 2.12.

their own. This is not the case, and the dynamical characteristics may vary from
one wire to another and from one CTA controller to the next.

These differences manifest strongest when contributions from all sensors are
combined to compute the transverse structure functions STp (r).

With 10 probes, each of the 45 discrete separations r involve a different pair
of probes at the locations yi, yj, rij = yi − yj. The slightly different dynamical
response of the members of each of the 45 different pairs causes a (systematic)
error in the statistics of te corresponding velocity increments ∆uij = ui − uj.

The entire situation can become very frustrating when the purpose of the
experiments is to fit scaling exponents to transverse structure functions. To illus-
trate this, we show in Fig. 2.6 how the relative noise of different channels mani-
fests in large (systematic) fluctuations in the measurement of transverse structure
functions. We propose a simple correction method that drastically improves the
quality of the structure functions and allows the determination of scaling expo-
nents with better accuracy.

Due to a different dynamical response, different probes may measure slightly
different turbulent intensities 〈u2〉1/2. As a first step, this may be corrected for by
replacing ∆uij with

∆̃u(∆yij) = ui
〈u2〉1/2

〈u2i 〉1/2
− uj

〈u2〉1/2

〈u2j 〉1/2
, (2.9)
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where for M sensors 〈u2〉 is the averaged squared turbulent velocity

〈u2〉 =
1
M

M

∑
i=1

〈u2i 〉. (2.10)

However, the turbulent intensity is only an average over the energy spectrum,

〈u2i 〉 =
∫ ∞

0
Ei( f ) d f , (2.11)

whereas the difference in dynamical response between wires may be a function of
frequency. That this is actually so is illustrated in Fig. 2.5, where we show the fre-
quency spectra of each wire of the array, measured in homogeneous turbulence.
These frequency spectra are seen to be slightly but significantly different.

To make a frequency dependent correction, the idea is to normalize veloci-
ties such that each probe of a given pair sees the same turbulent energy at the
wavenumber kx set by the probe separation rij, kx = 2π/rij. Instead of energy
spectra, we will work with the second order structure functions, which are only
a Fourier transform away. If SL2,i(r) are the second order structure functions of
probe i, the correction then becomes

∆̃uT(rij) = ui
SL2 (rij)1/2

SL2,i(rij)
1/2

− uj
SL2 (rij)1/2

SL2,j(rij)
1/2

, (2.12)

where SL2 is the averaged second order structure function. This results in a
dramatic improvement of measured transverse structure functions as shown in
Fig. 2.6. In the second order structure function (ST2 (r))1/2 the systematic noise
has now been reduced from 0.1ms−1 to 0.01ms−1.

Although the basis of the correction Eq. 2.12 is the (approximate) isotropy of
turbulent fluctuations, it does not make the structure functions trivially isotropic,
neither does it change the overall scaling behaviour.

2.3.3 L  

When the order p of the structure functions Sp = 〈∆up〉 is increasing, velocity
fluctuations ∆u increasingly larger than the r.m.s. value, 〈∆u2〉1/2, will dominate
the contributions 〈∆up〉. However, the larger the velocity increment is, the lower
the probability of its occurrence. If we construct the PDFs of velocity increments
Pr(∆u), taken at a separation r over a long time interval, then we observe that
from a total number of samples collected (Nt = 2 · 108) in an experiment, only
about N ∼ 103 have ∆u/〈∆u2〉1/2 ≥ 6 (see Fig. 2.7(a)). Therefore, at a large
enough order p, N will be too small to insure a statistically convergent value of
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Fig. 2.7: (a) Histogram of velocity increments taken over a longitudinal sepa-
ration r/η ∼ 400 in the inertial range, in turbulence with Reλ ∼ 600.
The total number of collected samples was in this case Nt = 2 · 109.
Moments p = 6 (b) and p = 12 (c) of the probability density function
Pr show that the number of collected samples Nt is sufficient to insure
convergence of the structure functions of corresponding orders.
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the structure function Sp at the separation r. Alternately, the structure functions
can be calculated directly from the PDFs as

Sp(r) = 〈∆up〉 =
∫ ∞

−∞
∆upPr(∆u) d(∆u). (2.13)

When the order p grows, the low probability tails of Pr(∆u) will give most of the
contribution to the value of Sp(r). The exact correspondence between the order
p of the structure function and the probability level that contributes significantly
to it will be described in chapter 3. Insufficiently long experiments will therefore
result in unconverged high-order structure functions, since the histograms will
be depleted of large velocity increments. An efficient method of determining
the highest order p structure function that is still converged, is to examine the
moments of the probability density functions

Mp(∆u) = ∆upPr(∆u), (2.14)

We show the functions Mp(∆u) for two orders, a moderate p = 6 and a large
p = 12 in Fig. 2.7(b,c). When the tails of Mp

lim
∆u→±∞

Mp(∆u) (2.15)

have smoothly decreased to 0, then the contribution from separation r to the
structure function

Sp =
∫ ∞

−∞
Mpd(∆u)

is statistically converged. If the values of Mp oscillate at large |∆u|, then a longer
time-series is needed to resolve order p. We can see that this behaviour starts in
our case at order p ∼ 12.

Therefore, an accurate determination of high-order structure functions needs
very long integration times. It is important that these integration times involve
many uncorrelated events, that is, contain many large-eddy turnover times. Since
in experiments the velocity field is sampled so sparsely, collecting many velocity
samples automatically involves many turnover times. In numerical simulations,
the situation is opposite: each snapshot of the computed velocity field contains
millions of points, but the integration time is only a few turnover times. There-
fore, the total number of collected velocity samples is not a good criterion for as-
sessing the accuracy of high-order structure functions. In our experiments, each
run lasted many (up to 6) hours, during which the velocity field was sampled at
approximately the Kolmogorov frequency.
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STRONG EVENTS AND INTERMITTENCY

3.1 I

Experimental work in turbulence pointed out the existence of violent rare events,
commonly referred to as worms. They are believed to be filamentary vortical
objects containing a large vorticity concentration within a scale of the order of
the dissipation scale. Consequently, the velocity difference across such objects
would be an important fraction of the mean velocity of the flow.

Visual evidence of worms first came from numerical simulations by She et al.
[79] and bubble visualization techniques by Douady et al. [26], which revealed
their vortex filament structure. This step was followed by sustained efforts to
quantify their properties in the work of Siggia [83] and Jimenez et al. [46], from
investigations of low Reynolds number numerical simulations.

The key question of this chapter is to find these strong vortical events in
experiments on fully developed turbulent flow with a large Reynolds number.
To this aim we will exploit the velocity information measured by an array of hot-
wire probes in a windtunnel. A problem is to define detection schemes that can
identify these strong events with a vortical signature. This chapter describes a
concentrated effort to find them reliably.

Next, the question will be in what manner these events contribute to in-
termittency and anomalous scaling. Loosely, intermittency is characterized by
the preference of turbulence for large velocity gradients, which is reflected in
strongly non-Gaussian tails of the probability density functions of velocity dif-
ferences. While it is obvious that these tails are determined by extreme events, a
question is their relation with anomalous scaling.

3.2 L   

In the past few years it has become clear that different geometrical arrangements
of turbulence detection may discriminate between different types of turbulent
structures. In fact, the measured statistical properties, including even general
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aspects such as scaling exponents, may depend on the geometrical arrangement.
A detailed analysis of this effect in terms of elements of the rotation group will be
presented in chapter 4, but here it suffices to make a simple distinction between
the longitudinal and transverse arrangements.

In statistical turbulence, we are interested in velocity increments ∆u(r) =
u(x+ r)− u(x) measured over a distance r, loosely the strength of eddies with size
r. If the measured velocity component points in the same direction as the vector
r, then we obtain a longitudinal velocity increment, and if r points perpendicular
to it, then we measure transverse velocity increments. Accordingly, a similar
distinction can be made between the structure functions of order p, such that
GL
p (r) = 〈∆upL(r)〉 and GT

p (r) = 〈∆upT(r)〉 are longitudinal, respectively transverse
structure functions.

A few years ago it was realized that the longitudinal structure function may
have a different algebraic behavior than the transverse one, GL

p (r) ∼ rζLp , GT
p (r) ∼

rζTp , with ζLp �= ζTp . This was first observed by van de Water et al. [92] and
attributed to the large scale anisotropic structure of the flow, and then confirmed
by experiments (Dhruva et al. [24]) and numerical simulations (Chen et al. [18]).

Scaling behavior of structure functions is an inertial range property and oc-
curs at r values (much) larger than the dissipative length-scale, but smaller than
the external length-scale. A simple dimensional argument links the structure
function to the energy dissipation rate rate εr averaged over scales r

εr(r, t) =
1
Vr

∫
Br

ε dr, (3.1)

where Br is a sphere of radius r centered at r and ε is the local dissipation

ε =
ν

2

3

∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2

. (3.2)

To be specific, whilst the longitudinal structure function can be associated with
the local dissipation ε, the transverse structure function is associated with the
local enstrophy ω2. This is because in isotropic turbulence the dissipation can
be expressed in the longitudinal derivative only ε = 15ν〈(∂u/∂x)2〉, whilst the
transverse derivatives are determining the vorticity ω.

The circumstance that scaling exponents are different from their self-similar
values p/3 implies that the local dissipation rate ε fluctuates, such that the locally
averaged mean dissipation

〈εpr 〉 ∼ rτp , (3.3)

where the scaling exponents τp and ζp = p/3+ τp are related through Kolmogo-
rov’s refined similarity hypotheses ([49]).
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To account for the different scaling of the longitudinal and transverse struc-
ture functions, it was recently shown by Chen et al. [18] that the local enstrophy
follows different scaling rules

〈Ωp
r 〉 ∼ rξp , (3.4)

with ξp < τp of Eq. 3.3. As a consequence, an alternative refined similarity
hypothesis was proposed (Chen et al. [19]), separating the scaling of transverse
structure functions

〈∆up(y)〉 ∼ (〈Ωr〉y)p/3 (3.5)

from the scaling of longitudinal structure functions

〈∆up(x)〉 ∼ (〈εr〉x)p/3, (3.6)

such that the total transverse scaling exponents are smaller. These arguments
favor the idea that the transverse velocity increments are more connected to in-
termittent structures that the longitudinal ones. However, in a paper by He et
al. [44] it was pointed out that no thinkable vortical structure would support
different scaling of dissipation and enstrophy.

Another explanation for the different scaling of the longitudinal and trans-
verse exponents may be that the transverse arrangement is more effective in cap-
turing vortical events (Noullez et al. [61]).

These two ideas prompted us to develop methods for extracting vortical
events from the time-series of turbulence measurements. While structure func-
tions are well-defined quantities in the statistical analysis of turbulence, the ex-
traction of structures is a wide-open problem. There is an urgent need for more
sophisticated ways of extracting statistical information from turbulence data. Af-
ter all, the traditional statistical quantities are based on two-point measurements
of the velocity field, whereas nowadays much more information is available, in
numerical simulations but also in experiments. In this chapter, we will move
from the quantification of intermittency by means of structure functions, to
measuring structures.

In section 3.3, the experimental setup is described, and then basic properties
of the turbulent flow, such as isotropy and homogeneity, are evaluated. Next,
we measure the scaling behaviour of the structure functions and compare it to
what was found by others. We confirm that the scaling anomaly is larger in the
transverse direction, especially so at large orders p.

We continue with an extensive discussion on how to find strong (vortical)
events in an experimental signal. A naive strategy would be to just look for
large velocity increments. For this we would only need the probability density
functions of velocity increments. Their shape and contribution of their extreme
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velocity increments tails to high-order structure functions are discussed in sec-
tion 3.5. This discussion provides a reference point for more sophisticated tech-
niques to extract worms.

After reviewing previous methods for extracting worms from numerically
simulated turbulent fields, we propose in section 3.6 a simple algorithm that
can be applied to experimental time-series of velocity fields measured in discrete
points along a line. The purpose of this conditional algorithm is to find large vor-
tical events together with their atmospheres. As all conditional algorithms suffer
from the problem that their result may be determined by the imposed condition
rather than by genuine structures, we first test it on a synthetic turbulence signal.
A second null-test will be performed in the context of the experiment.

A synthetic turbulent velocity field is constructed in section 3.6.2 by a ran-
dom collection of Burgers vortices. We will then investigate wether our algorithm
indeed identifies these vortices from a simulated measurement. As expected, it
approximately does so in the transverse direction.

Next, we apply our algorithm to an experimental signal. Perhaps surprisingly,
we obtain vortex signatures which resemble Burgers vortices with a size that is a
few times the dissipative length scale. In a null test, we randomize the experi-
mental signal, in a way that leaves its second-order statistical properties invariant:
a signal with the same turbulence properties, which lacks all turbulent structures.
Also this test prefers the transverse arrangement.

Finally, in section 3.7, we assess the importance of worms to inertial range in-
termittency. This is done by analyzing the contribution of worms to the anoma-
lous scaling of structure functions. To this aim, transverse worms are removed
from the velocity time-series and the structure functions are recomputed.

3.3 E 

Before we start the actual quest for finding the worms, a suitable experiment
has to be devised. The purpose is to create strong turbulence that has a large
Reynolds number and exhibits clear scaling. To this aim a special grid is used
to stir the flow, which is described in detail in [2]. In the present measurements
we work at the highest Reynolds number Reλ ∼ 900 that could be obtained in
our windtunnel. Other studies with varying Reλ will be discussed in chapters 6
and 7. The grid is placed at the beginning of the test section of a recirculating
windtunnel, with a length of 8m and 0.9 × 0.7m2 cross-section. The choice of
the Cartesian coordinate system is that the x-direction is that of the measured
velocity component u. The distribution of velocity fields u will be measured in
the (transverse) y-direction. From the sketch of the experimental setup, shown in
Fig. 3.1, we can see that the geometry of the grid is less filling in the spanwise z-
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Fig. 3.1: Sketch of the experimental setup and the reference frame used. The
separation between the grid and the hot-wire array is approximately
x/L = 5.1, where L = 0.88m is the height of the windtunnel.
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Fig. 3.2: Mean and r.m.s velocity profiles in the z-direction, at (x, y) = (0, 0).
The choice of the coordinate system is indicated in Fig. 3.1, such that
its origin is taken in the center of the spanwise plane at a separation
of 4.5m downstream from the grid. A small region of the flow (z ≥
200) was not tested, but predicted from mirroring the profiles around
the z = 0 point (dashed lines). The inset shows details of the central
region of the flow, which is approximately homogeneous over a length
comparable to the width of the sensor array.
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Fig. 3.3: Mean and r.m.s velocity profiles in the y-direction, at (x, z) = (0, 0).
They were measured using the array of hot-wire sensors.
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Fig. 3.4: Second order transverse (◦) and longitudinal (full line) structure func-
tions measured at Reλ ∼ 840. The longitudinal structure function is
used to estimate what the transverse structure function would be in
a truly isotropic turbulent flow (see Eq. 3.7). The computed trans-
verse structure function (dashed line) and the measured one are almost
identical. All quantities are normalized on dissipative scales: r∗ = r/η,
G∗
2 = G2/v2K, with the Kolmogorov velocity vK = ν/η.
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Fig. 3.5: Transverse (open markers) and longitudinal (solid lines) structure func-
tions of orders p = 4 and p = 10.
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Fig. 3.6: Scaling exponents measured at Reλ ∼ 840 (circles) and Reλ ∼ 860
(squares) deviate strongly from the Kolmogorov prediction (dash-
dotted line). The longitudinal exponents (empty symbols) follow
closely the She-Leveque model (dashed lines), while the transverse (full
symbols) show higher intermittency. Also shown are the longitudinal
exponents determined from structure functions of absolute values of
velocity increments (solid line). The inset shows an alternative way of
plotting the transverse scaling exponents which emphasizes the anoma-
lous scaling, also present at small orders 0 ≤ p ≤ 1.
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Fig. 3.7: The different longitudinal and transverse scaling anomaly is better ex-
posed when structure functions are plotted against each other and rel-
ative scaling exponents are extracted ([10]). Here we show the ratio
of the GL,T

p plotted as functions of ξ = GL
3 , Rp(ξ) = G̃T

p (ξ)/G̃L
p (ξ). If

ζT,Lp are the scaling exponents of the original structure functions, then
Rp(ξ) ∼ ξζ̃Tp−ζ̃Lp , with ζ̃Tp = ζTp/ζL3 and ζ̃Lp = ζLp/ζL3 .

direction, therefore one is concerned about the homogeneity of the downstream
turbulent flow in both y and z directions. This arrangement generates a maxi-
mum Reynolds number Reλ

∼= 860 in our windtunnel, which we measure about
4.5m downstream from the grid, on the centerline of the tunnel.

The velocity fields are captured by an array of 10 hot-wire sensors, oriented
orthogonally to the direction of the mean flow. The hot-wires with thickness of
2.5µm have a sensitive length of 200µm, which is slightly larger than the Kolmo-
gorov length is these experiments η = 1.4 · 10−4m. In a turbulent flow with a
large mean flow component in the x-direction, they are mainly sensitive to the
u-component of the fluctuating velocity field. The use of an array gives access
to the transverse u(y)-distribution. The velocity can also be evaluated at differ-
ent positions in the x-direction aligned with the mean velocity U, by making
use of the Taylor frozen turbulence hypothesis. This converts time-delays from
fixed probes in longitudinal separations and is valid when the intensity of the
turbulence fluctuations is a small fraction of the mean velocity U, u/U  1. An
extensive discussion of the Taylor hypothesis will be presented in chapter 7.

Simple statistics of the velocity field show that the y-averaged turbulent in-
tensity at the measurement position is ∼ 12%, at a mean velocity slighty larger
than 13m/s. This might be considered too large to ensure a safe use of the Taylor
hypothesis, but in our study we will mostly use the physical transverse separations
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U (ms−1) 〈u2〉1/2(ms−1) λ (m) 〈ε〉 (m2s−3) η (m) Reλ

13.17 1.56 8.29 · 10−3 7.97 1.43 · 10−4 862.9

Tab. 3.1: Flow characteristics: U is the mean velocity, u the r.m.s. velocity, λ the
Taylor microscale, ε the mean dissipation, η the Kolmogorov scale and
Reλ is the Taylor-microscale Reynolds number. In isotropic and ho-
mogeneous turbulence, only one component of the velocity derivative
is needed to evaluate the mean dissipation 〈ε〉 = 15ν〈(∂u/∂x)2〉.

between probes, rather than time delays.

The multiscale grid (Fig. 3.1) that is used produces a strongly turbulent wake
whose center is approximately homogeneous. We show in Fig. 3.2 the mean and
r.m.s longitudinal velocity profiles in the z-direction, extracted in a separate ex-
periment with a single probe, taken at y = 0. This position is situated halfway
between the vertical walls of the windtunnel. The Reynolds number of this sep-
arate test was slightly smaller than the maximal value, such that at the location
z = 0 the mean velocity was U ∼ 10m/s. From the appearance of the curve we
can see that, except for a relatively homogeneous region of length ∆z0 ≤ 20cm,
the flow exhibits a strong shear in the z-direction. The symmetric peaks in the
mean velocity curve show the empty regions where the flow is no longer ob-
structed. The strong enhancement of the turbulent intensity in the shear regions
can also be observed. Our turbulence measurements were always done in the
(homogeneous) y-direction, which had negligible variations of U and u over the
length of the probe array, as can be seen in Fig. 3.3.

The characteristics of the turbulent flow are listed in table 3.1. The ani-
sotropy of the flow can be quantified through the relation between the second
order longitudinal and transverse structure functions, which holds in isotropic
turbulence

GT
2 (r) = GL

2 (r) +
r
2
dGL

2
dr

(3.7)

From the measured longitudinal structure function, a transverse G̃T
2 (r) was cal-

culated from the r.h.s. of Eq. 3.7. In Fig. 3.4 we plot this together with the
actually measured GT

2 . The results, for a flow with Reλ = 840, show that GT
2 is

very close to G̃T
2 (r). This is only a partial isotropy check which is flattered by the

circumstance that in our arrangement GT
2 (r → ∞) = GL

2 (r → ∞) = 2〈u2〉.
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3.4 A  

A measurement of scaling exponents starts with recording a long time-series of
turbulent velocities. From those, histograms of both longitudinal ∆uL(r) and
transverse ∆uT(r) velocity increments are built. The transverse separations r are
true spatial separations (the distances between probes), and the longitudinal sep-
arations are made from time-delays r = Uτ through Taylor’s frozen turbulence
hypothesis.

The histograms are, up to a normalization factor, the same as the probability
density functions (PDFs) from which the structure functions follow as

GT
p (r) = 〈∆uT(r)p〉 =

∫ ∞

−∞
Pr(∆uT)∆upTd(∆uT), (3.8)

and analogously for the longitudinal increments. Since measured velocities are
discrete, computing the moments through the discrete histograms is done with-
out loss of accuracy.

The low-probability tails of the PDFs can be represented accurately through
stretched exponentials

Pr(∆u) = ae−α|∆u|β, (3.9)

with constants a, α and β that in general depend on the separation r and the sign
of ∆u. A full account of this stretched exponential approximation will be given in
section 3.5. A significant improvement in the measured structure functions can
be obtained by computing the contribution of the low-probability tails through
integration over the stretched exponentials, rather than directly summing over
the measured histograms.

Several measured structure functions are shown in Fig. 3.5. Clearly, it is
possible to assign a scaling exponent to each of the curves. Since we plot the
structure functions as G1/p

p , they would have the same slope 1/3 in a log-log
plot. Instead we see that the slopes ζp/p decrease with increasing order: the
scaling exponents are anomalous.

The scaling exponents as a function of the order p are shown in Fig. 3.6.
Since the transverse PDF is reflection symmetric Pr(∆uT) = Pr(−∆uT), we will
use absolute values |∆uT |. Several observations can be made from this figure.
First, both ζTp and ζLp are strongly anomalous, i.e. very different from the K41
self-similar prediction. This defies suggestions in the literature ([40]) that scaling
anomaly is a finite size effect that would either disappear at infinite Reynolds
number or an infinite number of velocity samples. Second, scaling anomaly is
not only a property of the large orders p (where large velocity increments are
emphasized), but also of the low orders. Third, the longitudinal scaling expo-
nents ζLp are represented well by the log-Poisson model of She and Leveque [80].
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Finally, the transverse exponents appear to be more anomalous than the longi-
tudinal ones ζTp < ζLp. The difference is small, but significant as we will argue
below.

In order to demonstrate the significance of the difference between the lon-
gitudinal and transverse exponents, we introduce the notion of relative scaling
(Benzi et al. [10]). The idea is to plot structure functions Gp(r) as functions of
another structure function, say G3(r), on a log-log plot. In this way, some non-
universal behavior will drop out (van de Water et al. [91]) which results in an
improved scaling and less ambiguous scaling exponents. The method is often
referred to as extended self-similarity (ESS [10]). Here we will use the same pro-
cedure and plot both GL

p and GT
p as a function of ξ = GL

3 . Let’s call these relative

functions G̃L
p (ξ), G̃T

p (ξ). If GL,T
p (r) have scaling behavior, so will G̃L

p (ξ) ∼ ξζ̃Lp and

G̃T
p (ξ) ∼ ξζ̃Tp , with ζ̃Lp = ζLp/ζL3 and ζ̃Tp = ζTp/ζL3 , respectively. If ζTp < ζLp, so will

ζ̃Tp < ζ̃Lp. Conversely, the ratio

Rp(ξ) =
G̃T
p (ξ)

G̃L
p (ξ)

(3.10)

will be a decreasing function of its argument ξ, and will itself be an algebraic
function with exponent ζ̃Tp − ζ̃Lp. These ratios are plotted in Fig. 3.7, where we
computed the structure functions using absolute values |∆uL,T|. The use of ab-
solute value velocity increments has been recognized Grossmann et al. [41] as
essential for the ESS method to work. It is seen that for p > 3, Rp(ξ) is indeed a
decreasing function of ξ, but the assignment of a scaling exponent to large mo-
ments is problematic. However, we must remember that this scaling exponent
is only the small difference between transverse and longitudinal exponents. On
basis of Fig. 3.7, we believe that this difference is significant.

At this point we would like to remark that differing ζLp and ζTp may not be
the only way that scaling of structure functions may be geometry dependent. In
chapter 4, we will exploit a description based on angular momentum theory in
which structure functions embody a sum of algebraic behaviors.

3.5 A    



Strong vortical events in which we are interested come with large velocity incre-
ments. However, large increments per se do not necessarily point to coherent
structures. Still, it is interesting to study the influence of large velocity incre-
ments on high-order structure functions. Such a study provides a reference point
for attempts later in this chapter to educe these structures from our signals. The
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Fig. 3.8: Probability density function of transverse velocity increments ∆Tu(r)
at r/η = 8 and r/η = 2000. To demonstrate the symmetry of
the measured transverse PDFs, P(x) and P(−x) are shown overlayed.
The PDFs can be represented well by stretched exponentials P(x) =
a exp(−α|x|β), with, apparently, β < 1 for the smallest separation and
β ≈ 2 for the largest separation.

occurrence of velocity increments ∆u is captured by their PDFs P(∆u), and the
present discussion can be done entirely through these PDFs.

