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Abstract— Due to their ubiquity and long-term stability, pole-
like objects are well suited to serve as landmarks for vehicle
localization in urban environments. In this work, we present a
complete mapping and long-term localization system based on
pole landmarks extracted from 3-D lidar data. Our approach
features a novel pole detector, a mapping module, and an online
localization module, each of which are described in detail,
and for which we provide an open-source implementation [1].
In extensive experiments, we demonstrate that our method
improves on the state of the art with respect to long-term
reliability and accuracy: First, we prove reliability by tasking
the system with localizing a mobile robot over the course of
15 months in an urban area based on an initial map, confronting
it with constantly varying routes, differing weather conditions,
seasonal changes, and construction sites. Second, we show that
the proposed approach clearly outperforms a recently published
method in terms of accuracy.

I. INTRODUCTION

Intelligent vehicles require accurate and reliable self-
localization systems. Accurate, because an exact pose esti-
mate enables complex functionalities such as automatic lane
following or collision avoidance in the first place. Reliable,
because the quality of the pose estimate must be maintained
independently of environmental factors in order to ensure
safety.

Satellite-based localization systems like RTK-GPS or
DGPS seem to be an efficient solution, since they achieve
centimeter-level accuracy out of the box. However, they lack
reliability. Especially in urban areas, buildings that obstruct
the line of sight between the vehicle and the satellites can
decrease accuracy to several meters [2], [3]. Localization on
the basis of dense maps like grid maps, point clouds, or
polygon meshes represents a more reliable alternative [4]. On
the downside, dense approaches require massive amounts of
memory that quickly become prohibitive for maps on larger
scales. This is where landmark maps come into play: By
condensing billions of raw sensor data points into a compa-
rably small number of salient features, they can decrease the
memory footprint by several orders of magnitude [5].

In this work, we present an approach to long-term 2-D
vehicle localization in urban environments that relies on pole
landmarks extracted from mobile lidar data. Poles occur
as parts of street lamps, traffic signs, as bollards and tree
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Fig. 1: Pole landmark map created from the NCLT dataset [3]
and trajectory of an experimental run 15 months after map
creation. The blue dots represent the landmarks. The gray
line corresponds to the ground-truth trajectory. Most of it is
covered by the red line, which represents the estimate pro-
duced by the presented method. The mean position difference
between both trajectories, formally defined in section IV-A,
amounts to 0.31 m.

trunks. They are ubiquitous in urban areas, long-term stable
and invariant under seasonal and weather changes. Since
their geometric shape is well-defined, too, poles are well
suited to serve as landmarks that enable accurate and reliable
localization.

Our localization process is subdivided into a mapping
and a localization phase. During mapping, we use the pole
detector presented below to extract pole landmarks from
lidar scans and register them with a global map via a
given ground-truth vehicle trajectory. During localization,
we employ a particle filter to estimate the vehicle pose by
aligning the pole detections from live sensor data with those
in the map. Figure 1 shows an exemplary localization result.

We are not the first ones to propose this kind of localiza-
tion technique: The next section provides an overview over
the numerous related works. However, to the best of our
knowledge, we are the first ones to present a pole detector
that does not only consider the laser ray endpoints, but also
the free space in between the laser sensor and the endpoints,
and to demonstrate reliable and accurate vehicle localization
based on a map of pole landmarks on large time scales. While
related works usually evaluate localization performance on



a short sample trajectory of at most a few minutes length,
we successfully put our approach to the test on a publicly
available long-term dataset that contains 35 hours of data
recorded over the course of 15 months — including varying
routes, construction zones, seasonal and weather changes,
and lots of dynamic objects. Additional control experiments
show that the presented method is not only reliable, but
significantly outperforms a recently published state-of-the-
art approach in terms of accuracy, too.

II. RELATED WORK

In recent years, a number of authors have addressed the
specific question of vehicle localization via pole landmarks
extracted from lidar scans. Any solution to this question
consists of at least two parts: a pole detector and a landmark-
based pose estimator. The detector developed by Weng
et al. [6], for example, tessellates the space around the
lidar sensor and counts the number of laser reflections per
voxel. Poles are then assumed to be located inside contiguous
vertical stacks of voxels that all exceed a reflection count
threshold. In order to extract the pole parameters from
these clusters, the detector fits a cylinder to all points in
a stack via RANSAC [7]. For 2-D pose estimation, the
authors employ on a particle filter with nearest-neighbor
data association. Sefati et al. [8] present a pole detector that
removes the ground plane from a given point cloud, projects
the remaining points onto a horizontal regular grid, clusters
neighboring cells based on occupancy and height, and fits
a cylinder to each cluster. Like Weng et al., Sefati et al.
obtain their 2-D localization estimate from a particle filter
that performs nearest-neighbor data association. Kiimmerle
et al. [5] make use of Sefati et al.’s pole detector, but to
further refine the localization estimate, they also fit planes to
building fagades in the laser scans and lines to lane markings
in stereo camera images. Like the above works, their pose
estimator relies on a Monte Carlo method to solve the data
association problem, but uses optimization to compute the
most likely pose. More specifically, in the data association
stage, it builds a local map by accumulating the landmarks
detected over the past timesteps based on odometry. It then
samples multiple poses around the current GPS position,
uses these pose hypotheses to project the local map into the
global map, and identifies the most probable hypothesis via
a handcrafted landmark matching metric. Given the resulting
data associations, it refines the current vehicle pose estimate
via nonlinear least squares optimization over a graph of past
vehicle poses and landmarks.