The probability density functions P(∆u) of velocity increments are experi-
mentally constructed from long time-series of recorded velocity signals. Their
tails contain large velocity increments that have a low probability of occurrence.
They may be considered as contributions from vortical structures. Using the
stretched exponential parametrization of P(∆u), we will give in this section es-
timates of the importance of large velocity increments to high order structure
functions.

In van de Water & Herweijer [93] it was shown that PDFs can be repre-
sented well using stretched exponentials. This conclusion was reached after a
careful analysis of the statistical fluctuations of measured PDFs. Experimentally,
probability density functions are determined by collecting measured velocity dif-
ferences in discrete bins. The fluctuation of the contents of these bins was found
to be near-Poissonian. It allowed to devise a χ2 test of the goodness of fit of
stretched exponentials

P(∆u) = ae−α|∆u|β , (3.11)

with the stretching exponent β ranging from values β < 1 in the dissipation range
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to β = 2 at large scales, where ∆u is made of uncorrelated velocity readings and
the PDF becomes a Gaussian. The parameters a, α and β are different for the left
(∆u < 0) and right (∆u > 0) tails of the PDF. In our fits, χ2 rarely exceeds 1.5.
Values larger than 1 may signify the presence of finite correlations between ∆u
samples in adjacent bins.

First we will discuss the consistency of the stretched exponential description.
As this description facilitates observations based on experimental PDFs, we will
next use this parametrization to resolve questions about the number of samples
that significantly contribute to high-order moments, and the influence of the
truncation of the tails of the PDFs on these moments.

The stretched exponential approximation works for both longitudinal and
transverse velocity increments, but it appears to work best for the transverse case.
Therefore, we will restrict the discussion to the transverse increments in homo-
geneous turbulence.

Stretched exponentials may be a practical way to represent the tails of PDFs,
but they violate the simple constraint that the chances of finding a large velocity
difference ∆u of size, say, x, must always be smaller than finding a velocity u with
size x. In other words, the PDF of the velocity increment ∆u = u1 − u2 at r  L
can never intersect the one at the integral scale L where u1 and u2 are uncorre-
lated. With β ranging from β < 1 at dissipative scales to β = 2 at integral scales,
these intersections are inevitable, and the stretched exponential description must
break down. However, the probability level where such intersections would oc-
cur are prohibitively small. That is, the number of velocity samples needed to
observe this breakdown is astronomically large.

More precisely, this argument can be phrased as in Noullez et al. [61]. The
point made there is that the probability to find a velocity increment ∆u larger
than a certain value x, Prob{|∆u| > x}, requires that at least one of u1, u2 in
∆u = u1 − u2 must in absolute value be larger than x/2, so that

Prob{|∆u| > x} ≤ Prob{|u1| > x/2 or |u2| > x/2}. (3.12)

In case that u1 and u2 are independent (at large separations), this condition can
be written as

Prob{|∆u| > x} ≤ 2Prob{|u| > x/2}∫
|ξ|>x

Pd(ξ) dξ ≤
∫
|ξ|>x/2

P s(ξ) dξ, (3.13)

where Pd en P s are the PDFs of the velocity difference and the velocity, respec-
tively. We may express P s(ξ) in terms of the velocity increment PDF Pd

r=∞(ξ) at
large separations where both are Gaussian,

Pd
r=∞(ξ) =

∫
P s(x + ξ)P s(x) dx,
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Fig. 3.9: Probability where the velocity increment at separation r will cross the
one at L with L/η = 2 × 103. The two lines are for the left and right
tails of the PDF.

with the result Pd
r=∞(ξ) = P s(2−1/2ξ), so that the no-crossing condition becomes∫

|ξ|>x
Pd(ξ) dξ ≤ 2

∫
|ξ|>2−1/2x

Pd
r=∞(ξ) dξ (3.14)

Instead of the precise non-crossing rule Eq.(3.14), we show in Fig. 3.9 the r-
dependent probabilities for intersections of the positive and negative PDF tails

P+
c =

∫ ∞

∆us
Pr(x) dx ,P−

c =
∫ −∆us

−∞
Pr(x) dx

where ∆us is the velocity increment where Pr and PL intersect, P±
r (∆us) =

P±
L (∆us), with L/η = 2 × 103. The probability was computed from stretched

exponential fits; the noise in the curves is due to the uncertainty in the fitted
parameters that determine the intersections.

We conclude that at small scales, the stretched exponential description be-
comes only untenable at integration times which are practically unreachable.
Therefore, a stretched exponential description of the tails of the PDF remains
a sound procedure, although it is strictly inconsistent.

Using the stretched exponential parametrization of the PDF it is straightfor-
ward to answer questions about the asymptotic properties of large events. For
example, what is the probability Pp of the velocity increments |∆u| > |∆um| that
significantly contribute to the order p moment ? We take the answer to be

Pp = P−
p + P+

p =
∫ ∆u−m

−∞
Pr(x) dx+

∫ ∞

∆u+
m

Pr(x) dx, (3.15)
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Fig. 3.10: Probability P±
p of velocity increments that contribute significantly to

moments of order p.

where ∆u±m are the velocity increments where (∆u)pPr(∆u) has a local maximum.
Of course, this answer ignores the increments smaller than |∆u±m| that also con-
tribute to the moment, but we believe that Eq. (3.15) should be correct to within
a factor 2.

The probabilities P±
p are shown for various orders p in Fig. 3.10. They are

rapidly increasing with the separation r, which signifies that the accuracy of the
moments at the smallest separations is most problematic. An analogous con-
clusion was reached in [93], but in a completely different way. The stretched
exponentials underlying Fig. 3.10 were determined from N = 108 velocity sam-
ples. At the smallest resolved distances, a mere Pp(r/η = 8)N = 2× 10−6N = 200
events contribute most significantly to the p = 10 moment.

The converse question is how a moment p is affected when the tails of
the PDF are truncated at −∆ut and ∆ut, with the truncated moment Gt =∫ ∆ut
−∆ut x

pPr(x) dx. Roughly, the truncated events would have been missed at a
total number of samples N given by N · Pt = 1, with Pt = 1−

∫ ∆ut
−∆ut

Pr(x) dx.
These moments are shown in Fig. 3.11 for the untruncated case (Pt = 0)

and Pt ranging from 10−8 to 10−5. All structure functions have scaling behavior.
Their apparent scaling exponent increases when Pt increases. Thus, truncating
the PDF leads to a reduction of the scaling anomaly. In the quest for structures
that cause intermittency and induce anomalous values of the scaling exponents,
strong vortical events (worms) have been associated with the velocity increments
from the tails of the PDF (Belin et al. [9]). Here we conclude that the effect
of truncation is more or less trivial. The question that will be addressed in the
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Fig. 3.11: Structure function of order 10 computed over truncated PDFs. The
total probability in the discarded tails is Pt. Pt ranges from 0 (topmost
curve) to 10−5 (lowest curve).

following sections is how this picture changes if we seek for structures rather than
just large velocity increments.

3.6 C 

3.6.1 I

The eduction of structures from either a numerical or experimental turbulent
velocity field generally involves the following steps:

1. Devise a detection algorithm for small-scale vortical events. This proves
to be the crucial part of the procedure, since its influence on the results is
largest.

2. Select a threshold (criterion) on which the worms can be distinguished
from “ordinary” or background field fluctuations.

3. Average the worm candidates in order to extract mean structure informa-
tion. This step can sometimes be replaced or associated with statistical
studies of distributions of worm characteristics, such as amplitude (or cir-
culation), radius, shape, etc.

4. Evaluate the contribution of worms to anomalous scaling. This can be
done by assessing changes of the scaling properties after surgically remov-
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ing the worms from the velocity fields, or computing structure functions
of the worms themselves.

Direct numerical simulations of homogeneous and isotropic turbulence offer the
entire velocity field information and therefore permit less ambiguous detection
algorithms for identification of worms. However, the relative lack of separation
between the forcing and dissipative scales makes it difficult to observe an iner-
tial range and recover the well-established scaling properties of fully developed
turbulence. Therefore, the conclusions reached through direct numerical simu-
lations still leave open the question: what will happen in strong turbulence that
has a clear inertial range?

In the case of numerical turbulence (Jiménez et al. [46]), the typical detection
method consists of selecting from snapshots of the vorticity field ω(r) the points
which exceed a certain threshold value |ω(r)| ≥ ω0. These points are isolated
from the rest of the flow by iso-vorticity surfaces that bound regions of strong
vorticity. These regions come in the form of blobs and sheets which may be
associated with worms. An additional requirement may be that these regions
occupy a small fraction of space. Accordingly, [46] divide the entire vorticity
field in three regions: a weak part, with ω smaller than the r.m.s. level ω′, a
worm part, with ω above a threshold covering 1% of the total volume, and a
background part with the vorticity above ω′ but smaller than the threshold fixed
by volume constraints. This method was extended further to define a rotation
axis within the elongated regions, and therefore enabled calculation of statistical
quantities, such as distributions of the worm radii.

In the case of turbulence experiments, much larger Reynolds numbers are
possible, but worm detection algorithms have to be adapted to the typical one-
point hot-wire measurement of one or, at most, two velocity components. For
example, if a threshold technique is employed, one has to replace vorticity am-
plitude ω0 with a minimal value of the velocity derivatives. Because the velocity
field information is limited, not only the time evolution of individual structures
is out of the question, but it is also unclear if the high velocity increments se-
lected from the hot-wire response are truly the signatures of a well-defined flow
structures with spatio-temporal extension. Additional conditions on the velocity
signal are required to narrow down the quest for vortical structures. In the case of
a single probe configuration, the instantaneous velocity difference between two
moments separated by a time delay τ is compared to the chosen threshold |umin|.
The situation is sketched in Fig. 3.12. All events larger than this value, typically
chosen to be |umin| = 3urms, are collected as worms, together with their “past”
and “future” over a time-scale comparable to the largest eddy turnover time (see
Fig. 3.12(a)). The final step is to align the events on the position of the large
velocity excursion and then average them. After averaging, a structure such as
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Fig. 3.12: Detection of worms using a velocity threshold. Individual worms are
sign-flipped during the averaging, such that the total average is non-
zero.

shown in Fig. 3.12(b) may result, which resembles a cross-section of a vortical
event. This type of studies has been done by Mouri et al. [58, 59] and Camussi
et al. [15, 16].

An alternative method for finding strong events uses the wavelet decomposi-
tion technique [30]. This algorithm searches, at different scales, for similarities
between the velocity signal and a set of probing wavelet functions, which match
the profile of a certain type of filamentary vortex. The method seems to pro-
duce similar averaged worms ([64]), but assumes that turbulence is a collection
of vortices of different radii and amplitudes.

Another category of experiments focuses on the relevance of the worms to
anomalous scaling. Experiments of Belin et al. [9] show that a relatively large
number of worms has to be removed from the initial time-series to observe a
change in the longitudinal scaling anomaly. In their case, worms were defined as
velocity increments that exceed a given threshold, such as in Fig. 3.12(a). From
performing a Reynolds number dependence study, they conclude that worms un-
dergo a structural change at Reλ

∼= 700, where it is believed that such objects are
“dissolved” in the turbulent background. In the work of [64], it is argued that,
despite the fact that removal of worms from the original time-series reduces the
scaling anomaly of the high order structure functions, they might not be respon-
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Fig. 3.13: The contribution to the longitudinal velocity field from a single Burg-
ers vortex situated at r0 at a point r. Since the axis of the vortex is
perpendicular to the xOy-plane, there is no z-direction velocity con-
tribution.

sible for statistical intermittency. Worms are conditioned in [64] on the pressure
drops recorded by an additional local pressure sensor and used to compute the
structure functions of the ”filament” phase of turbulence. Their scaling expo-
nents show a much stronger anomaly than the original velocity signal. However,
also their third order structure function has an exponent less than 1, such that
the relative scaling exponents behave similarly to those of the original velocity
signal. This observation spoils the idea that the extracted vortex filaments are
responsible for the departures from the K41 description.

While all of the above experimental work was performed either with single-
wire measurements or with a ×-probe (which can measure two orthogonal veloc-
ity components), in the situation of our multipoint measurement, we can com-
pare the velocity signals from physically separated probes, rather than probing
in the time direction. In this way we can investigate the space-time structure of
the small-scale velocity field. In the next section we will describe a way to search
for strong vortical events using this extended information. We will evaluate the
efficiency of the method for a model turbulent velocity field made from vortices.

3.6.2 E  :  B 

In this section we will discuss how to educt vortical events from a velocity field
using information about the x-component of the velocity field in the xy-plane
u(x, y). This is also the information that can be obtained experimentally, but
with the restriction that y takes only the discrete locations yi of the individual
velocity probes. As a test, we will apply this method to a model turbulent field
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Fig. 3.14: The longitudinal velocity fields generated by a random superposition
of Burgers vortices with equal radii rB = 4η and Reynolds numbers
ReΓ = 2000. The fields from each of the NB = 100 vortices are com-
puted over a square surface with side L = 100η. Conditional averaging
is applied in either the longitudinal x- or transverse y-direction for ve-
locity increments over separations δ.

which consists of a random collection of Burgers vortices. There are two ways to
look for large velocity increments in the velocity field information that we have.
The first manner is to look for large velocity increments

∆uδ
L(x, y) = u(x +

1
2

δ, y) − u(x− 1
2

δ, y) (3.16)

that are local maxima in y. The second manner is to look for large transverse
increments

∆uδ
T(x, y) = u(x, y+

1
2

δ)) − u(x, y− 1
2

δ)) (3.17)

that are local maxima in x. The separation δ serves as our probing distance.
We will argue that the second arrangement is more efficient to detect vortical
events. The requirement of a local maximum distinguishes this method from
other methods were velocity increments are compared to a threshold value. The
idea is that a vortical structure has a single maximum ∆uδ, surrounded by many
large values of ∆u. Threshold methods will count all these large values as struc-
tures. To decrease the noise sensitivity of the local maximum, a finite-sized re-
gion around a found maximum can be set in which no further local maxima are
sought. The proposed algorithm is so simple that it can easily be applied in a
experiment. In order to test it, we apply it to a model turbulent velocity field
that we make from a random collection of Burgers vortices.
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Fig. 3.15: Average of the N=64 events from conditional averaging of 1000 dif-
ferent realizations of velocity fields as in Fig. 3.14. Several separations
d/η = 4, 8, 16, 32, 64, 128 are probed in both longitudinal and trans-
verse directions, while the total field is generated from vortices with
constant radius rB = 4η and uB = 50ν/η . They are indicated by
dashed lines, matching the style of the mean profiles.
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Fig. 3.16: Separation between the positions of the velocity maxima observed
in the mean longitudinal (◦) and transverse (•) worm profiles in
Fig. 3.15. The values are normalized by the expected separations d/η

at which the conditional averaging is performed. Deviations from the
trivial value 1 are observed when d/η is comparable to the diameter
of the vortices used in the simulation (dashed-lines).

The Burgers vortex is an exact solution of the Navier-Stokes equation. The
velocity field is the sum of a vortical part uv and a background strain field us that
supplies the energy which the vortex loses to viscous dissipation

u(r, θ, z) ≡ (ur , uθ , uz) = us + uv = (3.18)

= (−ar, 0, 2az) + (0, uθ , 0), (3.19)

with

uθ(r) =
Γ
2π

1− exp(−r2/r2B)
r

(3.20)

and a = 2ν/r2B. This approach has been used before to model statistical prop-
erties of turbulence. Hatekeyama and Kambe [43] studied uniform spatial dis-
tributions of Burgers vortices which all had the same strength. They obtained
convincing scaling behavior of the third order structure function, but it can be
shown that this owed to the presence of the strain field us alone. For modeling
turbulence, the strain field is problematic as it has an infinitely large velocity dif-
ference in infinite space. Hatekeyama and Kambe obtained a finite dissipation
rate 〈ε〉 by introducing a cutoff radius R0 beyond which the velocity field was set
to zero. The value of the R0 was set to match the resulting 〈ε〉 to the Kármán-
Howarth equation for the third order structure function. Another exact solution
of the Navier-Stokes equation is the Lundgren spiral vortex. Random collections
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of these vortices, but now with a special strength distribution, were studied by
Saffman and Pullin [78] and He et al. [44].

The advantage of such turbulence models over (necessarily) low Reynolds-
number direct numerical simulations is that the Reynolds number can be se-
lected at will, but the price is the absence of dynamical interactions between the
vortices. Another type of turbulence model fields consists of random Fourier
modes with a limited dynamical interaction. These so-called kinematic simula-
tions (Fung et al. [36]) are often used to study dispersion of contaminants, but
they lack structures. Vortex models are intermediate between kinematic simula-
tions and direct numerical computations, but they lack the dynamical interaction
between vortices.

The Burgers velocity field (Eq. 3.20) can be scaled by expressing length scales
in terms of the Kolmogorov length and velocities in terms of the Kolmogorov
velocity vK = ν/η. Indicating the dimensionless quantities with a ˜ , we have for
the x-component of the velocity u = ur cos θ − uθ sin θ,

ũ = −2 x̃
r̃2B

− ỹ
x̃2 + ỹ2

ũBr̃B
(
1− e−r̃

2/r̃2B
)

(3.21)

with uB the Burgers velocity, uB = Γ/(2πrB). In our simulation we arbitrarily take
r̃B = 4 and ũB = 50. From now on we will work with dimensionless quantities
and accordingly drop the ˜ . We next sprinkle N of these vortices on planes with
extent x, y ∈ [−L/2, L/2], with N = 102 and L = 102. Longitudinal and transverse
increments over separations δ were obtained as

∆uδ
L(y) = u(x =

1
2

δ, y)− u(x = − 1
2

δ, y) (3.22)

and
∆uδ

T(x) = u(x, y =
1
2

δ)) − u(x, y = − 1
2

δ)). (3.23)

By considering M = 103 of such planes, very long strips x ∈ [0,M · L] are obtained.
This is equivalent to the experiment, where very long planar strips are obtained
through very long sampling times and invocation of Taylor’s frozen turbulence
hypothesis.

On these intervals, the Nm largest of the local maxima in |∆δ
T(x)| and |∆δ

L(y)|
are sought. Next, the locations xi , i = 1 . . .Nm of these maxima are aligned and
the “atmospheres” around them are averaged, such that if ∆δ

T,Lu < 0, the sign of
the atmosphere is reversed (otherwise the average would be zero). The result of
this procedure is shown in Fig. 3.15. While the transverse procedure reveals the
typical transverse ∼ y/(x2 + y2) profiles of the vortices, the surprise is that also
the longitudinal conditioning gives profiles x/(x2 + y2), whereas the longitudi-
nal profile of a vortex is the single-bumped 1/(x2 + y2). Clearly, the conditional
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Fig. 3.17: Detection of worms using a multipoint transverse setup. The veloc-
ity signals from two central individual probes are compared at equal
time. The •-dashed-line represents the y-coordinates of all the sen-
sors, while the •-solid-line the instantaneous velocity at each sensor,
at the moment a worm is detected.

averages of Fig. 3.15 are at least partly determined by the condition, which gen-
erates a longitudinal signature of non-existent vortices. Still, there are significant
differences between the longitudinal and transverse averages. For probing sep-
arations δ ≈ 2rB, the transverse vortices are almost a factor of 2 larger than the
longitudinal ones. For large separations δ > 2rB, the distance between the veloc-
ity maxima in Fig. 3.15 is the same as the probing separation δ. However, when
δ is close to rB, the transverse arrangement reproduces more accurately the size of
the vortices.

We conclude that the transverse probing is more sensitive to vortical events
than longitudinal probing, but that the shape of the mean large event is for a
large part determined by the chosen manner of conditional averaging.

After performing these conditional averages on the experimental signal in the
next section, we will devise another test to assess the significance of the result on
conditional averages.

3.6.3 E    

The realization of our algorithm in an experiment that provides time series of
u-velocities in many discrete points is sketched in Fig. 3.17. In order to resolve
small transverse separations, we focus on the time-signals of the pair of central
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Fig. 3.18: Single strong event isolated from the multipoint measurements and its

neighborhood. The entire velocity field from the 10 sensors is shown
in (a), with the event in the center of the approximately square re-
gion. The figure was created by representing the longitudinal velocity
amplitude against the two available directions: longitudinal (from the
time-series via the Taylor hypothesis) and transverse (from different
sensors in the array). Separations are normalized on the Kolmogorov
dissipation scale η, and the side of the region is l ∼ 400η. In (b), a
longitudinal section is made through this surface and only the veloc-
ity from the central probes 5 and 6 is shown. The occurrence of a
very high velocity increment is clearly visible. The transverse profile
of the event is shown in figure (c), by combining the velocity at the
moment of the event from all probes.
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Fig. 3.19: Average of N=256 events found from conditional averaging in the
transverse direction.
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Fig. 3.20: Average of N=256 events from conditional averaging in the longitu-
dinal direction.
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Fig. 3.21: Fit of the mean velocity surface obtained from conditional averag-
ing in the transverse direction (Fig. 3.19) to the velocity signature of
a single Burgers vortex (equation 3.21). The curves (full-lines) corre-
spond to several longitudinal slices through the mean worm surface in
Fig. 3.19 and correspondingly through the fit surface (dashed lines).

probes, whose separation is a mere r/η ≈ 6.1. The velocity difference between
these sensors (in positions 5 and 6 in the array) is monitored in time, and a list
of the strongest increments is collected. An event is selected when the velocity
difference reaches a maximum in time (x).

The additional spatial velocity information (from the other 8 probes) at the
moment of the event is also stored and will be used for averaging the planar
velocity information of the large events. The list of selected events is ordered
decreasingly with respect to the absolute value of the velocity jump. This strength
hierarchy is updated every time a new candidate is found, such that the large
ones advance up the list and the weak ones are gradually removed. The length
of the list stays constant and determines the total probability level of finding the
selected events. The amplitude of the weakest event in our list is set by this
fixed probability level. A natural question is what probability level determines an
event as “rare”? To answer this question we turn back to the structure functions
of order p. Moments of increasing p are increasingly influenced by intermittency.
As a large moment is still accessible in the experiment, we arbitrarily set p = 10.
Figure 3.6 demonstrates that the measured ζT10 is 30% smaller than the self-similar
p/3. In section 3.5 it is estimated (Fig. 3.10) that the large velocity increments
that contribute most to this order have probability p ∼= 2 · 10−6. This number is
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computed from the probability density function. Although the PDF deals with
individual velocity increments and is blind to structures, we take this probability
level as reference. Thus, in a time series of 108 samples, for each sensor there
are 2 · 10−6 × 108 ∼= 200 large velocity increments that determine principally the
p = 10 moment. Accordingly, we search for the N=256 strongest events in our
measured time-series.

We give in Fig. 3.18 an example of one the most violent events extracted
from the experimental run with Reλ ∼ 840. The size of the velocity excursion is
∆umax = 7.94m/s, comparable to the mean velocity U = 11.69m/s and 5 times
larger than urms = 1.58m/s. The transverse separation over which this gradient is
recorded is a mere δ56/η ≈ 9.

We align all the 256 events and then average them, including in this pro-
cedure the velocity information from the neighboring sensors. This results in a
mean worm profile u(x, y), where the square x, y extends to the integral scale of
the flow.

The result of the averaging is shown in Fig. 3.19. It resembles very closely the
signature of a filamentary vortex. To be able to better quantify this observation,
we shall compare the mean surface with the corresponding velocity signature of a
Burgers vortex. We make the following simplifying assumption: given the geom-
etry of the sensor array and the low probability threshold we use for extracting
worms, it is very likely that only filaments along the z-axis would be selected. The
model vortex (defined in Eq. 3.21) to which we fit the experimental outcome is
oriented accordingly.

In Fig. 3.21 the outcome of the fitting procedure is shown; we obtain that
the mean worm matches a Burgers vortex with radius rB ∼= 7η, but the back-
ground strain rate is a factor of 2 too large. Since the precise shape of the mean
velocity profile is partly determined by the imposed condition, we do not wish to
emphasize the discrepancies of the fit and the measured profile of Fig. 3.21. Still,
it is a quite remarkable coincidence that our data actually resemble the Burgers
vortex that was used to verify our conditional algorithm.

A conditional algorithm can also be done in the longitudinal direction in a
similar fashion as in the transverse case. The difference is that we look for local
maxima of ∆u in the velocity signal of a single probe. We use the velocity read-
ings of the other probes to obtain the structure of the velocity field near these
maxima. As spatial separations are now obtained from time delays through the
Taylor hypothesis, this may become a problem when large velocity excursions are
sought. The longitudinal separation δ over which the largest velocity differences
are pursued is set equal to that used in the transverse case through selecting the
the time delay as ∆τ = δ/U. The mean event from the longitudinal conditional
average is shown in Fig. 3.20. In agreement with our findings from the random
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Burgers vortices fields, we find that the longitudinal mean profile resembles a vor-
tex, but oriented wrongly. It is clearly an artifact of the conditional average. Also
in agreement with the random Burgers collection, we find that the magnitude of
the transverse vortex is larger than that of the longitudinal one.