Spangenberg et al. [9] extract pole landmarks not from
lidar scans, but from stereo camera images. In order to
estimate the vehicle pose, they feed wheel odometry, GPS
data, and online pole detections to a particle filter.

While the approaches above all provide a complete local-
ization system consisting of a pole extractor and a landmark-
based localization module, there exist a variety of research
papers that focus solely on pole extraction. Extracting poles
from lidar data is a common problem in road infrastructure
maintenance and urban planning. In this domain, researchers

are not only interested in fitting geometric primitives to the
data and determining pole coordinates, but also in precise
point-wise segmentation. Brenner [10], Cabo et al. [11],
Tombari et al. [12], and Rodriguez et al. [13] present
different methods to extract pole-like objects from point
clouds, i.e. without accounting for free space information.
The approaches of Yu et al. [14] and Wu et al. [15]
specifically target street lamp poles, while Zheng et al. [16]
provide a solution to detect poles that are partially covered
by vegetation. Yokoyama et al. [17] not only extract poles,
but they classify them as lamp posts, utility poles, and
street signs. Ordéiiez et al. [18] build upon the pole detector
proposed by Cabo et al. [11] and classify the results into
six categories, including trees, lamp posts, traffic signs, and
traffic lights. Li et al. [19] take classification one step further
by decomposing multifunctional structures, for example a
light post carrying traffic signs, into individual elements.
Poles are not the only landmarks suitable for vehicle local-
ization. Qin et al. [20] investigate Monte Carlo vehicle local-
ization in urban environments based on curb and intersection
features. As demonstrated by the works of Schindler [21]
and Schreiber et al. [22], road markings as landmarks can
also yield high localization accuracy. Hata and Wolf [23]
feed both curb features and road markings to their particle
filter. Welzel et al. [24] explore the idea of using traffic signs
as landmarks. Although traffic signs occur less frequently in
urban scenarios compared to other types of road furniture like
road markings or street lamp poles, they offer the advantage
of not only encoding a position, but also an unambiguous
ID. Finally, Im et al. [25] explore urban localization based
on vertical corner features, which appear at the corners of
buildings, in monocular camera images and lidar scans.

III. APPROACH

The proposed 2-D vehicle localization system consists of
three modules: the pole extractor, the mapping module, and
the localization module. During the initial mapping phase,
the pole extractor reduces a given set of lidar scans to pole
landmarks. The mapping module then uses the ground-truth
sensor poses to build a global reference map of these land-
marks. During the subsequent localization phase, the pole
extractor processes live lidar data and passes the resulting
landmarks to the localization module, which in turn generates
a pose estimate relative to the global map. In the following,
we detail each of these modules and their interactions.

A. Pole Extraction

The pole extraction module takes a set of registered 3-D
lidar scans as input and outputs the 2-D coordinates of the
centers of the detected poles with respect to the ground plane,
along with the estimated pole widths. To that end, it builds
a 3-D occupancy map of the scanned space, applies a pole
feature detector to every voxel, and regresses the resulting
pole map to a set of pole position and width estimates.

To describe these three steps mathematically, we denote a
single laser measurement — a ray — by z := {u, v}, where u
and v represent its Cartesian starting point and endpoint,



respectively. All measurements Z = {z;} are assumed to
be registered with respect to the map coordinate frame,
whose z-y plane is aligned with the ground plane. The
measurements can be taken at different points in time, but the
timespan between the first and the last measurement needs to
be sufficienctly small in order not to violate our assumption
that the world is static. Now, we tessellate the map space,
trace the laser rays, and model the posterior probability that
the j-th voxel reflects an incident laser ray according to Luft
et al. [26] by

p(uj | Z) = Beta(h; + a,m; + B).