This leads to the preliminary conclusion that the transverse mean structure
is genuine, whereas the longitudinal structure is an artifact of the conditional
average. By devising yet another test in the next section, we will seek support for
this conclusion.

3.6.4 R   

We will now test the significance of our experimental results by applying our
algorithm to pseudo-turbulence: that is an experimental velocity signal that has
the same characteristics as our turbulent flow, but whose phase coherence is com-
pletely destroyed. We have verified that the pseudo-turbulence data has the same
energy spectra and the same second-order structure functions. Since both longi-
tudinal and transverse velocity increments of the scrambled data are now Gaus-
sian, the scaling exponents follow the self-similar ζp = ζ2 · p2 .

Let us now discuss in detail how this is done for our multi-probe velocity
signal. Using an array of velocity sensors we measure the planar distribution of a
single velocity component u(x, y) in discrete and non-equidistant points yi. The
Fourier-transformed field is

u(k) =
1
2π

∫ ∞

−∞
e−ik·xu(x) dx, (3.24)

with its inverse
u(x) =

∫ ∞

−∞
eik·xu(k) dk. (3.25)

If a two-dimensional Fourier transform could be done, a randomized field with
the desired property would be

ũ(x) =
∫∫ ∞

−∞
|u(k)| eiθ(k) dk, (3.26)

with θ(k) a uniform random function. We can define Eq. 3.26 with or without
the absolute value.

Reality of the signal u(x) requires that the complex conjugate u∗(k) = u(−k),
so that (

u(k) eiθ(k)
)∗

= u∗(k) e−iθ(k) = u(−k) e−iθ(k),

and the random phase must satisfy θ(k) = −θ(−k). As already announced above,
the randomization Eq. 3.26 leaves all second-order correlations invariant.

〈ũ(x+ r) ũ(x)〉 =
〈∫∫

ei(k·x+k′ ·(x+r)) u(k)u(k′) ei(θ(k)+θ(k′
)) dk dk′

〉
. (3.27)
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Fig. 3.22: Average of N=256 the events from conditional averaging of the phase-
randomized velocities in the transverse direction.
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Fig. 3.23: Average of N=256 events from conditional averaging the phase-
randomized velocities in the longitudinal direction.
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Fig. 3.24: Dependence of the amplitude of mean worms, found at separations
r/η ∼ 9, on the length of the search list N. The results (•, ◦ original
data, �,� scrambled data; filled, empty markers: transverse, respec-
tively longitudinal worms) are compared to the corresponding prob-
ability distribution functions of velocity increments PT,L

r/η(∆u) (long-,
respectively short-dash lines).

Homogeneity (independence on x) introduces the delta function δ(k + k′), so
that the random phases cancel, while〈∫∫

e−ik·r |u2(k)| dk
〉

= 〈u(x)u(x+ r)〉 . (3.28)

The sensor array that we use has highly unevenly spaced probes in the y−di-
rection, which precludes a (discrete) Fourier transform in this direction. Instead,
we perform a randomization only in the time-like (x−) direction. Equation 3.26
now reads explicitly in the x, y plane

ũ(x, y) =
∫∫ ∞

−∞
ei(xkx+yky) u(kx , ky) eiθ(kx,ky) dkx dky.

With randomization in x only, this becomes

ũ(x, y) =
∫ ∞

−∞
ei(xkx+θ(kx)) dkx

∫ ∞

−∞
eiyky u(kx , ky)dky =

∫ ∞

−∞
ei(xkx+θ(kx)) u(kx , y)dkx.

(3.29)
Trivially, this procedure leaves correlations in the y−direction invariant

〈ũ(x+ r)ũ(x)〉 =
〈∫∫

dkxdk′xe
i[xkx+θ(kx)+xk′x+θ(k′x)]u(kx , y)u(k′x , y+ r)

〉

=
∫
dkx 〈u(kx , y) u(−kx , y+ r)〉 = 〈u(x, y)u(x, y+ r)〉 .

(3.30)
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Although Eq. 3.29 treats the two spatial directions undemocratically, it is
a true randomization which does affect all higher order correlations. This is
because higher order moments of the undemocratically randomized field ũ(x, y)

〈ũp(x, y) ũq(x, y+ r)〉

cannot be expressed in those involving the original field u(x, y).
Following closely the analysis of section 3.6.3, we apply the worm selection

procedure to the scrambled fields, extracting as usual the strongest N=256 lon-
gitudinal and transverse events. It doesn’t come as a surprise that the mean large
events extracted from the scrambled data, shown in figures 3.22 and 3.23 again
have a vortical signature. However, the amplitudes of the events are significantly
different in this case.

Let us indicate by ∆uT,LW the largest velocity increments of a mean transverse
and longitudinal event, respectively, and by ∆uT,LWR the corresponding quanti-
ties for the randomized signal. Quantitatively, the amplitude of the scrambled
worms is smaller than in the real case. In the case of transverse mean events,
their ratio is 〈∆uTW〉/〈∆uTWR〉 ∼ 2.5, higher then the ratio of the longitudinal
worms 〈∆uTW〉/〈∆uTWR〉 ∼ 1.9. In contrast to the original worms, the scrambled
transverse and longitudinal mean profiles have similar amplitudes, 〈∆uTWR〉 =
1.61ms−1 and 〈∆uLWR〉 ∼ 1.75ms−1.

Let ∆u be the size of the largest event found among the N largest. The
function N(∆u) can be compared to the probability density functions of indis-
criminate large velocity increments from which we can form

Nt

(∫ −∆u

−∞
(P)dx+

∫ ∞

∆u
(P)dx

)
,

with Nt the total number of velocity samples. Such a comparison has been done
in Fig. 3.24, which allows a clear discrimination between the longitudinal and
transverse conditions, a distinction which disappears for the pseudo-turbulence
field.

In view of the results of the phase-randomization tests, we can conclude that
the transverse arrangement of probes is more efficient in capturing large vortical
events of the turbulent flow. Before we proceed, we would like to draw attention
to some additional interesting observations.

3.7 W     

 

Intermittency is the occurence of strong events in turbulence which gives rise to
strongly non-Gaussian PDFs. As we have now identified these events in an ex-
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Fig. 3.25: Effect of worm removal from a single pair of hot-wires on the trans-
verse structure function STp . (a) When N=256 worms that are found at
separation ∆y (here ∼ 9η) are removed, the structure function at other
separations is not influenced. The effect on a small order (p = 3) is
nearly absent. (b) Full lines: dependence of the structure function
at r/η = 9 on the number of removed large events. Dashed line:
dependence of (∆u10)1/10 on the number of removed large velocity
increments.
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Fig. 3.26: Probability distribution functions of transverse velocity differences
over ∆y ∼ 9η, total contribution (◦) and after the removal of N=256
worms(•). The dashed lines indicate the probability level correspond-
ing to this value.

perimental signal, the question is if the anomalous scaling of structure functions
will be reduced if we delete these events from the turbulence signal. Since our
identification was successful for the transverse arrangements, we will pose this
question for the transverse structure functions.

In section 3.3 we have already concluded that the scaling anomaly of the
transverse exponents exceeds that of the longitudinal ones. The result of the
previous sections already suggests that a possible explanation may be that the
transverse arrangement is more efficient in capturing large events. The influence
of the deletion of large velocity increments on scaling properties of the measured
velocity field was studied earlier in Belin et al. [9] and Chinais et al. [64], who
removed worms using velocity thresholds from single-wire experiments, and ob-
served that their absence from the time-series decreases the scaling anomaly of
high-order longitudinal structure functions. A closer inspection of these experi-
ments reveals that, generally, a relatively large percentage of the turbulent signal
has to be removed in order to significantly reduce the scaling anomaly.

Typically, we select from a single pair of probes N = 256 events together with
their neighborhood which is approximately 400 samples wide. For an experimen-
tal run with ∼ 108 samples, this amounts to removing from the time series only
a fraction 10−3 of the data per sensor. This number is considerably smaller than
that of previous studies.

First, we will investigate if worms collected at dissipative scales are significant
for the anomalous scaling observed at the larger scales in the inertial range. To
that purpose, we repeatedly apply the conditional averaging procedure over the
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orders p. In (b) the effect of the removal is compared to the initial
scaling and the Kolmogorov and She-Leveque predictions, via the de-
pendence of the transverse scaling exponents ζTp on the order p of the
structure function.
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same smallest transverse separation, y0/η ∼ 9, and collect increasing numbers
of worms. The transverse structure functions of various orders are then com-
puted without the worms and their “atmospheres”. As Fig. 3.26 illustrates, this
procedure removes the large velocity increments from the tails of the probability
density function, but it is not a sharp cutoff. From these PDFs we compute the
structure functions G′T,L

p (y).
The dependence of the transverse G′T

p (y) on the number of the removed
worms is shown in Fig. 3.25(a), for two orders p = 3, 10 and inertial range scales
close to y0/η. A relatively small number of events (256) decreases significantly
the original GT

p (y), as shown in Fig. 3.25(b). Removing more worms contin-
ues to change the value of G′T

p (y), but in a much slower manner. The structure
functions are affected by worm depletion only at high orders, and only at the
corresponding scale where the conditional averaging was applied. The longitu-
dinal G′L

p(y) are not shown, but they are completely unaffected by the removal of
transverse worms. Additionally, it is shown in Fig. 3.25(b) that worm removal is
slightly more effective than indiscriminate removal of a similar number of large
velocity differences. The latter was evaluated by truncating the the tails of the
PDFs as described in section 3.5.

It is not possible to remove worms that are conditioned at scales larger than
the lower bound of the inertial range (r/η ∼= 30) and retain algebraic inertial
range structure functions. Instead, it is necessary to remove worms at each sep-
aration δ separately, by conditioning on the same separation. In this way, the
removed events depend on the scale. The resulting structure functions G′′T

p (y)
have scaling behaviour and enable to determine the scaling exponents. Our dele-
tion procedure very efficiently influences anomalous scaling. Removing a mere
0.1 % of the data significantly reduces the transverse anomalous scaling in the
high orders. While the transverse scaling exponent of the original data indicated
a stronger intermittency, ζTp < ζLp (Fig. 3.6), this trend has now been reversed for
the data with the large events removed.

3.8 C

We performed an extensive study on the extraction of small-scale vortex fila-
ments (worms) from high Reynolds number near-isotropic turbulence.

The key question was wether a measurement of transverse velocity incre-
ments is perhaps more sensitive to intermittency than a measurement of longi-
tudinal increments. A multipoint hot-wire anemometry setup was used to ex-
tract planar velocity fields, from which we computed longitudinal and transverse
structure functions. We found that their scaling exponents are anomalous, but
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different from each other ζTp < ζLp.
A possible connection between the scaling anomaly and worms was assessed

in several steps. First, a structure oriented conditional averaging method was
devised to select worm candidates from large velocity increments, either in the
longitudinal or transverse directions.

Then, we tested the conditional averaging on a toy-model of turbulence
which consisted of a random superposition of Burgers vortices of fixed radii and
strengths. Average worms extracted from the synthetic velocity fields have pro-
files reminiscent of the velocity signatures of the original vortices. Closer inspec-
tion revealed that the velocity profiles of average worms are influenced by the
conditioning procedure, such that longitudinal worms cannot be associated with
a vortical structure. The conditional averaging procedure is more efficient at de-
tecting vortical structures from the simulation when performed in the transverse
direction. A similar behavior was found in the experiment, as was corroborated
by a test in which we applied our procedures to pseudo-turbulence.

The overall picture emerging from this study is that large events have pri-
marily a vortical character and should be detected through transverse velocity
increments. Only these events can be discriminated from the random back-
ground events. Although this may not come as a surprise, we must also realize
that the major part of intermittent velocity fluctuations is unstructured. This was
illustrated by the effect of removing large events from a measured signal before
computing its scaling exponents. When a small number of them are removed
from the total velocity fields, they reduce by a significant factor the deviations of
the scaling exponents from the Kolmogorov predictions, but the procedure holds
only when worms are removed from all scales in the inertial range. Removal of
worms extracted from dissipative scales has only local effect on the value of the
structure functions, and therefore destroys the scaling behavior. In fact, this is
easy to understand: conditioning on a single scale allows to write the measured
turbulent velocity fields as the sum of two parts, one containing the large events
and a background part. The separation of the two parts is not scale dependent.
Then, if the total signal has scaling properties, the part with the large events
removed either has the same scaling or has no scaling.
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C 4

TURBULENCE ANISOTROPY AND THE
SO(3) DESCRIPTION

A

We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent
formalism based on angular momentum and the irreducible representations (SO(3)) of
the rotation group, we attempt to extract this anisotropy from the angular dependence
of second–order structure functions. In axisymmetric turbulence which has a weak an-
isotropy, the results are ambiguous. In more strongly anisotropic shear turbulence, the
SO(3) description enables to find the anisotropy scaling exponent. The key quality of
the SO(3) description is that structure functions are a mixture of algebraic functions of
the scale. However, instead of a hierarchical ordering of anisotropies we find that in
third–order structure functions of homogeneous shear turbulence the anisotropic con-
tribution is of the same order of magnitude as the isotropic part. We conclude that the
SO(3) description perhaps is a good way to quantify anisotropy, but our experiments
raise many questions.

4.1 I

The application of angular momentum theory to describe anisotropic turbulence
is a new and exciting development [55, 5]. Although the idea was proposed ear-
lier [14] and expansion of tensorial quantities using the irreducible representa-
tions of the rotation group is well known [47], the current interest is in scaling
properties of anisotropic turbulence quantities. These phenomena become ac-
cessible in experiments which go beyond the traditional measurement of a single
velocity component at a single point in strongly turbulent flows [4, 50].

The idea is that the Navier-Stokes equation is invariant under rotations of
space, and, therefore, that statistical turbulence quantities should be expanded
preferably in terms of the irreducible representations of the rotation group. In
angular momentum theory there is a relation between the value of the angular
momentum and the irreducible representation of the rotation group, such that
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a higher angular momentum signifies less symmetry. This provides a way to de-
scribe the influence of anisotropy on turbulence by the gradual loss of symmetry
of turbulence statistical quantities at increasing length scales, and accordingly, an
increasing influence of high angular momentum contributions.

As most turbulent flows in the laboratory are anisotropic, and as it recently
has become clear that this anisotropy remains, even at the smallest scales, [81]
this new description of anisotropy is a very significant development which de-
serves a careful experimental test. The goal of this paper is to provide such a test
by devising experimental techniques in turbulent flows which have a controlled
anisotropy.

In order to illustrate this idea, we consider the structure functions

Gαβ(r) =
〈
(uα(x+ r) − uα(x))

(
uβ(x+ r) − uβ(x)

)〉
, (4.1)

which involve increments of the velocity components uα and uβ over the separa-
tion vector r. The ensemble average is denoted by 〈. . .〉; homogeneity of the flow
implies independence on x. Adopting a coordinate system in which we measure
the x−component of the velocity and where the vector r is represented by (r, θ, φ)
with respect to the x−axis, the angular momentum decomposition of the tensor
Eq. 4.1 takes on the following form

Gxx(r, θ, φ) = gl=0(θ) rζ
(0)
2 + gl=2(θ, φ) rζ

(2)
2 + . . . , (4.2)

where the first term is the isotropic contribution and the term involving g2 is the
first anisotropic part, possibly followed by terms representing higher-order ani-
sotropies. The angle-dependent functions gl are subject to the incompressibility
constraint which completely fixes g0(θ). Parity invariance prevents a contribution
with l = 1. As is implied by Eq. 4.2, each irreducible part may have its own scal-
ing exponent, so that ζ

(0)
2 , ζ(2)

2 , . . . may all be different. Of course, any tensorial
quantity can be expanded in irreducible components of the rotation group, [47],
but the separation of Gxx into angle-dependent factors which multiply algebraic
(scaling) functions of r is new. Whilst the gl(θ, φ) coincide with the orthogonal
spherical harmonics for a scalar field and for the longitudinal correlations of the
velocity field (where the measured velocity component and r point in the same
direction), they have a more complicated form in the general case. However, this
form can be readily derived using the well-known tools from angular momentum
theory in quantum mechanics.

Unlike the non-relativistic Schrödinger equation which is linear, the Navier
Stokes equation is nonlinear and the expansion Eq. 4.2 is only appropriate if
the anisotropic contributions take the form of small perturbations whose size
rapidly decreases with increasing l. Accordingly, the exponents associated with
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increasing angular momentum are ordered hierarchically, ζ
(0)
2 < ζ

(2)
2 < . . ., such

that the highest angular momentum contribution decays quickest at decreasing
scale r.

Two special forms of Gαβ(r) are the transverse structure function GT
2 (r) ≡

Gαα(reβ), with α �= β, and with eα the unit vector in the α direction, and the lon-
gitudinal structure function GL(r) ≡ Gαα(reα). With α = x and β = y we were the
first to point out that the high–order longitudinal and transverse structure func-
tions may have different scaling exponents [92, 93]. This was also found in other
experiments [24] and direct numerical simulations [12, 19]. However, [82] has
suggested that this difference disappears at large Reynolds numbers. It must be
realized that a dependence of the scaling exponent on the relative orientation of
r and the direction of the measured velocity component is incompatible with the
description Eq. 4.2 in terms of irreducible components. In this description, it is
neither the longitudinal nor the transverse structure functions that carry the pure
scaling, but rather the different terms of the angular momentum decomposition
Eq. 4.2.

In the SO(3) picture, all structure functions Gαβ(r) embody a mixture of
scalings, with the pure algebraic behavior carried by the irreducible components.
In other words, if it is possible to single out these components, a much im-
proved scaling behavior of measured structure functions would be the result in
cases where the large-scale anisotropies invade the inertial-range scales, that is at
small Reynolds numbers. Such an approach can only be followed in numerical
simulations where the full vector information about the velocity field is available.

In case of the longitudinal structure functions GL
2 (r), the SO(3) representa-

tions gl(θ, φ) coincide with the spherical harmonics, where its arguments θ, φ are
the angles of the vector r in GL

2 (r) = 〈(r̂ · (u(x+ r) − u(x))2〉. By projecting onto
the spherical harmonics Biferale and Toschi [11] have singled out the isotro-
pic component of longitudinal structure functions of a numerically computed
velocity field and demonstrated its superior scaling behavior compared to the
ordinary, unfiltered second-order structure function. However, the computed
flow was driven strongly inhomogeneously with homogeneity recovered only in
a statistical sense. Further, [11] do not report scaling behavior of the ordinary
third-order longitudinal structure function, and the Reynolds number was not
known, possibly because of the used hyper-viscosity.

Experiments can reach much larger Reynolds numbers than numerical simu-
lations and can average over many large-eddy turnover times. At large Reynolds
numbers, there is a clear separation between the inertial-range scales and the
scales which are invaded by anisotropies, which may facilitate the analysis. Also,
experiments allow a precise control over homogeneity and anisotropy using active
[81] or passive grids to stir the flow. However, experiments have limited access to
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the velocity field: hot-wire velocimetry provides only a few velocity components
in a few spatial points. In the context of experiments, therefore, the question is if
the mixture of scaling exponents of Eq. 4.2 gives a better description of measured
structure functions than a pure algebraic behavior.

The functional form of the irreducible components gl(θ, φ), l ≥ 2 depends on
the symmetry of the experiment and is determined by parameters that are spe-
cific for the kind of flow. With decreasing symmetry, the number of parameters
increases. However, the value of the exponents ζ

(l)
2 is universal. For example, a

simple dimensional argument [53] predicts ζ
(2)
2 = 4/3 for the first anisotropy

exponent.
In an experiment one must try to determine both the universal exponents

and the non-universal constants that parametrize the angle-dependent g2(θ, φ).
The large number of adjustable parameters is a problem: with so much freedom
it is often not difficult to obtain a better fit of the data and it becomes unclear if
an improved fit is the consequence of the specific anisotropy description Eq. 4.2,
or of the large number of adjustable constants. In this paper we will design exper-
iments such as to actually minimize the number of constants, and simultaneously
maximize the experimental information.

Clearly, experiments must now measure both the r− and the angle (θ, φ) de-
pendence of the structure functions, which calls for more sophisticated setups
than the common single point, single velocity component experiments that give
access to the longitudinal structure function only. Using multiple velocity probes
that measure a singe velocity component, Fig. 4.1 sketches two ways to measure
both r and θ dependence of the structure function. The idea is to combine
true spatial separations with temporal delays, which in turn translate into spatial
separations using the Taylor frozen turbulence hypothesis. In the first manner
(method i), exploited by [5, 50], both r and θ dependencies are measured si-
multaneously by time-delaying the signal of one of the two probes used. If the
frozen turbulence hypothesis holds, the angle θ is given by θ(r) = sin−1(r0/r),
with r2 = r20 + (Uτ)2, where U is the mean velocity and τ is the time delay.

By using arrays of many probes (method ii) , Fig. 4.1b illustrates that it is
possible to measure the r− and θ−dependence of structure functions separately.
Obviously, method (i) provides quite limited information about the structure
function. The information gained about the anisotropic velocity field in method
(ii) is one of the key points of this paper.

Using straightforward angular momentum theory (Clebsch-Gordan algebra),
it is possible to arrive at explicit expressions for the irreducible components
gl(θ, φ) of the second-order structure function. Here, it suffices to list the re-
sult for flows with decreasing symmetry. We will specialize the formulas for our
case, in which we measure the x−component of the fluctuating velocity in ax-
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Fig. 4.1: Probe geometries for measuring both r− and θ−dependence of struc-
ture functions. (a) With two probes, r and θ are related through the
time delay τ, θ = tan−1(r0/Uτ), r2 = r20 + (Uτ)2. (b) With 10 probes, r
spans 45 discrete values, and θ can be varied independently by selecting
time delays τi = yi/(U tan θ).

isymmetric and shear turbulence. The used coordinate system is sketched in Fig.
4.2.
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Fig. 4.2: Coordinate system: velocity increments u1 − u2 are measured over
a vector r with the measured velocity component pointing in the
ex−direction.

In the case of axisymmetric turbulence, all statistical quantities are invariant
under rotations around the x−axis, that is, Gxx(r, θ, φ) becomes independent of
φ.

Gxx(r, θ) = g0(θ) rζ
(0)
2 + g2(θ) rζ

(2)
2

= c0
{
2+ ζ

(0)
2 sin2 θ

}
rζ

(0)
2 + (4.3)

{
d1 + d2 cos(2θ) + κ(d1, d2, ζ

(2)
2 ) cos(4θ)

}
rζ

(2)
2 ,
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with the function κ determined by axisymmetry

κ(d1, d2, ζ
(2)
2 ) =

[
2− ζ

(2)
2

] [
ζ
(2)
2 d1 +

(
4+ ζ

(2)
2

)
d2

]
[
ζ
(2)
2 + 7+

√
17

] [
ζ
(2)
2 + 7−

√
17

] .

In the case of shear turbulence, the velocity gradient points in the y−direction. In
this case we have the reflection symmetry Gxx(r, θ, φ) = Gxx(r, θ,π − φ). At φ = 0
the special symmetry Gxx(r, θ, φ = 0) = Gxx(r,π − θ, φ = 0) leads the following
expression for the anisotropic contribution

g2(θ) = d1 + d2 cos(2θ) + d3 cos(4θ), (4.4)

where the parameters d1,2 are different from the parameters with the same name
in Eq. 4.3. The loss of axisymmetry results in an extra free parameter d3. At
azimuthal angles away from φ = 0, the anisotropic contribution acquires another
free parameter and becomes

g2(θ) = d1 + d2 cos(2θ) + d3 cos(4θ) (4.5)

+ d4
[(
12+ 2ζ

(2)
2

)
sin(2θ) +

(
2− ζ

(2)
2

)
sin(4θ)

]
,

whereas the φ− dependence is given by

g2(φ) = d5 + d6 cos(2φ), (4.6)

where in Eqs. 4.5,4.6 the parameters d1,2,3 are different from the parameters with
the same name in earlier expressions. Because Eqs. 4.5 and 4.6 involve disjunct
sets of parameters, it is not possible to reconstruct the φ−dependence of g2 at a
given angle θ from its θ dependence at a given φ. The expressions Eqs. 4.4 and
4.5 are completely equivalent to those in [50], but we point out that Eq. 13 of
[50] is in error because it contains a redundant fit parameter.

Summarizing, in case of axisymmetric turbulence there are 5 adjustable pa-
rameters: two exponents ζ

(0)
2 and ζ

(2)
2 and 3 constants c0, d1, d2. For shear turbu-

lence there is an extra constant at φ = 0 and a total of 7 adjustable parameters for
other azimuthal angles. The art is to determine these parameters by fitting one
of the equations to an experimentally measured structure function.

Rather than finding the best (in a least squares sense) set of parameters, which
is a daunting task in 7-dimensional parameter space, we looked for the set of
non-universal parameters c0, d1, . . . that gave a best fit for given values of the
universal exponents ζ

(0)
2 and ζ

(2)
2 . First, the value of the isotropic exponent ζ

(0)
2

was guessed, for example from the transverse structure function GT
2 . Next, the

anisotropy exponent ζ
(2)
2 was scanned over a range of values. At each ζ

(2)
2 we then
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sought for the non-universal constants c0, d1, . . . which minimized the sum of
squared differences χ2 between measurement and fit. The value of this minimum
depends on ζ

(2)
2 , and at some ζ

(2)
2 it will be smallest. This distinction between

universal and non-universal parameters was inspired by [5, 50] who followed the
same procedure.

The key question then is if the anisotropy description of measured structure
functions enables to detect the influence of large-scale anisotropy on the shape
of the structure function, as characterized by its scaling exponent ζ

(2)
2 . From di-

mensional arguments [54] we expect ζ
(2)
2 = 4/3, but the precise value may be

influenced by intermittency. Finding ζ
(2)
2 is a highly non-trivial problem, as the

influence of anisotropy is embodied in a mixture of isotropic and anisotropic
contributions in Eq. 4.2 and it may be very difficult to unravel these contribu-
tions.

An alternative approach to detect large-scale anisotropy is to measure corre-
lations of the velocity field that vanish exactly in the isotropic case; these correla-
tions are then determined by anisotropy alone. For second-order correlations this
is the mixed structure function Gαβ, with α �= β. This property was used in the
analysis of a turbulent boundary layer in [51]. Although such a flow is not only
anisotropic but also highly non-homogeneous, [51] found an anisotropic scaling
exponent ζ

(2)
2 ≈ 1.21, which is close to the dimensional estimate ζ

(2)
2 = 4/3.

In this paper we will analyze experiments involving two turbulent flows with
decreasing symmetry. In the first case the flow has axisymmetry, in the second
case we consider homogeneous shear turbulence. In both cases turbulence was
created in a windtunnel using special grids. These grids were designed to preserve
the homogeneity of the flow: the SO(3) description deals with homogeneous ani-
sotropic flows. This severe constraint limited the Reynolds number to Rλ ≈ 600.
The flow parameters are listed in Table 4.1.

In the next two sections we will describe the two experiments and the analysis
of second–order structure functions using the SO(3) formulas Eq. 4.3,4.4,4.5,4.6.
We will then consider the angle dependence of order 3 and 7 structure functions
in homogeneous shear turbulence. Finally we will discuss in Appendix 4.6 other
second–order quantities that may be used to quantify anisotropy.

4.2 A 

In view of te SO(3) picture, it is attractive to study axisymmetric turbulence as
it involves the simplest expression for the angle-dependent structure functions
with the smallest number of adjustable parameters. The experimental setup is
sketched in Fig. 4.3 and the flow characteristics are summarized in Table 4.1. Ax-
isymmetric turbulence is generated in the wake of a circularly symmetric target-
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Con f iguration U (m/s) urms (m/s) Reλ η (m) L (m)
1 10.6 1.14 560 1.6× 10−4 0.17
2 11.4 1.15 600 1.6× 10−4 0.19

Tab. 4.1: Characteristic parameters of the used turbulent flows, (1): axisymmet-
ric turbulence, (2) homogeneous shear turbulence. The mean velocity
is U with urms = 〈u2〉1/2 the r.m.s. size of the fluctuations. For the def-
inition of the other characteristic quantities the r.m.s. derivative veloc-
ity u̇rms ≡ 〈(du/dt)2〉1/2 is used. For the mean energy dissipation ε the
isotropic value is taken ε = 15 νu̇2rms U

−2 with ν the kinematic viscos-
ity. The Kolmogorov scale is η = (ν3/ε)1/4 and the Taylor microscale is
λ = Uurms/u̇rms with the associated Reynolds number Reλ = λurms/ν.
The integral length scale is defined in terms of the correlation function
of velocity fluctuations L =

∫ ∞
0 〈u(x)u(x + r)〉xdr/〈u2〉.

shaped grid placed in a recirculating windtunnel. Velocity fluctuations u(y) were
measured 2 m downstream using an array of hot-wire sensors. By time-delaying
the signals from the wires, the θ− dependence of structure functions can be mea-
sured. By rotating the entire array along the x−axis, the angle φ was changed. It
was verified that all results were independent of φ, thus proving the axisymmetry
of the flow.

Figure 4.4 shows the second-order transverse and longitudinal structure func-
tions which exhibit clear scaling behavior. Let us recall that the transverse struc-
ture function GT

2 is measured using the discrete distances between probe pairs in
the array. The position of the 10 probes (sensitive length 200 µm), was chosen
such as to space the 45 distances between them as close as possible to exponential.
Each point of the transverse structure function in Fig. 4.4, therefore, corresponds
to a distance r = yi − yj between different probe pairs that are at different loca-
tions yi, yj. It is seen that the curves are smooth, with the scaling genuinely in
the separation r, which proves the homogeneity of the flow. Further evidence
of this homogeneity is provided by the frequency spectra E( f , yi) at each probe
position yi shown in Fig. 4.5, which are observed to be virtually independent of
y. We conclude that our flow is axisymmetric and homogeneous, so that the sim-
plest SO(3) decomposition formula Eq. 4.3 applies which has only 3 adjustable
non-universal constants.

An idea of the anisotropy of our flow can be gathered from the measured
longitudinal and transverse structure functions. In the isotropic case the function
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Fig. 4.3: Axisymmetric turbulence is generated with a target-shaped grid. The
orientation of the vector r over which velocity increments are measured
is determined by the angles θ and φ. The azimuthal angle φ is varied
by physically rotating the probe array; the polar angle θ is adjusted
by varying the time delay between samples as is illustrated in Fig. 4.1.
The mean velocity of the flow is U = 10.6 ms−1, the r.m.s. fluctuating
velocity u = 1.14 ms−1, the Reynolds number Reλ = 560, and the
Kolmogorov scale η = 1.6× 10−4 m. The grid is not drawn to scale.
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anisotropy ratio R(r) computed from the longitudinal and transverse
structure functions according to Eq. 4.7. The lower curves assumed
the mean velocity as the convection velocity in the Taylor frozen tur-
bulence hypothesis; the upper curve follows the definition of [50].
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Fig. 4.5: Energy spectra of all 10 probes of the probe array, which spans a sepa-
ration of 0.24 m.

R(r),

R(r) ≡ GT
2 (r)/

{
GL
2 +

r
2
dGL

2
dr

}
(4.7)

should be identically equal to 1. It can also be accidentally 1 in the anisotro-
pic axisymmetric case, but only if a very special relation exists between the pa-
rameters ζ

(0)
2 , ζ(2)

2 , c0, d1, and d2 of Eq. 4.3, which we deem highly improbable.
In our experimental setup R(r) becomes trivially 1 at integral scales since both
GT
2 (r → ∞) = GL

2 (r → ∞) = 2〈u2〉. Therefore, R(r) is only sensitive to anisotropy
at inertial-range scales. As shown in the inset of Fig. 4.4, the anisotropy of our
flow increases towards larger scales. The question now is if we can detect the
influence of anisotropy at large scales with help of the SO(3) machinery Eq. 4.2,
in particular whether we can recover the anisotropy scaling exponent ζ

(2)
2 = 4/3

from the behavior of G2(r, θ) at large r. The inset of Fig. 4.4 shows that the ani-
sotropy also increases at small scales. Clearly, an anisotropy description based on
a hierarchy of scaling exponents cannot deal with this.

A point of discusion raised in [50] is whether the true spatial separations r
in the transverse structure function GT should be related to time-delayed sepa-
rations r = Uτ of the longitudinal GL

2 using the mean velocity U as the frozen
turbulence convection velocity. For their atmospheric boundary layer flow they
instead proposed to take (U2 + (3u)2)1/2 as convection velocity. Because their
fluctuation velocity was large (u/U ≈ 0.25), it raised the convection velocity by
25%. In our case u/U ≈ 0.1, and as the inset of Fig. 4.4 shows, the effect on the
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measured anisotropy is small.
First, we measured the angle dependence of G2 using only 2 probes spaced

at r0/η = 100, which is centered in the inertial range r/η ∈ [30, 800]. The ex-
periment and fit of Eq. 4.3 are shown in Fig. 4.6a. For the fit, we fixed ζ

(0)
2

and determined the constants c0, d1, d2 and the exponent ζ
(2)
2 in a least squares

procedure. The exponent ζ
(0)
2 varies from ζ

(0)
2 = 0.70 to ζ

(0)
2 ≈ 0.74 for the trans-

verse and longitudinal case, respectively. We select ζ
(0)
2 = 0.72, and discuss the

influence of this particular choice below. Strikingly, the isotropic contribution
rζ

(0)
2 g0(θ) alone does not provide a satisfying fit, and it is necessary to include the

anisotropic contribution. We find that the best fit is reached if ζ
(2)
2 = 1.5, which

is close to the value 4/3 following from dimensional arguments. The almost per-
fect fit corresponds to a well-defined minimum of the sum of squared differences
χ2 as shown in Fig. 4.6b where we detemined the minimum squared error over
a range of ζ

(2)
2 . As we do not have an independent estimate of the error of mea-

sured structure functions, we normalize the minimum χ2 to 1 by multiplication
with an appropriate factor.

These findings completely agree with those of [5, 50] who followed a similar
procedure in the atmospheric boundary layer and concluded ζ

(2)
2 = 1.39. How-

ever, repeating the experiment with different probe separations r0 confuses the
issue. As Fig. 4.6b illustrates, the value of ζ

(2)
2 that optimizes the fit depends

strongly on r0; it is unphysically large at small r0 and small for large r0, with both
values of r0 in the inertial range. However, the value r0/η = 100 is preferred as it
provides the best defined minimum. Such a preference can perhaps be justified
by the observation that the angle θ varies most rapidly near r = r0, so that r0 needs
to be chosen well inside the inertial range. On the other hand, the dependence
of the result on r0 gravely complicates the application of the SO(3) machinery.

The information obtained on the θ dependence of the structure function is
greatly enhanced if the number of velocity probes is made large enough such that
structure functions at θ = 90◦ can be made of pure spatial separations. Measured
structure functions G2(r, θ) for the pure longitudinal arrangement θ = 0, using
time delays only, for θ = 15◦, 35◦, 55◦, using a combination of space- and time
delays, and for the transverse arrangement are shown in Fig. 4.7. To more clearly
expose the quality of the fits, we plot the structure functions compensated by the
expected self–similar behavior G2(r, θ)/r2/3. This procedure amplifies the noise
in the θ > 0 multiprobe structure functions which is caused by slight differences
in probe characteristics. Because the longitudinal structure function at θ = 0
is made from time delays only, this curve is smooth. However, the consistency
between the single–probe and multiprobe measurements shows in the closeness
of the curves at θ = 0 and θ = 15◦.

We have attempted to simultaneously fit the measured structure functions at
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Fig. 4.6: (a) Full line measured G2(r, θ) using two probes separated at r0/η = 100,
so that θ(r) = sin−1(r0/r). Dash-dotted line: fit that only includes
isotropic part involving g0(θ) (Eq. 4.3). Dashed line: fit including both
isotropic and anisotropic part. Dotted lines: extent of inertial range.
(b) Mimimum of sum of squared differences between measurement
and fit for variation of the non-universal parameters c0, d1 and d2 at
r0/η = 50, 100, and 190. The values of ζ

(2)
2 that give the best fit are

indicated by the open balls. The sum of squared diffences is normalized
such that its minimum is always at χ2 = 1.
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Fig. 4.7: Full lines measured r−2/3G2(r, θ) at θ = 0, 15◦, 35◦, 55◦, and 90◦. Dashed
lines: simultaneous fit of Eq. 4.3 to the data at θ = 0◦, 35◦, 55◦, and
90◦. The asymptote of the structure functions 2〈u2〉 is indicated. Inset:
mimimum of sum of squared differences between measurement and fit
for variation of the non-universal parameters c0, d1 and d2. A minimum
is reached at ζ

(2)
2 ≈ 2.1. The sum of squared differences is normalized

such that its minimum is always at χ2 = 1.

θ = 0◦, 35◦, 55◦, and 90◦ using Eq. 4.3 with a single set of parameters; the result
is shown in Fig. 4.7. In correspondence with Fig. 4.6, the scales included in the
fit ranged from r/η = 100 to values r where G2(r, θ) have reached nearly their
asymptotic value ξ 2〈u2〉, with ξ = 0.9. The small-r dissipative range behavior
was modelled by replacing the isotropic part in Eq. 4.3 by

c0

{
h(r) + sin2(θ)

r
2
dh
dr

}
, with h(r) = r2

(
1+ (r/r1)2

)(ζ
(0)
2 −2)/2

, (4.8)

and r1/η = 12.6. The function h(r) [85] models the transition from dissipative
scales, h(r) ∼ r2 to inertial range scales h(r) ∼ rζ

(0)
2 . This choice improves the

appearance of the fit, but it is completely inconsequental for our conclusions.
Also in this case, we find a poorly defined minimum of the sum of squared

differences χ2 at a value of the anisotropy exponent ζ
(2)
2 ≈ 2.1 which is much

larger than the dimensional prediction ζ
(2)
2 = 4/3. Another grave problem is that

the position of the minimum strongly depends on the assumed value of ζ
(0)
2 , it

varies from ζ
(2)
2 = 2.5 at ζ

(0)
2 = 0.70 to ζ

(2)
2 = 2.0 at ζ

(0)
2 = 0.74.

Naturally, the SO(3) description cannot deal with the small-scale anisotropy
(shown in Fig. 4.4), but what is more troublesome, it also fails to represent the
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Fig. 4.8: Homogeneous shear is generated using a grid with variable solidity.
The mean velocity increases in the y−direction, but is does not vary
with z. The (effective) orientation of the probe array is determined by
the angles θ and φ.

large-r behavior of the longitudinal structure function at θ = 0. Trivially, all
second–order structure functions reach at large r the asymptote G2(r, θ) → 2〈u2〉;
this asymptote is also shown in Fig. 4.7. The SO(3) description applies to the
r−dependence of the structure function before this asymptote is reached, a de-
pendence which may depend on the angle. This is a subtle point because we
always find g2(θ) < 0, which may also represent the trivial rise to saturation of
the structure function. We conclude that more experimental information con-
fuses the application of the SO(3) description. Contrary to Fig. 4.6, it is not
longer obvious that the anisotropy of the structure function is described by the
anisotropy value of ζ

(2)
2 .

4.3 S 

While the anisotropy of the axisymmetric turbulence of Sec. 4.2 may be modest,
a much stronger angle dependence was created in homogeneous shear turbu-
lence. Homogeneous shear turbulence has a linear variation of the mean flow
velocity U in the shear direction, a constant fluctuation velocity u, and an energy
spectrum that does not depend on y. It is the simplest possible anisotropic tur-
bulent flow, whose large-scale anisotropy is characterized by a single number: the
shear rate S = dU/dy. Whilst the anisotropy is stronger, the SO(3) description
now also has more adjustable parameters due to the loss of symmetry.

We produce homogeneous shear turbulence in a 0.9× 0.7 m2 cross section
recirculating windtunnel with a maximal Reynolds number Reλ = 630. To gen-
erate a uniform mean velocity gradient we use a novel grid whose y−dependent
solidity is tuned to preserve a constant turbulence intensity u throughout most
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Fig. 4.9: Homogeneous shear turbulence. (a) Open circles: mean velocity U,
closed dots: rms fluctuations u at x/H = 5.1 behind the shear gen-
erating grid, where H = 0.9 m is the height of the tunnel. Near the
lower wall the turbulent boundary layer marks the end of the homoge-
neous shear region. The Reynolds number is Reλ = 600, and the shear
strength dU/dy = 5.95 s−1. (b) Variation of the spectra over the extent
(0.24 m) of the probe array.
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Fig. 4.10: Full lines measured r−2/3 G2(r, θ) at θ = 0, 15◦, 35◦, 50◦, and 90◦.
Dashed lines: simultaneaous fit of Eq. 4.5 to the data at θ =
0◦, 15◦, 35◦, 50◦, and 90◦. The asymptote of the structure functions
2〈u2〉 is indicated. Inset: mimimum of sum of squared differences
between measurement and fit for variation of the non-universal pa-
rameters c0, d1 and d2. A minimum is reached at ζ

(2)
2 ≈ 1.3. The sum

of squared differences is normalized such that its minimum is always
at χ2 = 1.

of the windtunnel height. The experimental arrangement is sketched in Fig. 4.8.
With the mean flow U(y) in the x−direction, the shear points in the transverse
y direction. The challenge of the experiment is to maintain the homogeneity of
the flow: the SO(3) theory Eq. 4.2 describes anisotropy but presupposes homo-
geneity. That this challenge is met in our experiments is illustrated in Fig. 4.9a
which shows the variation of the mean flow and the turbulence intensity with
y. It is seen that the mean velocity profile is linear, with a small variation of the
turbulence intensity over the probe array. Further evidence of homogeneity is
provided by Fig. 4.9b which shows that the energy spectra, and thus all second-
order quantities, such as the integral scale L, do not vary significantly with y. In
this flow, the structure function depends both on θ and φ, and we measured first
the θ dependence at φ = π/2. Due to the absence of both axisymmetry and the
special θ−symmetry at φ = 0, the general expression Eq. 4.5 has to be used with
5 non-universal parameters. The result of a fit of this formula to the measured
structure function, using a single set of parameters, is shown in Fig. 4.10. In
comparison to the case of axisymmetric turbulence, (Fig. 4.7), the larger num-
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ber of parameters gives a better fit at angles θ close to the transverse π/2, but in
both cases angles close to the longitudinal ones θ = 0 are not represented well by
the fit. Surprisingly, the best fit now occurs at ζ

(2)
2 ≈ 1.3 which is very close to

the dimensional prediction ζ
(2)
2 = 4/3. Contrary to the axisymmetric flow, the

assumed value of ζ
(0)
2 now hardly affects the mimimum ζ

(2)
2 .

At this point it is useful to evaluate the θ− measurements in the two flow
configurations. We do that by plotting in Fig. 4.11 the anisotropic contribution
|g2(θ)| rζ

(2)
2 −2/3 in the two cases. We see that for the axisymmetric experiment

the anisotropic part has almost no angular dependence which makes it hard to
find the exponent ζ

(2)
2 from angle-dependent structure functions. For shear tur-

bulence, the anisotropic contribution is larger and shows a significant variation
with the angle θ.

In the axisymmetric case we have verified that there is no φ−dependence,
as it may be expected. For shear turbulence, instead, a clear φ−dependence is
expected given the strong asymmetry of the flow. We therefore measured the
structure function G2(r, θ = π/2, φ) as a function of φ by rotating the probe
array. According to Eq. 4.6, the variation would be largest if the azimuthal angle
is rotated from φ = 0 (perpendicular to the shear) to φ = π/2 (along the shear).
Compensated structure functions r−2/3 G2(r, θ = π/2, φ) for these two angles are
shown in Fig. 4.12.

Clearly, the variation of the structure functions with φ is very small. However,
at large separations they differ significantly: at φ = π/2, G2(r, θ = π/2) seems
to have a contribution with a different scaling exponent (and a negative sign).
Although we cannot strictly compare the scale of the variation with θ in Fig.
4.11 with the scale of the variation with φ as the two experiments involve disjunct
sets of parameters, the variation with φ seen in Fig. 4.12 is consistent with the
variation of the anisotropic part seen in Fig. 4.11. Future experiments must
verify that the φ variation is really as cos(2φ).

Our attempt to describe the angle–dependent structure functions with help
of the SO(3) machinery Eq. 4.2 has mixed success. In axisymmetric turbulence,
which has the smallest number of adjustable parameters, it is not possible to
unambiguously arrive at values of the anisotropy exponent ζ

(2)
2 that are close to

the dimensional prediction ζ
(2)
2 = 4/3. In shear turbulence we succeeded in

finding a value close to 4/3, however, the number of free parameters is rather
large in this case.

4.4 H   

As was realized earlier [51], a better approach to quantify anisotropy may be to
measure structure functions which have a zero isotropic contribution. Since we
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measure a single velocity component, the lowest order tensorial quantity that
does so is the third order structure function

Gααα(r) ≡
〈
(uα(x+ r) − uα(x))3

〉
, (4.9)

with α = x in our case. This tensor quantity can also be expanded in irreducible
components.

Gααα = g30(θ) r + g32(θ, φ) rζ
(2)
3 + . . . , (4.10)

where the superscript 3 on g0,2 now indicates the order. However, whilst incom-
pressibility of the velocity field reduces the number of unknown parameters of
the anisotropic part of the second order structure function g22 to just a few, no
such reduction for g32 is possible, unless the statistical properties of the driving
force (the velocity-pressure correlations) are known. The well-known Kármán
Howart-Kolmogorov equation fixes the isotropic component

g30(θ) = −4
5

ε cos(θ) (4.11)

In the case of isotropic turbulence, a relation similar to Eq. 4.7 exists for the
third-order angle dependent structure function Gxxx(r, θ) in terms of the longi-
tudinal structure function GL

3 (r) ≡ Gxxx(r, θ = 0),

Gxxx(r, θ) = 1
2 cos θ

{(
1+ cos2(θ)

)
GL
3 (r) + sin2(θ) r

d
dr
GL
3 (r)

}
. (4.12)

In axisymmetric turbulence it follows from reflection symmetry that Gxxx = 0
at θ = π/2, which trivially applies to the isotropic part Eq. 4.11, but also to
the anisotropic part. Using multiprobe arrays, it is possible to measure Gxxx at
small angles θ, but it poses extreme requirements on probe calibration as pairs of
probes must now be sensitive to slight asymmetries between positive and negative
velocity increments.

Figure 4.13 shows the longitudinal GL
3 (r) which was measured using time

delays and Gxxx(r, θ) at θ = 35◦, together with the isotropic prediction Eq. 4.12.
Clearly, it is not possible in axisymmetric turbulence to distinguish the measured
curve at θ = 35◦ from the isotropic prediction and it is therefore not possible to
deduce information about an anisotropic contribution. Third-order transverse
structure functions were also measured in [51] in (inhomogeneous) boundary
layer turbulence. However, in this case the structure function was computed
from the absolute values of the velocity increments 〈|∆u|3〉, for which a decom-
position Eq. 4.10 is very troublesome as it can never involve the proper isotropic
part.
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Fig. 4.13: Third order structure function measured in axisymmetric turbulence.
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3 at θ = 0. Dots connected
by lines, Gxxx(r, θ) at θ = 35◦, dash-dotted line: Gxxx(r, θ) computed
from GL

3 using the isotropy relation Eq. 4.12.

In shear turbulence, the reflection symmetry θ ↔ π − θ is broken at φ �= 0
and the anisotropic part is not longer bound to vanish at θ = π/2. Angle-
dependent third–order structure functions are shown in Fig. 4.14a for angles
φ = π/2 and θ = 0 (longitudinal), θ = 15◦, θ = 35◦, and θ = 60◦. In this
case the isotropic contribution vanishes at θ = π/2, and only the anisotropic
contributions remain. If higher–order anisotropies with l > 2 are absent, the
scaling at θ = π/2 would be pure and the scaling at smaller angles would be a
mixture. The scaling exponent at θ = π/2 can then be identified with ζ

(2)
3 ; we

find ζ
(2)
3 ≈ 1.4, which is significantly larger than the isotropic exponent ζ

(0)
3 =

1, and is rather close to the dimensional prediction ζ
(2)
3 = 5/3. If the SO(3)

description applies, the scaling of the longitudinal structure function would be a
mixture of both exponents

GL
3 = − 4

5ε r+ b rζ
(2)
3 , (4.13)

with ζ
(2)
3 ≈ 1.4. Figure 4.14b illustrates that it is possible to find a constant

b > 0 to describe the behavior of the longitudinal structure function at large
scales. The dissipation rate ε in Eq. 4.13 was estimated from the longitudinal
derivative, ε = 15ν〈(∂u/∂x)2〉, with ν the kinematic viscosity. The admixture
of the anisotropic scaling in the longitudinal structure function GL

3 may explain
why its apparent scaling exponent is smaller than 1, and why the apparent inertial
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range of GL
3 is smaller than that of the transverse structure function at θ = π/2.

The anisotropic contribution to GL
3 is small and Eq. 4.13 can be used to obtain

an impression of how the isotropic part decreases with increasing θ.
The parameter b in Eq. 4.13 is an unknown function of θ and φ which cannot

be further specified using the SO(3) description. It can, however, in any case be
concluded that b(θ, φ = 0) must change sign between θ = 0 and θ = π/2. This
implies that there is an intermediate angle where the scaling is pure isotropic,
with scaling exponent 1. From Fig. 4.14a we estimate this magic angle θm to be
θm ≈ 15◦.

The magnitude of the anisotropic contribution is much larger than what
could have been anticipated on basis of the second-order structure function; it
has, in fact, the same size as the isotropic part. This is quite disturbing as, within
the framework of the SO(3) desciption, we expect the anisotropic contributions
to be smaller than the isotropic ones.

In principle, low-order structure functions are affected by intermittency. This
was already observed in the value of the scaling exponent ζ

(2)
2 which in both

flows significantly exceeds the self-similar value 2/3. As intermittency effects are
stronger for high orders, we show the angle dependence of G7(x)(r, θ) in Fig. 4.15.
Clear scaling can be observed at all angles with quite similar scaling exponents,
that is, we are unable to distinguish a separate anisotropy exponent. The angle-
dependent structure functions can be described well by the form G7(x)(r, θ) ∼
(0.9 + 5.2 sin2(θ)) r2.1. Although its order is higher, the noise in the 7th order
structure function is smaller than that in the 3rd order one of Fig. 4.14. This
allowed a fit of the functional form, where we emphasize the dependence on the
double angle through sin2(θ). Elsewhere we will argue that high-order structure
functions in homogeneous shear are determined strongly by intermittency. The
relation between intermittency and anisotropy is an exciting and timely problem.

4.5 S  

The key idea of the SO(3) description is that the observed imprint of anisotropy
due to stirring at large scales is dependent on the geometric arrangement of the
measurement. At some angles, the effects of anisotropy are larger than at oth-
ers. The expected angular dependence can be worked out in detail using the
formalism of angular momentum theory.

In this paper we have described several experimental procedures to unfold
structure functions using the irreducible representations of the rotation group.
The conclusion of this work is that it is difficult to extract the anisotropic con-
tribution from angle-dependent second–order structure functions. In the case of
axisymmetric turbulence, the apparent success of a simple two–probe arrange-
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Fig. 4.14: Third-order structure function measured in homogeneous shear tur-
bulence. (a) Full lines: Gxxx(r, θ) at θ = 0◦ (longitudinal), θ = 15◦, θ =

35◦, θ = 60◦, and θ = 90◦. Dashed line, fit of Gxxx(r, θ = 90◦) ∼ rζ
(2)
3 ,

with ζ
(2)
3 ≈ 1.4. (b) Full line: third–order longitudinal structure func-

tion, dashed lines: Gxxx(r, θ) at θ = 15◦, θ = 35◦, and θ = 60◦ com-
puted from the longitudinal one using Eq. 4.12. The Kolmogorov
prediction Gxxx(r, θ = 0) = 4

5ε r is indicated by K41. Dash-dotted
line: fit of Eq. 4.13.



4.5. Summary and conclusion 89

10 10 2 10 310 -5

10 -4

10 -3

10 -2

0.1

1

10

10 2

10 3

r / η

-G
7

Θ = 90° Θ = 0°

Fig. 4.15: Order 7 structure function measured in homogeneous shear turbu-
lence. Full lines: G7(x)(r, θ) at θ = 0◦ (longitudinal), θ = 15◦, θ =
35◦, θ = 60◦, and θ = 90◦. Dashed lines fit of G7(x)(r, θ) ∼ (0.9 +
5.2 sin2(θ)) r2.1.

ment could not be reproduced when considering the information present in a
multi–probe configuration; the SO(3) description simply does not work. On
the other hand, this flow has a marked anisotropy as is shown in Fig. 4.4. At this
point we disagree with the conclusions of [4, 50], who analyzed boundary-layer
turbulence. The discrepancy may be explained by noticing that, while [4, 50]
apply the axisymmetric formulae, boundary layer turbulence is not axisymmet-
ric.

For the more strongly anisotropic shear turbulence the SO(3) machinery to
analyze second-order structure functions seems to work, at least our data are
consistent with the dimensional value of the anisotropic scaling exponent ζ

(2)
2 .

However, the quality of the fit is poor and we do not exclude the possibility that
the value found for the exponent is fortuitous. For example, we cannot com-
pletely rule out a small large-scale inhomogeneity. For this flow it was possible to
isolate the anisotropic contribution in the third-order structure function, which
turned out to be of the same order of magnitude as the isotropic part.

One could object that the anisotropy of the flows that are considered in this
paper is small, and that consequently the anisotropy content of the structure
functions is too small to be able to detect the anisotropy scaling exponent. While
this may be so for the axisymmetric flow, this is definitely not the case for the
homogeneous shear experiment where turbulence properties strongly depend on
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Fig. 4.16: Setup for measuring mixed structure functions involving a single
velocity component. True spatial separations in the y−dirction
are combined with temporal delays in the x−direction to create a
structure function that correlates velocity increments in the x− and
y−directions.

the direction. In both experiments we strived for homogeneity of the flow, which
compromised the achieved anisotropy. Better control of the turbulence, for ex-
ample through active grids may help to create homogeneous flows that are more
strongly anisotropic [81].

Aother objection may be that our Reynolds numbers are too small so that
there is not a clear separation between inertial–range and integral scales. How-
ever, it is generally believed that precisely these moderate Reynolds numbers
would benefit most of the SO(3) description. We emphasize that success of
this approach was concluded in the case of direct numerical simulations which
had a very small Reynold number [11].

We conclude that perhaps the SO(3) description is a way to quantify ani-
sotropy in experiments on strong turbulence. Before we can decide the same
success as in numerical simulations, more experiments are needed. These ex-
periments must involve arrays of probes that can also measure several velocity
components.

A
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voor Wetenschappelijk Onderzoek (NWO)” and “Stichting Fundamenteel On-
derzoek der Materie (FOM)”. We are indebted to Gerard Trines, Ad Holten and
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4.6 A

4.6.1 O  

In our experimental setup we measure the x−component of the turbulent veloc-
ity. Using arrays of velocity sensors, the transverse structure functions 〈(∆u)p〉
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Fig. 4.17: Second order structure functions in homogeneous shear turbulence.
T: transverse, L: longitudinal, A: asymmetric according to Eq. 4.16,
M: mixed, according to Eq. 4.19. Dashed line: fit of asymmetric
structure function Ga

2(r) ∼ rζa2 , with ζa2 ≈ 1.02.

are accessible. In homogeneous turbulence the lowest vanishing order is p = 3,
which is therefore the lowest order that is exclusively determined by anisotropies.
The question is if order-2 inertial-range quantities exist that vanish in the isotro-
pic case and that are proportional to the shear rate S, and scale as r4/3. Is so, we
would be particularly interested in the SO(3) decomposition of these quantities.

Let us first recapitulate the simple symmetry arguments which apply to se-
cond-order structure functions. To that aim we consider

Gαβ,γ(r) ≡
〈(
uα(x+ reγ) − uα(x)

) (
uβ(x+ reγ) − uβ(x)

)〉
(4.14)

If the turbulence is reflection symmetric, that is invariant under the operation
Tγ : xγ → −xγ, it follows that

Tγ
[
Gαβ,γ

]
= Gαβ,γ, while Tα

[
Gαβ,γ

]
= −Gαβ,γ, (4.15)

if α �= β. Therefore, in reflection symmetric turbulence, Gαβ,γ = 0 if α �= β, no
matter γ.

A natural modification of Eq. 4.14 is the structure function

Ga
2(r) ≡

〈∣∣(uα(x+ reγ) − uα(x)
)∣∣ (

uα(x+ reγ) − uα(x)
)〉
, (4.16)

which vanishes in isotropic turbulence for α �= γ as it changes sign under the op-
eration Tγ : xγ → −xγ. Another possibility is a second–order structure function
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involving the same velocity component.

Gαβ,γ(r) ≡
〈(
uγ(x+ reα) − uγ(x)

) (
uγ(x+ reβ) − uγ(x)

)〉
(4.17)

It is immediately obvious that

Tα

[
Gαβ,γ

]
= −Gαβ,γ, (4.18)

unless α = β. In our experiment we can make spatial separations in the y−direc-
tion and create spatial separations in the x−direction through time delays. When
implementing Eq. 4.18, it is important to use velocity information in four points,
as is sketched in Fig. 4.16

In particular, the implementation chosen here is

Gxy,x(r) = 〈((u2 − u1) + (u4 − u3)) ((u3 − u1) + (u4 − u2))〉 . (4.19)

We have verified that Gxy,x = 0 in turbulence which has y−reflection symmetry.
All these second-order structure functions have been measured in shear tur-

bulence with the result shown in Fig. 4.17. The asymmetric structure function
has the largest scaling exponent ζa2 ≈ 1.02, which falls significantly short of the
dimensional prediction 4/3, whereas the mixed structure function according to
Eq. 4.19 has no scaling behavior at all. Clearly, more insight is needed to sys-
tematically construct low-order quantities that can capture anisotropy.
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SATURATION OF TRANSVERSE SCALING
IN HOMOGENEOUS SHEAR TURBULENCE

A

High Reynolds number homogeneous shear turbulence is created in a windtunnel us-
ing a novel design variable solidity grid. Transverse structure functions are measured
using multiple hot-wire anemometry, both parallel and perpendicular to the shear di-
rection. The scaling exponents of high order structure functions are found to saturate
to an asymptotic value for very large moments. This novel property, analogous to the
similar phenomenon in passive scalar turbulence, is shown to be caused by anisotropic
flow structures at small scales. We find that the intermittent structures carrying the shear
signature are mostly concentrated in the negative tail of the PDFs. In contrast to that,
positive small-scale structures are similar to those encountered in homogeneous and iso-
tropic turbulence. Finally, we focus on small-scale anisotropy investigations, either via
the evolution of transverse skewness with Reynolds-number or by comparing the relative
longitudinal versus transverse scaling properties of high-order structure functions.

5.1 I

The central paradigm of Kolmogorov’s turbulence is that local isotropy will be
restored in the limit of very high Reynolds numbers. In the context of laboratory
flows, where it is possible to create well-defined turbulence which has a mean
shear, the belief is, therefore, that the large scale mean shear will be forgotten at
the smallest scales.

The concept of homogeneous shear turbulence was first introduced by von
Kármán (1937). The flow is characterized by a constant turbulence intensity
〈u2〉1/2 and a constant mean flow gradient. This type of flow, despite its rela-
tively simple form, proves to be very difficult to achieve experimentally. Serious
efforts of generating homogeneous shear flows seem to begin with the experiment
of Rose (1965 [76]) in the laboratory of Prof. Stanley Corrsin, stimulated by the
assistance of Genevieve Comte-Bellot, and was initially meant to provide a quick
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look at properties of turbulence associated with a uniform shear. He succeeded
in generating a linear mean velocity profile and could draw a few important con-
clusions: the flow, despite a very moderate Reynolds number, was characterized
by a uniform turbulence intensity and a shear stress approaching an asymptotic
value. Rose was not completely satisfied with the presence of wall boundary
layer growth and additional grid generated inhomogeneities, which manifested,
for example, in variations of the integral scale profiles with in both spanwise
and streamwise direction. This kind of effects frustrated his efforts in deriving
additional conclusions, which was left to be solved by future investigations.

In 1969, Champagne et al. [28] continued the work of Rose and performed
experiments that had as purpose the generation of a better approximation to
homogeneous shear turbulence in the windtunnel. In their flow, the streamwise
integral scale varied more slowly with the distance to the shear generator, while
the Reynolds number was larger (Reλ = 130). The anisotropy of the flow was
studied for a wider range of scales by analyzing the cross-correlation spectrum.
The local isotropy, despite of the small value of the Reynolds number, was found
to be satisfactory and measured via the statistics of the streamwise derivative,
through the quantity

〈(∂u/∂x)(∂u/∂y)〉
〈(∂u/∂x)2〉1/2〈(∂u/∂y)2〉1/2

, (5.1)

which is nominally zero in the case of reflection symmetry in the y- (shear) di-
rection. Instead, Champagne et al. found it to be 0.21. From now on we use a
coordinate system in which x is pointing in the streamwise direction and y in the
shear direction.

Pursuing this work, similar experiments were performed at higher mean shear
rates by Harris et al. (1977 [42]), confirming the asymptotic state found previ-
ously, in which characteristic scales and turbulent energy grow monotonically
further away from the stirrer. The increase in shear was accompanied by an in-
crease in the turbulence intensities (up to 5%) and the Reynolds number was
slightly improved, but the profiles of turbulence intensity showed an unavoid-
able growth of the spanwise inhomogeneity. Finally, Tavoularis and Karnik
(1989 [88]) extended even further the shear rate and showed that given a suf-
ficiently large shear constant ks = (1/Uc)(dU/dy), where Uc is the streamwise
mean velocity in the center of the shear region and dU/dy is the slope of the
linear mean velocity profile, the developed flows have a constant dissipation ε

to production P ratio (smaller than 1), and exponentially growing shear stresses.
The rate of growth of integral scales with downstream separation was related
to the value of the parameter ks, and it appeared that the regions where ε/P ap-
proaches 1 have smaller ks. Attempts to decrease its value by varying the structure
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of the shear generator resulted in loss of homogeneity.
We can see at this point that for the experiments performed in this period,

more attention has been paid to determination of the self-similar properties of
homogeneous shear turbulence, rather than assessing the small-scale anisotropy
of the flow. This issue was probably not addressed mainly because of the small
Reλ, however, it is important to mention that the generated sheared turbulence
was remarkably homogeneous.

The quantity of choice for evaluating the anisotropy of the small scales is the
skewness of the velocity derivative, taken in the direction of the shear, which is
identically 0 in the case of an isotropic field. The skewness is defined as

K =
〈(∂u/∂y)3〉

〈(∂u/∂y)2〉3/2
. (5.2)

It takes a non-zero value for finite Reynolds number homogeneous shear flows,
but it is expected to disappear for very large Reλ. From simple dimensional argu-
ments [53], the skewness should decrease like K � Re−1λ . Tavoularis and Corrsin
(1981) measured a skewness of 0.62 for a Reynolds number flow Reλ ∼ 266.
Using essentially a similar setup, Garg and Warhaft (GW [37]) studied more
recently the variation of skewness for a range of near-homogeneous shear flows
with 156 ≤ Reλ ≤ 390 and found that the derivative skewness decreases with the
Reynolds number, but slower than expected. Their efforts were continued by the
improvement of the shear generator by means of an active stirrer, by Shen and
Warhaft [81], who obtained a maximal Reynolds number ∼ 1000. A characteris-
tic of the actively stirred flows is the persistence of very large streamwise integral
scales, which makes it difficult to compare this type of turbulence with the pre-
vious results. Their results, however, not only confirm the GW results, but show
that the higher order derivative statistics, like hyper-skewness and generalizations
thereof, seem to stop decreasing with the further increase of the Reynolds num-
ber.

A parallel experiment developed by Ferchichi and Tavoularis [31] confirms
the decreasing trend of the derivative skewness, but this feature persists in the
next order of the statistics, though the Reynolds numbers in these experiments
are slightly lower.

These quite different results make the issue of anisotropy at dissipative scales
an open question, although the parallel problem of scalar fields passively advected
by the turbulent velocity field has been settled by numerical simulations in favor
of violation of the local isotropy principle. The difference in the results by Shen
and Warhaft [81] and Ferchichi and Tavoularis [31] has been blamed on the
departure of the flow from homogeneous shear turbulence.

A simple dimensional argument predicts for the odd-order p = 3, 5, 7, . . .
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Fig. 5.1: Sketch of the experimental setup: the variable solidity grid is a two-
dimensional multiscale grid constructed such that both the filled and
empty spaces gradually increase, but at different rates.

structure functions the scaling exponents [53]

ζp =
p+ 2
3

. (5.3)

High-order structure functions in shear turbulence have recently been measured
by Shen and Warhaft (2002) [82]. They find instead the same exponents as in
isotropic turbulence.

In this chapter, we perform multiple hot-wire measurements of homogeneous
shear flow in a windtunnel, in an attempt to thoroughly compare differences with
respect to the already well-documented properties of near-isotropic and homoge-
neous high Reynolds number turbulence. Special attention is given to the quality
of the flow, in order to strictly fulfill the requirements of homogeneous shear.

5.2 E 

Creating windtunnel homogeneous shear turbulence with high Reynolds num-
ber is a difficult task, especially when both a strong shear and good homogeneity
are desired. Recent windtunnel setups achieved either a high Reynolds number
combined with a moderate shear strength [81] or smaller Reynolds numbers with
a stronger shear [31]. The typical deficiency in this type of flows is that instead
of generating homogeneous shear, where the strength of the fluctuations 〈u2〉 is
constant along the shear direction (or, ideally, independent of orientation), one
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Fig. 5.2: (a) Mean velocity profile along the vertical direction of the shear, mea-
sured in the center of the windtunnel. (b) Mean velocity profile of the
shear for a set of 9 runs with Reynolds numbers between 150 and 600,
normalized by the mean velocity in the center of the shear region Uc.
For all the runs, the position which determines Uc is indicated by the
dashed line.
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Fig. 5.3: Longitudinal spectra obtained simultaneously at Reλ ≈ 600 with the
probe array oriented in the shear direction (vertical). A similar figure
is obtained when the array is perpendicular to the shear (horizontal).
The homogeneity of the shear is reflected in identical spectra, we find
thus identical integral scales over large span-wise areas of the flow.

favors a regime called “uniformly sheared turbulence”, with linear variation of
urms. We expect that this situation will affect the scaling properties of the flow
such that it will be different from the ideal case where the shear rate is homoge-
neous.

In our experiments we generate shear that is very nearly homogeneous, but
the shear rate is relatively small. Traditionally, shear turbulence is generated (far
from walls) using progressive solidity screens that create different mean velocity
layers, combined with means of increasing the turbulence intensity that use a
passive or active grids. An active grid can almost double the Reynolds number in
homogeneous and isotropic turbulence [81, 60]. Variable solidity passive grids
originate in the pioneering work done more than 30 years ago by Champagne
et al. [28]. A somewhat similar technique was used even earlier by Rose [76],
who ingeniously used a succession of parallel rods of equal thickness at variable
separation to create a highly homogeneous shear flow, but possessing a small
Reynolds number.

We adapted this method and achieved a much higher Reynolds number by
varying simultaneously the width of the solid areas and that of the transparent
regions. A sketch of the grid is given in figure 5.1. Despite its simplicity, this type
of grid provides a Taylor micro-scale-based Reynolds number ∼ 600 on the cen-
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terline, comparable to more sophisticated setups. The homogeneity of the shear
is excellent, as can be seen from figure 5.2(a), which shows the mean and r.m.s.
profiles of the longitudinal velocity component. By varying the mean velocity
in the wind-tunnel, Reλ could be varied from 150 to 600. The shear constant
ks = (1/Uc)dUx/dy (see [88]), where Uc is the longitudinal mean velocity in the
center of the shear region, is remarkably uniform over the entire range, as can
be inferred from figure 5.2(b). Since all the profiles have been recorded at a
fixed separation x/H = 5.1 downstream from the grid, we can safely assume that
the flow is also well-behaved in the streamwise x-direction. As further evidence
for the homogeneity of the flow, we show in figure 5.3 the longitudinal spec-
tra obtained from individual probes during a typical measurement. Although
each probe sees a different mean velocity of the flow, the local energy spectra are
identical.

Turbulent velocity fields and their increments were measured using multiple
hot-wire anemometry. A single probe suffices to measure longitudinal velocity
increments ∆u(∆τ) by registering a time-dependent signal. By invoking Taylor’s
frozen turbulence hypothesis, temporal delays ∆τ can be interpreted as spatial
separations ∆x = U∆τ, with U the mean flow velocity.

Although a measurement at a single point can establish the scaling proper-
ties of the velocity field, more extended information is needed for characterizing
anisotropy. In these experiments we use an array of probes oriented perpendicu-
larly to the mean flow direction which samples the velocity field in many points
simultaneously. It gives access to the transverse increments ∆u(yi) of the fluctu-
ating u-component at discrete separations yi − yj ([93]). The advantage of this
arrangement is that no recourse to Taylor’s frozen turbulence theory is needed. If
the turbulence intensity is small with respect to the mean velocity U, the probes
are mainly sensitive to the u−component of the velocity, the admixture of the
other transverse v−component being of order urms/U.

The experiments were performed in the 0.7× 0.9 m2 experiment section of a
recirculating windtunnel, 4.6 m downstream from the grid, where the turbulence
intensity does not exceed 10% of the mean velocity. Each of the locally manu-
factured hot wires had a sensitive length of 200 µm, which is comparable to the
smallest length scale of the flow (the measured Kolmogorov scale is η = 180 µm).
They were operated at constant temperature using computerized anemometers
that were also developed locally. The signals of the sensors were sampled exactly
simultaneously at 20 kHz, after being low–pass filtered at 10 kHz. Whenever
high-order statistics were desired, the total length of the recorded time-series per
uninterrupted experimental run varied between 109 and 3× 109 samples. A final
measurement was performed with the sensor array oriented perpendicularly to
the shear direction in order to verify the spanwise homogeneity of the flow at the
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Fig. 5.4: Probability densities of transverse increments of the longitudinal ve-
locity component for r/η ∼ 6 and r/η ∼ 45 in (a) homogeneous and
near-isotropic turbulence and (b) homogeneous shear turbulence. The
full lines are P(∆u), the dashed lines are P(−∆u).

highest Reynolds number.

5.3 S    

  

The transverse structure functions of order p are defined as

STp (r) =< (∆uT(r))p >= 〈[u(x+ rey) − u(x)]p〉, (5.4)
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Fig. 5.5: Dependence of the scaling exponents of the transverse structure func-
tions on the order p; solid line, open circles: scaling exponents de-
termined from the full PDF. There is a large asymmetry between odd
and even moments. The smoothness of the curve is gradually restored
with the increase of the order p, where the larger negative lobe of the
probability distribution functions dominates the contribution to the
structure function. The solid lines without markers depict the scal-
ing exponents fitted to the left and right transverse structure functions,
defined in Eqs. 5.13 and 5.12, while the dash-dotted lines are the She-
Leveque (SL) and Kolmogorov (K41) predictions.

equivalently they can be expressed in terms of the probability density functions
of transverse velocity increments ∆uT(r)

STp (r) =< (∆uT(r))p >=
∫ ∞

−∞
(∆uT)pPr(∆uT) d∆uT . (5.5)

In the case of homogeneous turbulence, the odd-order moments ST2p+1 van-
ish identically because of the reflection symmetry of the corresponding PDFs
Pr(∆u) = Pr(−∆u). This is no longer the case in shear turbulence. This is il-
lustrated in figure 5.4, which compares PDFs measured in shear turbulence to
those measured in homogeneous turbulence. The asymmetry in the case of shear
turbulence, which is indicated by overlaying P(∆u) with P(−∆u) increases for
increasing ∆u. It is also seen that the PDFs of transverse increments in homoge-
neous turbulence are perfectly symmetric. Assuming that all odd-order moments
are proportional to the shear rate S = dU/dy and further only depend on the dis-
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Fig. 5.6: Transverse structure functions of (a) odd and (b) even orders. The
normalization with the power law (r/η)ζ∞ , with ζ∞ = 3, emphasizes
the saturation tendency observed in the scaling exponents of the high-
order structure functions.

sipation rate 〈ε〉 and the separation r, a dimensional argument predicts [53]

Sp(y) ∼ Sε(p−1)/3y(p+2)/3. (5.6)

We are interested to see if the odd moments will display a true scaling behaviour.
Figure 5.6 shows the transverse structure functions of even orders and odd orders.
Both of them show good scaling behaviour and have very little noise, although
each separation r = |yi − yj| involves a different pair of probes. They reflect a
concentrated effort to calibrate for the static and dynamic anemometer response
which may vary from one probe to another. All structure functions were com-
puted from stretched-exponential representations of the PDFs. Given the high
number of velocity samples for each PDF (∼ 2× 108), this implies that only very
large orders (p � 12) are influenced by this procedure. In this case, the only
difference to the directly computed structure functions is that the noise level is
reduced. A careful evaluation of this procedure is given in section 5.4. After
fitting the curves to power laws over the inertial range, we extract their scaling
exponents as a function of the order p.

Figures 5.5 and 5.6 suggest that above order p = 15, the scaling exponents
saturate to a constant value ζ∞. We believe we are the first to see this novel
property of the velocity field in homogenous shear turbulence. It must be re-
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alized, however, that large-order structure functions come with high statistical
errors. Despite that, several independent experimental runs confirmed this prop-
erty, and similar results were obtained from relative scaling exponents, where one
structure function is plotted as function of another one (see section 3.3 of chap-
ter 3). Another argument in favor of saturation of the scaling exponents that
directly involves the PDFs will be presented in section 5.4.

Previously, a similar saturation property was found in passive scalar turbu-
lence, either in experiments [29] or in numerical simulations [1], and related
to the ramp-and-cliff characteristic shape of small-scale scalar increments. The
scalar fronts are believed to be caused by underlying vorticity sheets (as predicted
in [73]). The fluctuations of the scalar field are more intermittent than those
of the velocity field. Therefore, the saturation of the scaling exponents of the
scalar field occurs at smaller moments (p ≈ 10) than for our velocity field, which
facilitates its observation in an experiment.

Saturation of the scaling exponents can be readily understood in terms of the
multifractal model by Frisch and Parisi [66]. The multifractal model provides
a geometric explanation of the statistical properties of turbulent fluctuations.
Briefly, it assumes that velocity increments scale locally as δu(r) ∼ rh, with local
scaling exponents h that fluctuate throughout space. In turn, their fluctuations
are also described by a scaling exponent such that the probability to encounter
an exponent h at scale r depends on r as r3−D(h), where 3 is the dimension of the
space and D(h) is the fractal dimension of the set of exponents h. All averages,
such as structure functions, can now be written as

Sp(r) =
∫
dh (rh)p r3−D(h). (5.7)

Now assume that the velocity field consists of two types of events: regular events
(“ramps”) with h = 1/3, which fill the space D(h) = 3, and “cliffs”, which are
sharp at all (inertial) scales (h = 0) and have fractal dimension Dc. This simple
bifractal field yields for the scaling exponent

Sp(r) ∼ rζ
p , with ζp = min

h
(p/3, 3− Dc). (5.8)

so that ζp = p/3, p < 3(3− Dc) and ζp = 3− Dc, p ≥ 3(3− Dc). If we assume
that the “cliffs” of the velocity field have dimension 0, then we find a saturating
dimension ζ∞ = 3, as we find experimentally.

Although this conclusion is tempting, it is also contradictory. The problem
is that with a planar measurement (the probe array), it is not possible to capture
point-like (Dc = 0) objects. Also, if the velocity jumps are the consequence of
vortex sheets we expect Dc = 1 and ζ∞ = 2. We conclude that the multifractal
model is ambiguous at this point. Within its realm, it is simply impossible to
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find ζ∞ = 3, unless we allow the occurrence of negative dimensions. Negative
dimensions can be understood in the following naive example: the intersection in
the 3-dimensional space of (random) lines with our planar (D = 2) measurements
consists, generically, of points (Ds = 0). The intersection with objects “less than
lines” (Dc < 1), therefore has dimension Ds < 0 [35].

Another theory that predicts saturation of the scaling behaviour is the in-
stanton formalism, (e.g. described in [8]), which is used in the context of the
Kraichnan passive scalar problem for dimensions d → ∞. Similar predictions
have been discussed for the three-dimensional scalar in [97, 20], which obtain
saturation from instantonic bounds.

While the main concern of this chapter is in the behaviour of transverse prop-
erties of turbulence, it is interesting to mention that from our measurements of
homogeneous shear turbulence, the directly available longitudinal structure func-
tions do not indicate any deviation from the scaling exponents values measured
in homogeneous and isotropic turbulence.
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5.4 C

We will now show that the saturation of high-order scaling exponents is consis-
tent with the shape of the PDFs, thus corroborating our claim of saturation.

A sufficient but not necessary condition for saturation of the scaling expo-
nents is that the function

Qr(∆u) ≡ r−ζ∞Pr(∆u) (5.9)

becomes independent of r for |∆u| → ∞ [17] for r−values inside the inertial
range.

The measured probability density functions Pr(∆u) can be represented by
stretched exponentials (see section 3.5 of chapter 3)

Pr(∆u) = are−αr |∆u|βr . (5.10)

Using the statistical tests devised in [93], we have found no significant differences
between our measurements and Eq. (5.10), given the total number of velocity
samples in our experiment. In terms of the stretched exponentials, Eqn. 5.9
becomes

Qr(∆u) = ar r−ζ∞e−αr|∆u|βr . (5.11)

Because in shear turbulence the negative velocity (that go with the shear)
increments are most relevant, we show in Fig. 5.7 the function Qr(∆u) of Eq.
(5.11) for ∆u < 0 and several distances r that span the inertial range 30 ≤ r/η ≤
300.

The figure illustrates that the more probable, negative tails of the probability
density functions become independent of r when properly rescaled. This was of
course already evident from the scaling exponents in Fig. 5.5 that were computed
from precisely these tails. The inset of Fig. 5.7 shows, on a much expanded scale,
that the function Qr(x) is completely consistent with our data. At very large
∆u, the functions Qr(∆u) for different r start to deviate again, but this is already
beyond the ∆u needed to determine moments of order p = 15 (the maximum
∆um needed is set roughly by the value where ∆u15Pr(∆u) reaches a maximum,
which is at ∆um = −3,−5, and −8ms−1 for r/η = 30, 100 and 270, respectively).

5.5 S- 

Since we measure the turbulent velocity field with many probes simultaneously,
it is possible to seek for strong events that extend in the shear (y−) direction;
this is not possible in point measurements of the velocity field. In our quest
for these events, we adopted the simple strategy to look for N velocity profiles
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Fig. 5.8: Snapshots of the turbulent velocity field (longitudinal component) il-
lustrating that high negative increments occur at the interface of ex-
tended regions with uniform but different velocity. The magnitude of
the velocity is represented by levels of grey from black to white, and the
picture is obtained by displaying the interpolated sensor information
(y-axis) against the longitudinal separation (x-axis), both normalized
by the Kolmogorov scale η.

u(x, y) which have the largest transversal velocity difference |∆uT | = |u(x, y +
δy) − u(x, y)| across two closely spaced probes (separation δy/η = 6), which is
also a local maximum in the x-direction. An extensive description of our detec-
tion method is provided in section 3.6.2 of Chapter 3. The sign of strong events
is favored by the shear, out of N events (e.g. n = 200 out of 108 line samples),
≈ 0.7N have the same (negative) sign as the shear. This is not a simple additive
effect, the mean shear gives a mere ∆uS = 0.1 ms−1 across the viscous-range sep-
aration δy, a factor of 4 smaller than the size fluctuation of the N largest events.
A few snapshots of the measured velocity field in the neighborhood of large neg-
ative velocity increments are shown in Fig. 5.8. These (selected) snapshots reveal
that the large event is in fact part of a “cliff”: large velocity differences are also
found across a line perpendicular to the shear. We will now demonstrate that
this is also shown in conditional averages of the velocity field.

The separate averages of the positive and negative events were done by choos-
ing the local maximum of ∆u in the x−(streamwise) direction at x = 0. These av-
erage structures are shown in Fig. 5.9. Most remarkably, the average shape of the
strongest events is very different for the negative and positive increments. Whilst
the negative events clearly reveal a cliff-like structure of the velocity field, the
average positive events are indistinguishable from those found in near-isotropic
turbulence and do not carry the imprint of the large-scale shear. As high-order
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Fig. 5.9: Mean velocity surfaces of the largest 256 events conditions over the
separation ∆r = 6.1η. The spatial transverse information from the 10
sensors is combined with the sample-resolution time information, to
generate a square region.

structure functions are determined by the negative events, it can now be under-
stood why the behavior of the scaling exponents in shear turbulence differs from
those in (near-) isotropic turbulence.

5.6 S      



The conclusion of the previous section indicated a large asymmetry between neg-
ative (with the shear) and positive velocity increments. This raises the interesting
question wether structure functions of either negative or positive velocity incre-
ments have different scaling behaviour. These structure functions are defined
as

S+
p =

∫ ∞

0
(∆u)pPr(∆u)d∆u (5.12)
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Fig. 5.10: Third order transverse structure functions of homogeneous shear tur-
bulence. Full lines: (a) the total structure function STp (r), (b) only
from positive velocity increments ∆u > 0 (ST+

3 ) and (c) only from
negative velocity increments ∆u < 0 (ST−3 ). Dashed lines: (b) and (c),
power laws a+r

ζ+
p and a−r

ζ−p , respectively, fitted to the structure func-
tions. The dashed line corresponding to (c) is the sum a−r

ζ−p + a+r
ζ+
p .

for the positive ∆u > 0 increments and

S−p = (−1)p
∫ 0

−∞
(∆u)pPr(∆u)d∆u (5.13)

for the negative ∆u < 0 increments. The even- and odd-order structure functions
are the sum and difference of S+

p and S−p , respectively

S2p(r) = S−2p(r) + S+
2p (5.14)

S2p+1(r) = S+
2p+1 − S−2p+1(r). (5.15)

Naturally, if the structure functions have scaling behaviour, Sp ∼ ζp, S+
p ∼ ζ+

p ,
S−p ∼ ζ−p , then Eq. 5.15 dictates that ζp = ζ+

p = ζ−p . However, if the negative
velocity increments dominate the structure function, then we may have the sit-
uation that ζ+

p �= ζ−p = ζp. This, of course, would only be apparently so in the
case of a finite inertial range. When contributions of positive and negative veloc-
ity increments are of the same order of magnitude, we must find all exponents
ζ+
p , ζ−p , ζp to be the same. That this can be difficult to see in the case of a rel-

atively small inertial range is illustrated in Fig. 5.10, where we show S3, S+
3 and

S−3 which all apparently have different scaling exponents.
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total ζp (dash-dotted line) scaling exponents of transverse structure
functions in homogeneous shear turbulence.
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The possibility that S+
p and S−p may scale differently with r has been exten-

sively discussed in the literature [84]. Here we will critically evaluate this dis-
cussion. Sreenivasan et al. [84] considered the longitudinal structure function
which results from a PDF which is asymmetric. This asymmetry is due to the
energy cascade towards smaller scales, as is paraphrased by a non-zero third-order
structure function

S3(r) = −4
5
〈ε〉r, (5.16)

Negative longitudinal increments are more numerous than positive ones and it
was suggested that large negative moments S−p scale differently than large positive
moments S+

p . The physical rationale is that fluid accelerations may be different
than decelerations. We illustrate this by plotting in Fig. 5.11 the ratio S−p /S

+
p that

was computed from longitudinal increments in near-homogeneous and near-
isotropic turbulence. While for a small p, the ratio S−p /S+

p is a decreasing function
of r, it becomes an increasing function at p ∼= 7. Therefore, for p ≥ 7 apparently
ζ−p ≥ ζ+

p , which is consistent with the circumstance that negative increments
are more numerous than positive ones. This requirement can be appreciated by
writing

Sp(r) = a−r
ζ−p + a+r

ζ+
p , (5.17)

where the first term on the r.h.s. is dominating if ζ−p > ζ+
p and a− > a+. We

also see that the large negative velocity increments are only a factor of 3 more
numerous than the positive ones. Let us recall that such domination is required
to simultaneously have (approximate) scaling of Sp and S−p .

Surprisingly, Sreenivasan et al. [84] also consider different scaling of the small
0 ≤ p ≤ 1 order positive and negative moments. The problem is that (i) it is im-
possible to decide which of Sp, S+

p , S−p has the algebraic behaviour in case of
a finite inertial range, (ii) such different scaling (even an apparent scaling dif-
ference) is inconsistent because of the small difference between the number of
negative and positive increments, (iii) a different scaling violates the exact rela-
tion (5.16) which singles out the true structure function as the scaling quantity.
Further, Sreenivasan et al. [84] fail to notice that the different scaling of Sp, S+

p ,
S−p is only apparent: in the case of infinite Reynolds number it will always be
possible to decide which of the three has a true scaling behaviour.

Let us now return to the shear turbulence experiment, and see if large pos-
itive increments have a different scaling than the high order structure functions
Sp and S−p . The result is shown in in both Fig. 5.5 and 5.12, where we have
plotted all scaling exponents ζ+

p , ζ−p , ζp as a function of the order (the latter
figure emphasizes different scaling also at small orders). Self-similar Kolmogo-
rov scaling would be the line ζp/p = 1/3. It appears from Fig. 5.5 that only
the ζ−p exponents tend to saturate towards higher orders p, an observation which
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Fig. 5.13: Variation of the transverse skewness over a range of Reynolds num-
bers varying from 150 to 600 for orders p = 3, 5, 7. The isolated
symbols show the transverse noise measured by the array of probes in
near-isotropic turbulence where odd-order transverse statistics should
identically vanish. The dashed line is Re−1.69λ , which resulted from
fitting the third order skewness with a power law.

is in agreement with the result of section 5.5 (i.e. the asymmetric near-singular
events can be identified only within the negative tail of the PDFs of velocity in-
crements). The ζ+

p exponents show a different behaviour, but their anomaly is
still stronger than, for example, the She-Leveque line . The conclusion is that the
exponents ζ+

p are significantly different from ζ−p and both positive and negative
velocity increments are strongly intermittent.
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5.7 V     R



In the preceding section we have found that, at a single Reynolds number, the
large-scale anisotropy persists down to the small scales. Conversely, if we concen-
trate at the anisotropy at the smallest scales, the question is if this will disappear
at larger and larger Reynolds numbers. Increasing the Reynolds number moves
the smallest scale further and further away from the injection scale and Kolmo-
gorov’s postulate of local isotropy (PLI) [48] predicts that the anisotropy should
disappear.

To this aim we study the Reynolds number dependence of the derivative
skewness

Kp =
〈(∂u/∂y)p〉

〈(∂u/∂y)2〉p/2
, (5.18)

for p = 3 and 5. The derivatives in ( 5.18) were estimated from finite differences
of velocities measured with probes separated by δy = 1mm. The result is shown
in Fig. 5.13. As discussed in section 5.1, Kp should decrease with increasing
Reynolds number as Kp ∼ Reλ

−1. As figure 5.13 illustrates, the observed decay
for p = 3 is faster, while K5 actually tends to a constant for large Reλ.

A measurement of the skewness Eq. 5.18 is prone to noise. The noise was
estimated by measuring |Kp| in the case of isotropic turbulence where it should
vanish exactly. These results are also shown in Fig. 5.13 and demonstrate that
the measurements in shear turbulence are always safely above the instrumental
noise level. Our results may be compared to those of Shen et al., who have an
inferior noise level.

In agreement with our finding that anisotropy persists at the small scales,
we also find that a measure of small scale anisotropy persists for large Reynolds
numbers.

5.8 T     

R- 

In a recent paper [82], Shen and Warhaft advanced the idea that longitudinal and
transverse structure functions possess identical scaling exponents in both sheared
and non-sheared experiments, up to orders p = 8. This situation is compared
to a set of small Reλ experimental runs, where different scaling properties, trans-
verse versus longitudinal, are indeed observed, with the conclusion that they are
finite Reynolds number effects. It remained unclear why similar high-Reynolds
number experiments [93] disclose a different anomalous scaling ζL(p) �= ζT(p).
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In this chapter, an entirely different behaviour of transverse structure func-
tions has been already discussed in the previous sections, with the note that we
observe longitudinal structure functions that are almost identical to the near-
isotropic case (Fig. 5.15). This observation dismisses the influence of small
Reynolds-number effects, adding that the near-isotropic measurement is per-
formed at a higher Reλ ∼ 860. We are apparently confronted with contradictory
conclusions. This situation may be partially explained by the relatively small
orders that could be measured in the transverse direction in [82], due to inho-
mogeneity effects, which have hidden the saturation behaviour at higher orders.
However, small odd orders p of the transverse structure functions show a obvious
deviation in the way they evolve with p, relative to their longitudinal counter-
parts, for example ζL(3) = 1.11 �= 1.41 = ζT(3). Similarly, our measured third
order transverse exponent turns out to be much closer to the Lumley predic-
tion [53] (see Eq. 5.6 of section 5.3) rather than to the Kolmogorov Sp(y) ∼ yp/3,
again in contradiction with the findings of [82].

To further investigate this issue, we compare in figure 5.14 the ratio of the
two dimensional predictions (ζT(p)/ζ l(p) ∼ 1+ 2/p for shear and 1 for isotropic
and homogeneous turbulence) with the ratio of the measured scaling exponents
in homogeneous shear (odd orders) and near-isotropic turbulence. Despite the
fact that individually the transverse and longitudinal scaling exponents are very
different from each other and anomalous, their ratio clearly goes with p repro-
ducing the functional form of the dimensional prediction of the same ratio, at
least up to order 10. Naturally, this is not valid at higher orders, where satura-
tion effects start to appear. In the case of near-isotropic turbulence the situation
is similar, the measured ratio ζT(p)/ζ l(p) is close to one, but as early as order
p = 8 starts to deviate from this value, in agreement with the different scaling of
transverse and longitudinal increments.

It is very interesting to further investigate in higher Reλ near-isotropic turbu-
lent flows for the origins of this different scaling. A tempting explanation might
be that in the case of homogeneous and isotropic turbulence, even in the limit of
infinite Reynolds number, a distinct but universal scaling anomaly characterizes
the two orientations (longitudinal and transverse). The starting point for this as-
sumption is the observation that the longitudinal scaling exponents are identical
in shear and in isotropic turbulence. For any other type of high-Reynolds num-
ber flows, observing this universal behaviour in the transverse exponents could
be spoiled by the presence of large anisotropic scales. These anisotropies are felt
throughout the inertial range and persist (as demonstrated in this study) down
to dissipative scales. In this way, the structure functions measured in geometries
that emphasize such an anisotropy, applied in a controlled manner at large scales
(e.g. sheared turbulence), will result in non-universal scaling exponents. As we
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will see next in this section, if the large scale anisotropies are not complex (as in
homogenous shear), it is perhaps possible to find measurement geometries that
are insensitive to these anisotropies, where universality is restored (in the sense
previously announced).

We investigate if the shear effects are felt when measuring structure functions
for separations r in the plane perpendicular to its direction. We saw that for the
longitudinal structure functions (situated in this plane), we recover the scaling
of isotropic turbulence. A measurement of the transverse structure functions
perpendicular to the shear can be done through the 90◦ rotation of the sensing
array (see figure 5.1(a)). The results are summarized in figure 5.15, which shows
that not only the transverse scaling exponents are identical to those in isotropic
turbulence, but that the saturation behaviour is also absent. This result also
demonstrates that the intrinsic intermittency of shear turbulence can only be
captured experimentally by using multi-point measurements.

5.9 C

Apart from presenting novel scaling properties of structure functions in homoge-
neous shear turbulence, this paper demonstrates the need for high-quality experi-
ments and promotes the importance of high-order structure functions in sensing
universal behaviour in turbulence. It is observed that the scaling of the low-orders
(p = 3) obeys dimensional predictions, either for shear or near-isotropic turbu-
lence. With the increase of the order, this property is increasingly obstructed by
intermittency, leading to the two types of anomaly: one that quantifies the de-
viation from the K41, the other discriminating the two measurement directions,
longitudinal and transverse. Since longitudinal scaling is observed not to be in-
fluenced by homogeneous shear, it is suspected that the nature of the first scaling
anomaly is independent of the turbulence type. This claim is confirmed by the
observation that, up to moderately high orders p ≤ 8, the ratio of transverse
to longitudinal scaling exponents in shear still reflects the dimensional predic-
tions. Scaling of even higher-orders does not satisfy any of the considerations
above, but instead reveals residual effects of the large-scale anisotropic forcing on
the small-scale anisotropy. Explicitly, the small-scale survivors of the large-scale
uniform shear are identified as strong events that are selected from the velocity
fields. These structures correspond to distinctly isotropic and anisotropic vortical
structures. Vortex filaments without a preferential orientation seem to determine
the high-order scaling of the isotropic turbulence, while a mixture of these and
shear-aligned vorticity sheets are causing saturation of scaling exponents in ho-
mogeneous shear. It is probable that the small-scale structure of inhomogeneous
shear turbulence decomposes similarly and the way to disentangle its structure is
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to resolve the high-order scaling of structure functions.



C 6

REYNOLDS NUMBER DEPENDENCE OF
LONGITUDINAL AND TRANSVERSE
FLATNESS

A

The flatness factor of velocity fluctuations in turbulent flows is a measure of intermit-
tency. We study the dependence on the Reynolds number of both the longitudinal and
transverse derivative flatness in windtunnel turbulence with Reλ ≈ 450..800. A sus-
pected transition in the longitudinal derivative flatness around Reλ ∼ 600 is shown to
be the consequence of limited hot-wire anemometry performance and can be amplified
by improper filtering of the turbulence time-series. The transition effect is shown to be
absent for the derivative flatness in the transverse direction, which is proven to be less
sensitive to resolution problems.

6.1 I

Fully developed turbulence describes the state of a turbulent fluid in which a
well-developed inertial range is present. This requirement sets a lower limit on
the Reynolds number, which was in Dimotakis [25] to be Reλ ≈ 100 . . . 140. It
is generally believed that for Reynolds numbers larger than this minimal value,
the inertial range widens and no further transition to a turbulent state with a
different character is encountered.

Surprisingly, a few years ago such a second transition (to “hard” turbulence)
was discovered in turbulence driven by a temperature difference at very large
values of the Rayleigh number (Procaccia et al. [72]). This has inspired a quest
for an analogous transition in isothermal turbulence. Generally, the derivative
flatness is chosen as the natural vehicle for such a quest. It is defined as

Kij =
〈(∂ui/∂xj)4〉
〈(∂ui/∂xj)2〉2

(6.1)



118Chapter 6. Reynolds number dependence of longitudinal and transverse flatness

If the derivatives have Gaussian statistics, then Kij = 3, with deviations from 3
quantifying intermittency. The longitudinal flatness K11 is readily accessible in
experiments where a time-series of streamwise velocities is measured in a single
point. Invocation of Taylor’s frozen turbulence hypothesis enables the translation
of time derivatives into spatial derivatives. However, it must be noticed that
problems with the Taylor hypothesis are gravest at the highest frequencies. This
point will be worked out in detail in chapter 7.

The dependence of the longitudinal K11 on the Reynolds number has been
documented extensively by van Atta and Antonia [7], who provide a compilation
of K11(Reλ) obtained in different flow geometries. Although Eq. (6.1) should be
insensitive to many details (such as scale factors), it is still desirable to study the
dependence of Kij(Reλ) in a single experiment geometry. Such a study was per-
formed by Tabeling et al. [87] in a turbulence experiment involving cold helium
gas, which covered a wide Reynolds number interval Reλ ≈ 150 . . . 5040. Tabeling
et al. [87] discovered an apparent transition in K11(Reλ) at Reλ

∼= 700, reminiscent
of the transition to “hard turbulence” found in turbulent convection (Procaccia
et al. [72]).

In a detailed theoretical study of possible experimental artifacts by Emsellem
et al. [27], this transition was subsequently ascribed to probe resolution prob-
lems. Later studies by Pearson [67] in windtunnel turbulence over a range of
Reynolds numbers Reλ ≈ 400 . . . 1200 and new experiments by Tabeling and
Willaime [86] both found evidence for a transition at Reλ

∼= 700. Both ex-
periments of [87, 86] were done using the same flow configuration, but in [67]
two windtunnels were used to span a large range in Reynolds numbers.

A possible transition to a new kind of fully developed turbulent flow is an
extremely intriguing phenomenon which deserves very careful experiments. Such
a study will be undertaken in this chapter.

As the Kolmogorov scale decreases with increasing Reynolds number and of-
ten drops below the size of the velocity sensor, probe resolution is a key problem.
All probes that were used in the flatness studies were hot-wire probes. Emsellem
et al. [27] identify various parasitic effects that may jeopardize hot-wire measure-
ments of velocity derivatives and that may introduce a spurious transition.

Two main probe effects were identified: the increase in the probe response
time due to thermal boundary layer effects, and secondly, the interference with
the measured signal from vortex shedding off the probe. While both these effects
were found to be responsible for changes in the value of the flatness close to the
Reynolds number where the transition was observed, alternative tests, such as
the dissipation rate test and the behaviour of dissipative length scales (such as the
position of the peak in the dissipation spectra) with Reynolds number, showed
that the probe response seemed to be constant over the entire range of measured
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Fig. 6.1: Probe configuration for measuring the derivative flatness K11 and K12.
The sensitive length of the probes is lz and their separation is ly. The
mean flow points in the x-direction. Filtering of the time-dependent
signal corresponds to a spatial filter length lx.

turbulent flows. The conclusion of the paper reconciliates the two contradictory
observations: the transition in the flatness factor is still un unclear problem and
should be better investigated in other experiments using closed flows, involving
either larger scales or better instrumentation.

In the present experiments we focus on a Reynolds number interval close
to where the transition was observed, namely from Reλ

∼= 450 to 800. In these
experiments it is not possible to investigate the entire Reynolds-number interval
achieved in the helium experiments, but the covered Reλ interval contains the
transition value.

The experiments are done in a windtunnel turbulent flow where the Kol-
mogorov scales remain large, which eases problems of probe resolution. In the
next section, we will describe the used flow and ascertain its isotropy. Issues of
probe resolution for the measurement of the turbulent dissipation are discussed
in section 6.3. We will argue that it is advantageous to measure K12 in the case
when small length scales remain unresolved in some directions of space. Finally,
we discuss dependence of both K11(section 6.4) and K12( 6.5) on the Reynolds
number and conclude that the observed transition is most probably due to the
limited probe resolution at the highest Reynolds numbers.

6.2 E 

To create large Reynolds number turbulence, the laminar flow of a recirculating
windtunnel is passed through a grid, which induces a turbulent wake behind it.
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Fig. 6.2: Longitudinal spectra of Reλ = 698 turbulence, measured simultane-
ously at various transverse positions in the flow.
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assessing the isotropy of the turbulent flow. The dashed line corre-
sponds to the transverse structure function S̃T2 in the ideal case of
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normalization on dissipative quantities r∗ = r/η, S∗2 = S2/v2K, where η,
vk = ν/η are the Kolmogorov length-scale and velocity, respectively.
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Reλ η × 104(m) εVSR(m2s−3) εISR(m2s−3) U(m/s) urms(m/s) fc2(Hz)

498 2.12 1.65 1.45 5.07 0.800 4600
546 1.86 2.82 2.35 6.11 0.958 6000
593 1.65 4.55 3.72 7.18 1.125 7300
644 1.49 6.81 5.52 8.29 1.297 8700
698 1.37 9.57 7.76 9.35 1.462 9400
754 1.27 12.7 10.8 10.41 1.639 10000

Tab. 6.1: Longitudinal turbulence characteristics for one of the two identical
experimental runs. In the column titles Reλ is the Taylor-microscale
Reynolds number, η the Kolmogorov length scale, εVSR and εISR are the
mean dissipation rates determined in the viscous, respectively inertial
range, and fc2 is the cut-off frequency of the numerical post-filtering.

The structure of the grid is derived from the classical symmetric square mesh,
which has been used to generate isotropic moderate Reynolds-number turbu-
lence throughout the 60’s in the work of Comte-Bellot and Corrsin [21, 22].
The grid geometry, similar to that used by Pearson [68], does not obstruct the
entire section of the windtunnel and has a multiscale structure which resembles
a chessboard pattern. With turbulent intensity around 10%, the flow has a Rey-
nolds number which is a factor of two higher than classical passive grids: for
our windtunnel which has a measurement section of 8m and a cross-section of
0.7× 0.9m2, the maximal value of the Reynolds number achieved was Reλ ∼ 900.

For the measurement of the turbulent signals we used an array of 10 single
hot-wire probes which is positioned perpendicularly to the direction of the mean
flow in the windtunnel. The transverse spacing between the individual probes
is chosen suitable for measurement of transverse turbulence quantities with sep-
arations both in the viscous sub-range (VSR) and the inertial sub-range (ISR),
while the longitudinal quantities are extracted from individual probes, by re-
interpreting the time lags as spatial increments via the Taylor frozen turbulence
hypothesis. Although two closely spaced probes would suffice for measuring both
longitudinal and transverse derivatives, the lateral information provided by the
array was used for assessing the isotropy of the flow. We simultaneously sample
the 10 time-signals for all runs at a frequency of 20 kHz and low-pass filter them
at fc = 10kHz, in accordance to the Nyquist rule. As noise can contaminate
a measurement of the flatness, the acquired data was numerically filtered at a
frequency fc2, close to the Kolmogorov frequency fK = U/2πη.

The homogeneity of the flow in the y-direction is illustrated in Fig. 6.2,
where we show the spectra obtained at various positions in the probe array at
Reynolds number Reλ = 698. It is seen that the spectra do not depend on y
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Fig. 6.4: Normalized longitudinal spectra obtained from one of the sensors,
for all measured Reynolds numbers. The normalization is done
with respect to the dissipative scale quantities: k∗ = kη/2π, E∗ =
E( f )(2π/U)ε−2/3VSR η−5/3, where η is the Kolmogorov length scale, εVSR
is the dissipation and f is the frequency.

and display a well-defined inertial range. Isotropy was checked by measuring
longitudinal and transverse structure functions

SL2 (r) = 〈(u(x+ rêx) − u(x))2〉, (6.2)

ST2 (r) = 〈(u(x+ rêy) − u(x))2〉 (6.3)

and testing the satisfaction of the isotropy relation

S̃T2 (r) = SL2 (r) +
r
2
dSL2 (r)
dr

(6.4)

Fig. 6.3 shows both the longitudinal and transverse structure functions; in the
inset the anisotropy is estimated through the ratio R(r) between the measured
transverse structure function and the right-hand side of Eq. (6.4), computed
from the measured longitudinal structure function. The ratio R(r) is very close
to one, as usually observed in turbulent wakes of symmetric grids [21]. It is
necessary to mention that satisfaction of relation (6.4) provides only a limited
isotropy check, since hot-wire anemometry used in this experiment measures
only the longitudinal ux velocity component.

6.3 A   

For each Reynolds number in the range Reλ = 498 . . . 754 two sets of experiments
were done. The turbulence characteristics of these experiments are listed in ta-
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Fig. 6.5: (a) Ratio of the mean dissipation rates against the Reynolds number,
measured from dissipative range εVSR or inertial range εISR quantities,
using Eq. (6.5) and Eq. (6.7), respectively. (b) Variation of the Kol-
mogorov frequency fK = U/2πη with the Reynolds number (empty
markers). For the higher Reλ runs, its value exceeds the Shannon fre-
quency fK ≥ fc. Also shown is the ratio of fK and the frequency fc2 that
was used for the numerical post-filtering of the data (closed markers).
When fK ≥ fc, fc2 ≈ fc.
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Fig. 6.6: Dependence of the value of the Kolmogorov constant Cε (see Eq. (6.8))
on the Reynolds number. The values are calculated either using εVSR

(empty markers) or εISR (full markers).

ble 6.1. As vortex shedding off probes was extensively studied in Emsellem et
al. [27], where it was suspected to be a cause for the a spurious Reλ transition
of the flatness, we will assess its importance here. Of relevance is the Reynolds
number based on the diameter of the wire d = 2.5 · 10−6m, which for the range of
velocities considered here is in the range Red = 0.8 . . . 1.6. This is below the crit-
ical Reynolds number (Red = 40) for vortex shedding (Tritton [89]). Therefore,
vortex shedding is irrelevant. To prove that vortex shedding from other struc-
tures, such as supports of the wires, is also insignificant, we show in Fig. 6.4 the
normalized energy spectra for the range of Reynolds numbers considered. No
accidental high frequency peaks can be observed in these spectra.

We investigate next the dissipation rate test, which compares the mean energy
dissipation rate ε computed either directly as a dissipative quantity from the
velocity derivative (assuming isotropy of the flow), or as an inertial range quantity
from the Kolmogorov equation for the third-order structure function.

εVSR = 15ν

∫ ∞

0
k2E(k)dk (6.5)

εISR =
−SL3 (r) + 6ν(dSL2/dr)

(4/5)r
(6.6)

According to Moisy et al. [57], a more accurate procedure for the extraction of
εISR is to fit a forced version of the Kolmogorov equation (Novikov [62])

−
SL3 (r)
r

+
6ν

r
dSL2
dr

=
4
5

εISR

(
1− 5

14
r2

L2f

)
, (6.7)
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where L f is an external scale characterizing the forcing, but distinct from the
longitudinal integral scale L11. In order to determine εISR, Eq. 6.7 was fitted to
measured longitudinal structure functions SL2 and SL3 , with εISR and L f as free
parameters. The value of εISR is less sensitive to how well the dissipative scales
are resolved. If the probe response does not diminish with the increase in the
Reynolds number, then the ratio εISR/εVSR should be constant and close to 1. In
Fig. 6.5(a) we can see that this ratio stays below 1 for all the Reynolds numbers
considered.

The ratio εISR/εVSR increases with Reynolds number, most probably because
εVSR is increasingly underestimated. This increase corresponds with an increase
in the ratio of the Kolmogorov frequency fK = U/2πη and the sampling fre-
quency, as is shown in Fig. 6.5(b). The latter figure also illustrates the two filter-
ing strategies used: either filtering at the Shannon frequency fc, or filtering close
to the Kolmogorov frequency at fc2. In the last case, the frequency response as a
function of the Reynolds number is discontinuous when fK grows larger than fc,
since fc2 cannot exceed fc. We will demonstrate that the main conclusion of this
chapter does not depend on the strategy chosen.

A final test that compares a dissipative range quantity which is affected by
probe resolution and a macro-scale quantity which is unaffected by probe reso-
lution is the measure of the dimensionless dissipation rate

CεVSR = εVSR
L11
urms3

, (6.8)

where L11 is the integral length scale

L11 =
∫ ∞

0
〈u(0)u(r) dr〉.

Over a very large range of Reynolds numbers, CεVSR was shown to be constant
in a flow geometry similar to the one we have, but in a different experiment
employing an entirely different setup (Pearson [68]). Constancy of Cε is of course
the essence of Kolmogorov’s self-similar theory of turbulence.

To conclude this section, we observe a weak dependence of the ratio εISR/εVSR
which may be caused by finite sampling frequency in our experiments. On the
other hand, the dimensionless dissipation rate is found to be constant. Matters
of time resolution will be discussed in detail in section 6.5, when we compare
the measurement of G12 and G11.
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Fig. 6.7: (a) Evolution of the longitudinal flatness structure functions G11(r)
with the normalized separation r/η for Reλ varying from ∼ 450 to
∼ 750. The dashed line has slope ζ ∼ −0.1. (b) Values extracted from
G11(r) for several separations r0/η in the intermediate dissipative range.
A second set of curves, produced in a separate experiment running over
the same Reλ range shows that the values are reproducible. The over-
imposed dashed lines show the effect of the digital post-filtering on G11,
which is minimal. The diagonal dash-dotted line suggests a trend for
the dependence of a break point in G11 on the separation r0/η.
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6.4 L 

The derivative flatness (Eq. 6.1) is the limit for vanishing separations r of the
flatness structure function

Gij(r) =
〈(ui(x+ rêj) − ui(x))2l〉
〈(ui(x+ rêj) − ui(x))2〉l

(6.9)

with l = 2. For inertial range separations r, Gij(r) shows an algebraic dependence
Gij(r) ∼ rζ with the exponent ζ related to the anomalous exponents of the struc-
ture functions of order 2 and 4, ζ = ζ4 − 2ζ2. This is illustrated in Fig. 6.7(a),
where ζ = −0.106, which agrees with the well-accepted values of the exponents
ζp (Arneodo et al. [6]). Also the derivative flatness

Kij = lim
r→0

Gij(r)

will be influenced by intermittency. This reflects Kolmogorov’s refined similarity
hypothesis in which the statistical properties of inertial- and dissipative-range
quantities are linked (Kolmogorov [49]). It is precisely this effect that will be
studied here. We have already indicated that resolution is an important issue
in studies of the Reynolds number dependence of the derivative flatness Kij(r).
In Fig. 6.7(a) it is seen that the smallest scale reached in G11(r) increases with
increasing Reynolds number.

In order to estimate the value of G11(r) at r = 0 it is necessary to fit a polyno-
mial P(r) = a+ br2 + cr4 to the measured G11(r) in the interval r ∈ [0, r1], where
we choose r1/η ≤ 20. The polynomial is forced to an even order by the reflec-
tion property of G11(r). Even with this procedure, it is very difficult to estimate
K11 reliably, since the fitting range will gradually shorten with the increase of the
Reynolds number. It is a common practice to take instead the values measured
at the first accessible separation r as representative for derivative quantities of
turbulence such as flatness.

Rather than attempting to find the true flatness K11 = G11(r → 0), we will
evaluate G11 at fixed separations r0/η ≥ 4 at all the measured Reynolds num-
bers by substituting r0 in the polynomial P(r). The result of the procedure for
different r0-values is shown in Fig. 6.7(b). The smallest r0/η shown is also the
smallest resolved separation of G11(r) at the largest Reλ = 754. We observe that
this length is already influenced by time filtering (lx/η > 1). While for large r0
the flatness structure function G11(r0) smoothly increases with Reλ, there is an
apparent break around Reλ = 650 at r0/η ≤ 6. Remarkably, this break occurs at
approximately the same Reλ where Tabeling and Willaime [86] found a transition
of the derivative flatness. We also remark that the effect of the post-filtering that
was done to remove high-frequency noise is insignificant. This is an important
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Fig. 6.8: The influence of the time-filtering (corresponding to a scale lx/η = 1)
on the measured r.m.s. values of the longitudinal (◦) and transverse(•)
derivatives 〈(∂u/∂x)2〉m, 〈(∂u/∂y)2〉m evaluated from the Pao model
spectrum of turbulence. In the transverse case, a 2-probe configura-
tion is used, with equal sensor lengths lz/η, separated by ly/η, equal to
the sensor lengths. Both lz/η and ly/η are varied simultaneously. The
longitudinal case is evaluated from a single wire configuration, where
the length of the sensor ly/η is varied. The curves show that the loss of
resolution due to time-filtering (dashed lines) is larger when the r.m.s.
of the longitudinal derivative is measured. When time-filtering is ab-
sent lx = 0 (full lines), the situation is reversed and the longitudinal
configuration is more accurate at measuring derivatives.

observation, because our strategy of filtering at fc has a nonuniform Reynolds
number dependence.

A suspicious effect, however, is that the apparent transition Reynolds number
seems to increase with increasing r0. This suggests that this transition may be a
resolution artefact. On the other hand, if we assume a resolution artefact, then
the scaling with Reλ is not right. Roughly, η ∼ Re−3/2λ so that if a transition occurs
at r0/η = 4 at Reλ ∼ 580, it would also occur at Reλ = (6/4)3/2 · 580 ∼= 1000 at
r0/η = 6, which is significantly larger than the observed transition Reynolds
number at this separation.

We conclude that at this point the observed transition hints at a resolution
artefact, but it can not be completely ruled out that it may be genuine.
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6.5 T 

We have seen that a measurement of the flatness will invariantly encounter the
limitations of the probe resolution. Therefore it is useful and instructive to com-
pute the influence of averaging when measuring turbulent fluctuations that cor-
respond to a model spectrum. To this aim we will consider measurements of
both the longitudinal K11 and the transverse K12.

A quite subtle problem in measuring K11 is the applicability of the Taylor’s
frozen turbulence hypothesis. Measuring derivatives involves the high frequen-
cies, which are most affected by deviations from frozen turbulence. These prob-
lems are absent when measuring K12 by using two separate probes. The experi-
mental arrangement is sketched in Fig. 6.1. Resolution of the small scales, which
is needed for measurement of the derivatives, is limited by the finite wire length
lz, the finite probe separation ly and the finite time resolution which corresponds
to a length scale lx through Taylor’s hypothesis. Resolution limitations in y-
and z-directions have been studied by Frenkiel [34, 33], Corrsin and Kovasznay
[23] and Wijngaard [94, 95, 96]. Their calculations include more complicated
hot-wire sensor configurations, such as ×-probes and vorticity sensors. They
concluded that the size of the probes used should be of the order of the Kolmo-
gorov microscale if an accurate measurement of the r.m.s. velocity derivatives is
desired. Here we will also compute the effect of time filtering. It is our aim to
compare for this case the longitudinal and transverse flatness.

As we do not know how to build model spectral densities that have a non-
trivial flatness, we will only study the effect of averaging on 〈(∂u/∂x)2〉 and
〈(∂u/∂y)2〉, i.e. the denominator in the expression for the flatness.

The starting point is the isotropic spectral density

Φij(k) =
E(k)
4πk4

(k2δij − kikj), (6.10)

where for E(k) we take the isotropic Pao spectrum ([65])

E(k) = E(k) = αC2/3k−5/3 exp
(
−3/2α(kη)4

)
(6.11)

In wavenumber space, the action of the averaging can be expressed by its spectral
transfer functions

|Hz(kz)|2 =
sin2 (lzkz/2)

(lzkz/2)2
, (6.12)

whereas the approximation to the average derivative 〈(∂u/∂y)2〉 through a finite
difference by 2 wires in the y-direction is given by

|Hy(ky)|2 =
4
l2y

sin2 (lyky/2)
(lyky/2)2

. (6.13)
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Finally, the representation of the electronic low-pass filter in the spatial domain
|Hx(kx)|2 is given by

|Hx(kx − kcx)|2, (6.14)

with kx the cut-off wavenumber. We assume that the sampling in time is fast
enough so that the approximation to the longitudinal x-derivative becomes

〈(∂u/∂x)2〉 ∼=
∫
k2xH

2
x(kx − kcx)H

2
z (kz)Φxx(k)dk, (6.15)

whereas the approximation of the transverse y-derivative through a finite differ-
ence becomes

〈(∂u/∂y)2〉 ∼=
∫

H2
x(kx − kcx)H

2
y(ky)H

2
z (kz)Φxx(k)dk (6.16)

As it suppresses the factor k2x, the influence of the time- (kx−) filtering is more
detrimental for the estimate of the longitudinal derivative than for the transverse
one. This effect is illustrated in Fig. 6.8 where we show the result of a numerical
evaluation of Eq. (6.15),(6.16), where instead of letting the time-filtering scale lx
grow above the Kolmogorov scale, we chose to have it fixed at lx/η = 1 and then
decrease the resolution (1 ≤ ly/η, lz/η ≤ 20) of the spatial filtering.

In our experiment lx/η ∼ 4, ly/η = 7.2 and lz/η = 1.5 for the largest Reλ. In
this situation the effect of the time-filtering is assessed by comparing the flatness
structure functions at equal transverse and longitudinal separations ∆y = ∆x ∼=
ly/η. As the separations ∆y, ∆x are of the same order as the time-filtering length-
scale lx and all close to η, we believe that the longitudinal G11(∆x) will be less
accurately determined than the transverse G12(∆y), similar to what is observed
for our model spectrum. The apparent transition in the longitudinal flatness
function also shows in a cross-over of the curves in Fig. 6.7(a). The question is
if a measurement of the transverse flatness function G12(r) will exhibit a similar
cross-over. The functions G11(r) and G12(r) are compared in Fig. 6.9. Contrary
to G11(r), G12(r) does not show a cross-over and increases monotonically with
the Reynolds number. However, as the separation r in G12(r) is a true physical
separation, the discrete distances of G12(r) are more sparse because the number
of probes that can be compressed in a small volume is limited.

It is known that probe influence affects the measurement of spatial derivatives
using 2 probes for r/η � 3 (Zhou et al. [98]). As our smallest separation is
larger than this value, we believe that our spatial measurements of G12 are correct.
Then, it can also be concluded from Fig. 6.9 that the transverse flatness K12 shows
a stronger dependence on the Reynolds number than the longitudinal K11.
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Fig. 6.9: Comparison between measured values for the transverse and longitu-
dinal flatness for separations r/η in the intermediate dissipative range
scales, for different values of the Reynolds number, shown in the leg-
end. The full lines represent the transverse flatness obtained from dif-
ferent sensors and the dashed lines represent the single-probe longitudi-
nal flatness, simultaneously recorded at the indicated turbulence levels.
The transverse flatness curves have the same shape, irrespective of Reλ

and no transitional behaviour is observed.

6.6 C

We measured the longitudinal and transverse flatness structure functions of iso-
tropic and homogeneous turbulence, G11(r) and G12(r), for separations r in the
dissipative range, over a selected Reynolds number range, Reλ

∼= 450 . . . 800. The
longitudinal and transverse flatnesses K11, respectively K12 were approximated
by the values of the flatness structure functions G11(r) and G12(r) at the small-
est separations that we could resolve with our experimental setup. We showed
that a transition in the Reynolds number dependence of the longitudinal flat-
ness K11(Reλ) is most probably caused by the finite-time resolution of the ex-
periment. This is corroborated by the transverse flatness, which does not show
such a transition. Using a model spectrum to quantify errors in the experimental
approximation of derivatives we verify that resolution problems are expressed dif-
ferently in the longitudinal and transverse derivatives. For future work, it would
be desirable to have a finer grid of spatial separations.

The transverse flatness is monotonously increasing with Reλ and does not
exhibit any sudden variation near the Reλ of the suspected transition, but the
smallest transverse scales that are resolved are larger than the longitudinal scales.
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C 7

TURBULENT WAKES OF FRACTAL
OBJECTS

A

Turbulence of a windtunnel flow is stirred using objects which have a fractal structure.
The strong turbulent wakes resulting from three such objects which have different fractal
dimensions are probed using multiprobe hot-wire anemometry in various configurations.
Statistical turbulent quantities are studied within inertial and dissipative range scales in
an attempt to relate changes in their self-similar behaviour to the scaling of the fractal
objects.

7.1 I

The self-similar structure of turbulence underlies Kolmogorov’s well-known 1941
theory. In a modern geometrical phrasing of this theory, turbulent dissipation
would be organized on a space-filling fractal set. In the same vein, small-scale
intermittency results if this set is no longer space filling.

It is broadly believed that fully developed turbulence, when given enough
time, creates its fractal structure by itself, no matter how the turbulent flow is
excited. An intriguing idea is to impose a self-similar structure on the flow, for
example by creating turbulence in the wake of a fractal object. The question is
whether the imprint of the excitation can be seen in the turbulent structure of the
wake. In other words, whether the scaling properties of the object can determine,
at least for some time, the scaling properties of the turbulent wake that is shed
off the object. Thus, we may be able to directly influence the scaling exponents
of fully developed turbulence and their related turbulence dissipation field. As a
practical application, this idea may lead to improved turbulence generators and
objects with novel drag properties. It should be noted that a direct influence of
the fractal stirring on the scaling properties of the velocity field was demonstrated
in the context of a reduced-mode model (the GOY model)[63].
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Preliminary experiments by Queiros-Conde & Vassilicos [74] have hinted
such an effect, but the structure functions used were rather unorthodox. The
problem was that these quantities made it difficult to unravel the effect of the
finite size of the fractal object from the effect of its scale invariant structure.
In the present study we attack this problem by measuring energy spectra and
longitudinal as well as transverse structure functions. Our conclusion is that
there may be a direct relation between the scaling properties of the fractal object
and the turbulence that it creates. Whilst the latter conclusion may not sound
firm, we believe that it is interesting to expose the caveats and ambiguities of the
experimental techniques used to reach it.

The fractal turbulence generators used are those of [74]. They have (neces-
sarily) finite size and create very strong turbulence. We demonstrate that it is
precisely these two circumstances that make it difficult to establish a direct rela-
tion between the scaling of the generator and the scaling of the turbulent wake
it sheds.

7.2 E 

Our fractal objects are self-similar constructions with the smallest scales limited
to 1 mm by manufacturing constraints (see [74] for a full description of these
objects). With the size L of the fractal objects ranging between 17 and 37 cm,
the number of iterations is limited to 4. A schematic view of these objects is
provided in Fig. 7.1a. The wake of three objects of increasing fractal dimension
(2.05, 2.17, 2.40) placed in the 0.7m× 0.9m section of the tunnel was generated
with a laminar flow that reaches 22ms−1 in an empty windtunnel. The measure-
ments were done with a rake of 10 hot-wire probes at different positions behind
fractal objects. Different orientations of the objects themselves with respect to
the direction of the incoming flow of the windtunnel were used. The possible
measurement configurations are sketched in Fig. 7.1b.

The wakes of the fractals are strongly turbulent, a feature that challenges the
application of hot-wire anemometry. Hot-wire sensors cannot discriminate be-
tween positive and negative fluid velocities along the x-direction (see Fig. 7.1b) u
and −u. In particular, the sensor information is ambiguous as to the direction of
the velocity in a plane perpendicular to the wire if the relative turbulent fluctua-
tions, u/U and v/U, are large (where U is the time-averaged fluid velocity in the
x-direction and v is the fluid velocity in the y-direction – see Fig. 7.1b). Despite
these disadvantages, hot-wire anemometry is still the only way to obtain statisti-
cally accurate measurements of the small-scale velocity field in strong turbulence.
All standard turbulence statistics presented here are in terms of spatial velocity
increments u(x + r, t) − u(x, t) at equal times. Time-dependent measurements at
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Fig. 7.1: (a) Schematic representation of the self-similar construction of the frac-
tal objects. (b) Fractal object in a typical measurement configuration.
The arrow indicates the direction of the windtunnel flow; the differ-
ent axes considered are denoted u, l and d. In the actual fractal object
shown in (a), the cubes are replaced by self-similar copies of the object.
For test purposes, an object without this fractal filling was constructed,
which can therefore be viewed as a fractal where the self-similar struc-
ture was stopped after one iteration.
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a fixed spatial location are interpreted as space-dependent velocities using Tay-
lor’s frozen turbulence hypothesis. The validity of this assumption depends on
the turbulence levels u′/U and v′/U (where primes indicate r.m.s. levels). As dis-
cussed later in this paper, the violation of the frozen turbulence hypothesis leads
to subtle but significant changes of the spectrum at large wave-numbers. If our
fractal objects could have infinitely many generations, the stirring of turbulence
would be scale invariant at scales well within the size of the object. However, due
to the flow reversal problem, the probe array cannot be placed closer to the ob-
jects than a distance approximately equal to its size L. Consequently, the largest
length scale of the object is always in view, and the flow statistics are unavoidably
influenced by the largest scale. This circumstance interferes with the geometri-
cal scaling of the object and is responsible for at least part of the experimental
observations, as we argue in the following section.

The large-scale imprint on the flow can be altered by rotating the fractal
object with respect to the mean velocity. For example, the primary large-scale
iterations of the fractal can be shielded by the smaller-scale iterations by rotating
the fractal so that its diagonal axis (axis d in Fig. 7.1b) is oriented parallel to
the mean flow’s x-direction. A key point of this work is to separate this large-
scale imprint from genuine effects of the object’s fractal structure, something
which [74] did not do. An overview of the experiments is given in table 7.1.
Most experiments were done on the objects with fractal dimension D=2.05 and
D=2.17. The object with D=2.40, which is more space-filling than the other
two, has a very turbulent wake, and to avoid flow reversals, measurements could
only be done at relatively large distances from the object, x/L ≥ 3. In section 7.5
we report the results of experiments on a test object. In order to compare fractal
and non-fractal stirring, the test object (see Fig. 7.1b) has the same large-scale
structure as the D=2.17 object, but the structure on smaller scales is not filled in:
it is a truncated fractal.

In order to study the imprint of the large-scale structure of a single object on
the wake, we have done experiments with the D=2.05 object at various orienta-
tions with respect to the mean flow and the probe array at two positions relative
to the object’s geometric center. In the diagonal orientation (axis d in Fig. 7.1b
aligned with the mean flow in the x-direction), the projection of the fractal ob-
ject on a plane perpendicular to the mean flow is more homogeneous. With the
velocity probes in the upper position, the support of the fractal is in view (not
shown in the figure), therefore, most of the experiments were done behind the
lower lobes of the fractal (position l in Fig. 7.1b). The array of velocity sensors
was oriented perpendicularly to the mean flow direction and the 10 independent
hot-wire sensors were placed such that their 45 distances were distributed ap-
proximately exponentially. Consequently, the probes crowd in the center part of
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D x/L Configuration Reλ u′/U

1 l 230 0.21
1.5 d 210 0.13

2.05 2 l 345 0.20
2 u 370 0.23

2.8 l 310 0.16
1 l 175 0.61

2.17 2 l 220 0.34
2 l 215 0.33
3 l 250 0.20

2.40 3 l 250 0.43
5 l 650 0.18
1 l 300 0.25

3 1.8 l 310 0.16
2.6 l 315 0.12

Tab. 7.1: The measurements are grouped depending on the fractal dimension
D of the object. For each object, different positions in the turbulent
wake are probed, with the letters referring to Fig. 7.1. The object with
dimension 3 is a test object that has the same large-scale structure as
the D = 2.17 object, but which is truncated after one iteration.

the array.
Each of the wires used has a sensitive length of 200 µm and was operated

by a computerized constant temperature anemometer. The velocity signals were
low-pass filtered at 10kHz and sampled synchronously at 20kHz. Each run was
preceded by a calibration procedure in which the voltage to air velocity con-
version for each wire was measured using a calibrated nozzle. The resulting 10
calibration tables were updated regularly during the run to allow for a (small)
temperature increase of the air in our recirculating windtunnel. Adequate statis-
tical convergence was ensured by collecting velocity readings over 6× 106 integral
time scales in runs that lasted approximately 2 hours. Repeated runs gave precise
reproduction of measured statistics.

7.3 D  

Our purpose is to unravel the finite-size effect of the fractal stirrer on its turbu-
lent wake from the effect of its scale-invariant structure. As the finite-size effect
of the stirrer can be expected to depend on its orientation and position with re-
spect to the velocity sensor, we systematically studied the turbulent wake of one
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Fig. 7.2: Turbulence intensity profiles for different configurations of the D=2.05
object, recorded at fixed separation x/L = 2

fractal object (D=2.05) at a fixed separation from that object (x/L = 2), but at
different orientations and with the velocity probes at different vertical positions
relative to the object (l and u). These configurations are schematically indicated
in Fig. 7.1b, with the object: diagonal (d), horizontal with the velocity probes
behind the upper lobe (u), and horizontal with the velocity probes behind the
lower lobe (l). The properties of the turbulent wakes in each of these three con-
figurations is indicated in table 7.1, and the turbulent intensity profiles are drawn
in Fig. 7.2. The diagonal orientation has the most homogeneous wake and the
lowest turbulence levels but also the smallest turbulence Reynolds number. We
conclude that the profiles of the turbulence intensity vary considerably with the
orientation of the object.

An overview of the spectra of the u velocity across the wake is given in
Fig. 7.3. There is a clear k−5/3 scaling range with a bump at low frequencies
reflecting the coherent shedding of vortices. A remarkable observation is that
the shedding is very weakly pronounced. In the remainder of this paper we only
show longitudinal spectra and structure functions from the center wire, where
the velocity profile is most homogeneous. Throughout, we normalize all turbu-
lence quantities on dissipation scales, k∗ = kη/2π, E∗ = E( f )(2π/U)〈ε〉−2/3η−5/3,
where η is the Kolmogorov length scale, 〈ε〉 is the mean dissipation rate and f is
the frequency.

The different small k behaviours are more obvious when the spectra are com-
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Fig. 7.3: Turbulence spectra behind fractal object D=2.05 at x/L = 2 and con-
figuration l. The low wave number bump in the spectra is more promi-
nent in the central part of the wake.

pensated by k5/3 and plotted in linear-log axes, as in Fig. 7.4. The large-scale
region of the spectrum for the object oriented horizontally contains more energy
than that for the object oriented diagonally, while all spectra have a well defined
scaling region. Spectra show the large-scale contamination of the wakes by the
large scales of the object as low-frequency bumps. This large-scale contamina-
tion is virtually absent when the object is diagonally orientated, but Reλ is too
small in that orientation to yield a clear scaling range in structure functions, as
shown later in this section. For large wave-numbers k∗ � 0.1, the spectra of this
object become independent of orientation and position and collapse. Therefore,
this part of the spectrum might reflect the intrinsic self-similar structure of the
object and may be used to discriminate stirrers with different fractal dimension.
This avenue is explored in detail in section 7.4.

The second-order longitudinal structure function GL
2 (r) is the Fourier com-

panion of the longitudinal spectrum. Still, it is useful to present it because we
have also access to the transverse second-order structure function GT

2 (r). Com-
bining GL

2 (r) and GT
2 (r) gives access to the anisotropy of the wake. The exponents

of the longitudinal structure functions appear to be close to values normally en-
countered for approximately homogeneous and isotropic turbulence. We obtain
ζL2 = 0.73, 0.78 and 0.76 for the d, l and u configurations, respectively.

In the customary longitudinal measurement configuration used so far, veloc-
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ity increments ∆u(r) are measured over a separation r, where r points in the same
direction as the measured velocity component u. Separations r then follow from
time delays τ by invoking Taylor’s frozen turbulence hypothesis r = Uτ. When
the turbulence inhomogeneity across the wake is not too large, it is possible to
measure the transverse structure functions with the true separation vector r ori-
ented perpendicularly to U. The transverse second-order structure function scal-
ing exponent is higher for the more inhomogeneous u configuration (ζT2 ∼ 0.80),
while for orientation d there is no clear indication of a scaling range because the
Reynolds number is too small in that case.

In isotropic turbulence the transverse and longitudinal structure functions
are related through

G̃T
2 = GL

2 +
r
2

dGL
2

dr
(7.1)

The ratio R(r) = GT
2 /G̃

T
2 between the directly measured GT

2 and the one com-
puted using Eq. 7.1 is a measure of the anisotropy. Figure 7.5 shows the aniso-
tropy of the wake for the three configurations used. As we use the u component
in both longitudinal and transverse structure functions, R(r) is trivially 1 for
large r in homogeneous turbulence. The relatively large fluctuations of R(r) in
the u configuration are not due to lack of statistics, but are a consequence of the
flow inhomogeneity across the wake. The horizontal axis of Fig. 7.5 corresponds
to separations yi − yj between probes, where yi and yj are the locations of the
probes. Separations yi − yj may be close to separations yk − yl, but the probes
may be in very different regions of the wake. In the diagonal configuration the
wake is more homogeneous and the fluctuations in R(r) are smaller.

The third order longitudinal structure functions shown in Fig. 7.6 have
scaling exponents around 1; the non-homogeneous configurations give ζL3 larger
than 1, ∼ 1.13 and 1.2 for the u and l positions, respectively, while d has ζL3 ∼ 0.9.
Obviously, the small Reynolds number of the d configuration results in poor
scaling of GL

3 . In the two horizontal configurations, one interpretation of the
results might be that the large-scale energy transfer is enhanced thus leading to
an apparent scaling exponent which is significantly larger than unity.

7.4 C  D=2.05  D=2.17 



After having exposed the influence of the large-scale structure of the objects on
their wake, let us now systematically compare the (apparent) inertial range scaling
behaviour of the turbulent wakes of two objects, one with fractal dimension
D=2.05 and one with D=2.17.
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Fig. 7.6: Third-order structure functions for different orientations of the
D=2.05 object at separation x/L = 2. Non-homogeneous configura-
tions l and d yield apparent scaling exponents larger than one. The
horizontal line compares these results with the S3(r) = −4/5〈ε〉r Kol-
mogorov prediction.

We do this by presenting spectra, turbulent intensities and third-order struc-
ture functions for increasing separations x/L behind each object at a single orien-
tation l, which was chosen because its Reynolds number was typically a factor of
2 larger than for the more homogeneous diagonal configuration d, and because
it was least influenced by the support of the fractal object. For the object with
fractal dimension D=2.05, these distances are x/L =1, 2 and 2.8, while for the
D=2.17 case we have x/L =1, 2 and 3. The D=2.17 object is smaller (L = 26cm)
than the one with D=2.05 (L = 37cm). The turbulence intensity in the wakes of
these two objects is shown in Fig. 7.7. Although the difference in fractal dimen-
sion of the two objects is small, Fig. 7.7 demonstrates that their wakes are very
different. Close to the object at x/L = 1, the wake of the D=2.17 object is much
more strongly turbulent and more inhomogeneous than that of the D=2.05 ob-
ject. A remarkable difference is also the way in which the turbulence intensity
decreases with increasing distance: the turbulence intensity behind the D=2.17
object decreases much faster with increasing distance, seen in Fig. 7.7.

The evolution of the energy spectra with increasing distance form the objects
is shown in Fig. 7.8. The energy spectrum corresponding to the D=2.17 object
has a strong x/L dependence in the range 1 ≤ x/L ≤ 3 which is absent in the
wake of the D=2.05 object.
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Fig. 7.7: Turbulence intensity profiles for the (a) D=2.05 object and (b) D=2.17
object at different separations x/L, all for the same configuration l (see
Fig. 7.1b). The intensity of the turbulent wakes produced by the the
D=2.17 object grows significantly stronger as we move closer to the
object.

Not only does the D=2.17 object create stronger turbulence (Fig. 7.7), but it
also distributes the turbulent energy over the scales in a different manner. Whilst
at small x/L separations the spectrum of the D=2.05 object has a clear k−5/3

scaling, that of the D=2.17 object has an apparent E(k) ∼ k−α, with α > 5/3.
Alternatively, the enhancement of E(k) at small k of the D=2.17 spectrum may be
due to the influence of large-scale shedding. We have checked that, in spite of the
high turbulence intensities, minimal flow reversals occur at separation x/L = 1,
while at x/L = 2 behind the D=2.17 object they are absent (flow reversals are also
not occurring at all other positions behind both objects where measurements are
reported and the turbulence intensity is of the order of 20 %).

Despite the relatively small size of the objects and the relatively small Rey-
nolds numbers of their wakes, the third-order longitudinal structure functions
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Fig. 7.8: Comparison between compensated longitudinal spectra for 2 fractal
objects (a) for the D=2.05 object and (b) for the 2.17 object. The mea-
surements are done in the lower l configuration at different separations
behind the object.

in Fig. 7.9 show clear scaling behaviour. For the D=2.17 object, the longitudi-
nal GL

3 (r) shows a marked dependence on the distance x/L of the probe array to
the fractal object. The scaling behaviour of the wake behind the D=2.17 object
apparently changes with distance x/L. Such a change is virtually absent for the
D=2.05 object and may be interpreted as a direct influence of the scaling prop-
erties of the object on the scaling properties of its wake. A caveat, however, is
the small spectral gap which may give rise to a contamination of inertial range
behaviour by large scales, that is the large-scale structure of the object. This con-
tamination may be present in the spectra in Fig. 7.8 and may also affect GL

3 . This
is suggestively illustrated in Fig. 7.10, where we plot side by side GL

3 (r∗), and the
energy spectrum as a function of 1/k∗. It is seen that GL

3 shows similar structure
at the same values 1/k∗ as the spectrum. We conclude that the change of scaling
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Fig. 7.9: Third-order structure functions measured for 2 fractal objects in con-
figuration l at different separations x/L, (a) for the D=2.05 object and
(b) for the D=2.17 fractal object.

behaviour with the fractal dimension of the object should be interpreted with
great caution.

In section 7.3, we have seen that the dissipation range of the spectrum is
independent of the object’s orientation and thus independent of the large-scale
structure of the object. In figure 7.11 we plot the spectra of the wakes for the
D=2.05 and D=2.17 objects for various distances x/L. The plot is done such
as to emphasize the approximate exponential behaviour of the spectrum for dis-
sipative scales E∗(k∗) ∼ exp−βk∗. This well-known exponential behaviour can
be explained by assuming a linear relation between the energy and its dissipa-
tion [70]. In various experiments [77], the exponent β was found to be β � 5.3.
Figure 7.11 shows a striking difference between the two objects. Whereas the
exponent β remains close to 5.3 for all separations for the D=2.05 object, it de-
pends strongly on x/L for the D=2.17 case. Perhaps this is a direct effect of the
object’s fractal dimension, but now on dissipative scales.
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An important caveat is that, with x/L, the turbulence intensity changes too.
As is evident from table 7.1, this change is much stronger for the D=2.17 object
than for the D=2.05 object, where u′/U is approximately independent of x/L.

We interpret measured spectra as wave number spectra through invocation of
Taylor’s hypothesis. As stated in section 7.1 this assumption is challenged more
strongly when the turbulence intensity increases. A first correction to the mea-
sured spectra arises from the fluctuating part u′/U of the velocity in translating
time into space x = (U + u′)τ. Due to fluctuations of the advection velocity,
the velocity is no longer sampled equidistantly in space and high wave number
corrections result. Assuming isotropic spectra, these corrections were worked out
in [38] to first order in u′2/U2, for a measured spectrum with an exponential tail
e−βk∗

Ereal(k∗) =
[
1− 1

2

(u′
U

)2(22
9

+
10
3

βk∗ + (βk∗)2
)]
Emeas(k∗) (7.2)

where Ereal is the underlying true spatial spectrum and Emeas is the measured spec-
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Fig. 7.11: Dissipative tails of the energy spectra for (a) D=2.05 object and (b)
D=2.17 object measured for configuration l and different separations
x/L. The log-linear plot emphasizes the approximate exponential be-
haviour of turbulence spectra tails E∗(k∗) ∼ exp−βk∗.

trum through the use of Taylor’s hypothesis 1. Assuming an underlying spectrum
Ereal(k∗) with a shape that does not change with the turbulent intensity u′/U,
Eq.7.2 predicts that the shape of the measured spectrum Emeas(k∗) depends on
the turbulence intensity. Actually, this dependence is such that the measured β

decreases with increasing intensity, just as is observed in Fig. 7.11. In Fig. 7.12
we assume a real spectrum with E(k∗) ∼ e−5.3k

∗ , compute its appearance in the
turbulence levels encountered in our experiment and compare it to the actually
measured spectra. It appears that Eq. 7.2 can explain the measured dependence
of β on u′/U albeit qualitatively rather than quantitatively. It must be noted,
however, that the turbulence level in our experiment can be as high as 60%,
whereas Eq. 7.2 is only first order in (u′/U)2.

1 This relation holds for the one-dimensional projection of the spectrum
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Fig. 7.12: Comparison between the measured spectra tails for the D=2.17 object
and effects of correction to the Taylor hypothesis. Full lines: measured
spectra at x/L = 1 (turbulence intensity u′/U = 61%), , x/L = 2
(u′/U = 34%) and x/L = 3 (u′/U = 20%). Dashed lines: spectra
computed from Eq. 7.2 by assuming an underlying spectrum E∗(k∗) ∼
exp−βk∗ with β = 5.3 at various turbulence intensities.

These observations make it difficult to establish a direct relation between the
dissipative properties of the wake and the fractal dimension of the object, other
than a trivial effect of the increased turbulence intensity.

7.5 T     

In the previous section we compared the turbulent wakes of two fractal objects
that had different fractal dimensions. We found significant differences between
the wakes shed off these different fractal dimensions. A much cruder test is
to compare these wakes to the wake shed by a non-fractal object. To this aim
we constructed an object that has the same large scale structure as the D=2.17
object, but that lacks its fractal structure, i.e. we stopped at the first iteration of
the self-similar refinement. The large-scale dimensions of this object are the same
as those of the D=2.17 fractal.

We studied the turbulent wake of this object through turbulence measure-
ments similar to those performed on fractals. Accordingly, its scaling properties
were investigated in the configuration l, at varying separations behind the object
x/L = 1, 1.8 and 2.6.
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homogeneous turbulence.

The charactersitics of the turbulent wakes are listed in Table 7.1; whilst the
Reynolds numbers are comparable to those of the fractal objects, the turbulence
intensities are smaller. This clearly demonstrates that it is not their large-scale
structure that makes fractal objects better turbulence generators, but their (self-
similar) refinement of length scales.

The inertial range scaling properties of the wake of the truncated fractal ob-
ject are very different from those of the true fractal object. The third-order struc-
ture functions, shown in Fig. 7.13 no longer depend on the x/L separation and
now have an apparent slope less than 1, compared to the structure functions in
Fig. 7.9b. In Fig. 7.14 we compare the large wavenumber behaviour of the longi-
tudinal spectra for three positions x/L in the wake of the truncated fractal object.
These positions are comparable to those used for the self-similar fractal objects
in Fig. 7.11. As for the third-order structure functions, also the dissipative tails
of the spectra now become independent of the separation x/L. This can only
partly be explained by the reduced turbulence intensities of the truncated frac-
tal wake, which range from u′/U = 0.25, at the smallest separation x/L = 1, to
u′/U = 0.12 at x/L = 2.6.

7.6 C

We can clearly distinguish between the scaling properties of turbulence stirred by
a fractal object that has a range of refined scales and that of a truncated fractal.
However, for self-similar fractals we found it difficult to conclude a relation be-
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tween the dimension of the object (which quantifies the manner of refinement)
and the scaling properties of the turbulent wake.

We have observed suggestive effects in the measured spectra and structure
functions, but they could not be firmly distinguished from the influence of the
finite size of the objects. In order to achieve such clear distinction we need larger
Reynolds numbers and/or larger fractal objects that fill the windtunnel cross-
section. In this respect, it is interesting to point to recent work where a plane
grid with a few scales (but not a fractal) was found to produce high Reynolds
numbers ([68]).

Whilst we may not have yet achieved our goal, we have found a few remark-
able large-scale properties of wakes shed by fractal objects. Vortex shedding off

fractal objects has a very weakly pronounced energy spectrum signature. It is
even possible to rotate the fractal objects so as to nearly fully inhibit this vortex
shedding signature but at the cost of very significantly lowering the Reynolds
number of the turbulence in the wake. In our experiment, such an orientation
had the effect of somehow shielding the largest scale features of the fractals and
resulted in a Reynolds number too low for a well-defined scaling range to be
seen in the third order longitudinal structure function. It is puzzling, however,
that the energy spectrum of the lowest fractal dimension object (D=2.05) in that
orientation does exhibit a decade of fairly well-defined k−5/3 scaling.
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SAMENVATTING

Turbulentie is de chaotische, onvoorspelbare en scherp onregelmatige dynamiek
die we in elk stroming kunnen aantreffen. Zijn structuur en onverwachte manier
van optreden is het gevolg van complexe dynamica met heel verschillende schalen,
die zich van microns, in turbulente plasmas, tot duizenden lichtjaren in spi-
raalvormige melkwegstelsels uitstrekken. De beschrijving van turbulentie blijft,
tot nu toe, een raadsel: het is niet mogelijk om gesloten vergelijkingen voor
de statistische eigenschapen van de fluctuerende vloeistof af te leiden. Daarom
wordt turbulentie soms ook het laatste onopgeloste probleem van de klassieke
natuurkunde genoemd.

Beginend met het pionierwerk van A.N. Kolmogorov in 1941, trok de uni-
versaliteit van stationaire turbulentie de aandacht van de natuurkunde. Zijn
beroemde gelijksvormigheidshypotheses blijven ook vandaag de dag de meest
opmerkelijke bijdragen aan de statistische beschrijving van turbulentie. Ze zijn,
ondanks discrepanties en verfijningen nog steeds wel gefundeerd in de turbulen-
tie gemeenschap.

In de laatste jaren, worden nieuwerwetse concepten van wiskundige oor-
sprong, zoals representaties van Lie groepen, fractale modellen en de theorie van
grote deviaties, van wiskundige oorsprong, toenemend toegepast als grensver-
leggende non-klassieke hulpmiddelen. Ze vormen een alternatieve statistische
beschrijving van turbulentie. De taak van het experimentele werk die hier wordt
gepresenteerd is niet alleen om grondig de voorspellingen van zulke modellen
met reele stromingen te vergelijken, maar dan ook om de richtingen aan te
duiden voor nadere onderzoek. Om dit doel te behalen, wij hebben experi-
menten verricht, met nadruk op de geometrische eigenschappen van de kleine
schalen van turbulentie, die een nieuwlicht werpen op de oorsprong van het in-
termittentie verschijnsel.

De experimenten werden in de windtunnel faciliteit van de TU/e uitgevo-
erd. Wij hebben de techniek van lijn-sensoren, bedoeld om turbulente snel-
heidsvelden te meten, verbeterd, terwijl de experimentomstandigheden geopti-
maliseerd werden, door ontwerp van nieuwe turbulentie generatoren. Multipele
hetedraad anemometrie werd als meettechniek gebruikt om in verschillende tur-
bulente stromingen lange tijdreeksen van de snel varieerende snelheidsvelden op
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te nemen. Roosters met een innovatief ontwerp werden gebruikt om de aan-
vankelijk laminaire windtunnel stroming te beroeren, zodat de resulterende sta-
tionaire turbulente stroming de juiste karakteristieken heeft.

Het proefschrift omvat verschillende onderwerpen, zoals de invloed van frac-
tale generators op de intieme structuur van turbulentie, schalingseigenschappen
van structuurfuncties in homogeen afgeschoven turbulentie en decompositie van
vrijwel-isotropische turbulentie in niet vereenvoudigbare representaties van de
SO(3) rotatie-groep.



SUMMARY

Turbulence is the chaotic, unpredictable and sharply irregular motion that can
be encountered in any fluid. Its structure and unpredictable behaviour involves
complex dynamics of very different scales, ranging from microns in turbulent
plasmas up to thousands of light-years in spiral galaxies. The description of tur-
bulence remains a conundrum: it is not possible to arrive at closed equations for
the statistical properties of the fluctuating flow. Turbulence is therefore some-
times called the last unsolved problem of classical physics.

Starting with the pioneering work of A.N. Kolmogorov in 1941, the uni-
versality of stationary turbulence came to the attention of physics. His famous
similarity hypotheses still remain today the most remarkable contributions to the
statistical description of turbulence, although deviations and refinements of the
original formulations are well-established in the turbulence research community.

In recent years, modern mathematical concepts, such as representations of
Lie groups, fractal models and the theory of large deviations, are increasingly
used as innovative, non-classical tools trying to provide alternative descriptions
and new models of turbulence. The task of the experimental work presented in
this thesis is not only to thoroughly confront predictions of such models with real
flows, but also to indicate the directions in which the research interests should
develop and focus. In order to achieve this goal, we perform experiments with
special emphasis on the geometrical properties of the small scales of turbulence,
which shed new light on the origins of the phenomenon of intermittency.

The experiments were performed in the windtunnel facility of the TU/e. We
have perfected the technique of array sensors to measure the turbulent velocity
fields, whereas the conditions of the experiments were optimized by designing
new turbulence generators. Multiple hot-wire anemometry is used as measure-
ment technique to sample simultaneously in high Reynolds-number turbulence
very long time-series of the fast-varying velocity fields in different types of flows.
Grids of innovative design are used to stir the initially laminar flow of the wind-
tunnel, resulting in stationary turbulent flows with finely-tuned properties.

The thesis covers subjects as the influence of fractal generators on the inner
structure of turbulence, scaling properties of the structure functions in homoge-
neous sheared turbulence and decomposition of the near-isotropic turbulence on
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irreducible representations of the SO(3) rotation group.
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