Here, h; and m; denote the numbers of laser reflections and
transmissions in the j-th cell, whereas « and 3 are the param-
eters of the prior reflection probability p(u;) = Beta(c, §),
which we determine in accord with [26] by

(P = +9) Y=+ -2+ 47
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where M = {hj(h; +m;)~'} denotes the maximum-
likelihood reflection map, and where -~ :=E[M],
0 := var[M] represent its mean and variance, respectively.
Please note that {p(u; | Z)} is a full posterior map: In
contrast to M, which assigns each voxel the most probable
reflection rate, it yields a posterior distribution over every
reflection rate possible.

Since we want to extract poles based on occupancy
probability, not on reflection rate, we convert {p(u; | Z)}
to an occupancy map O := {o;}. Assuming that a cell is
occupied if its reflection rate exceeds a threshold p,, we
formulate the occupancy probability by integration:

1
0j = [, plu; | Z) dp;.

Next, a pole feature detector transforms O to a 2-D map of
pole scores S in the ground plane. Each pixel of S encodes
the probability that a pole is present at the corresponding
location. The transformation from O to S follows a set of
heuristics that are based on the definition of a pole as a
vertical stack of occupied voxels with quadratic footprint,
laterally surrounded by a hull of free voxels. First, we create
a set of intermediate 3-D score maps of the same size as
O, each denoted by @, == {q, ;}. Every cell g, ; tells how
probable it is that this portion of space is part of a pole with
edge length a, where a € NT is measured in units of grid
spacing:

> o
l€inside(k,a)
Qa,j’= Mmax —— - max o |-
C€inside(j,a a coutside(k,a,
h k€insid l ide(k

Here, inside(j,a) and outside(j, a, f) are functions that,
given a map index j and a pole width a, return a set of indices
into voxels in the same horizontal map slice as j. While the
former outputs the indices of all voxels inside the pole, the
latter returns the indices corresponding to the supposedly
free region around the pole with thickness f € NT. Both
functions assume that the lower left lateral walls of the
pole are aligned with the lower left lateral sides of the j-th

voxel. With these definitions, the argument of the enclosing
maximum operator amounts to the difference between the
mean occupancy value inside the pole and the maximum
occupancy value of the volume of free space around the pole.
The resulting score lies in the interval [—1,1]: the higher
the score, the greater the probability that the corresponding
partition of space is part of a pole. Second, we regress from
the resulting 3-D maps {Q,} to 2-D by merging them into a
single map @ = {g;} = {max, q,,;} and by determining
for each horizontal position in () the contiguous vertical
stack of voxels that all surpass a given score threshold gpin-
After discarding all stacks that fall below a certain height
threshold h,;, and computing the mean score for each of the
remaining stacks, we obtain the desired 2-D score map S.

Finally, we convert this discrete score map to a set of
continuous pole position and width estimates. We identify
the pole positions as the modes of S, which we determine
via mean shift [27] with a Gaussian kernel and with the local
maxima of S as seed points. The width estimate of each pole
is computed as the weighted average over all pole widths a,
where for every a, the weight is the mean of all cells in @,
that touch the pole.

The presented algorithm differs from other pole extractors
in the fact that it is based on ray tracing. By considering
not only the scan endpoints, but also the starting points, it
explicitly models occupied and free space. In contrast, most
other methods assume the space around the sensor to be free
as long as it does not register any reflections. The absence
of reflections, however, can have two reasons: The respective
region is in fact free, or the lidar sensor did not cover region
due to objects blocking its line of sight or its limited range.

B. Mapping

In theory, the global reference map could be built by
simply applying the pole extractor to a set of registered
laser scans that cover the area of interest. In practice, the
high memory complexity of grid maps and laser scans often
renders this naive approach infeasible. To create an arbitrarily
large landmark map with limited memory resources, we
partition the mapping trajectory into shorter segments of
equal length and feed the lidar measurements taken along
each segment to the pole extractor one by one. For the sake
of consistency, we take care that the intermediate local grid
maps are aligned with the axes of the global map and that
all of them have the same raster spacing. The intermediate
maps, whose sizes are constant and depend on the sensor
range, usually fit into memory easily. Processing all segments
provides us with a set of pole landmarks. If the length of a
trajectory segment is smaller than the size of a local map,
the local maps overlap, a fact that can lead to multiple
landmarks representing a single pole. In order to merge these
ambiguous landmarks, we project all poles onto the ground
plane, yielding a set of axis-aligned squares. If multiple
squares overlap, we reduce them to a single pole estimate by
computing a weighted average over their center coordinates
and widths. Each weight equals the mean pole score, which
we determine by averaging over the scores of all voxels that



touch the pole in all score maps @,. If there is no overlap,
we integrate the corresponding pole into the global reference
map without further ado.

As a side benefit, this mapping method allows us to filter
out dynamic objects at the landmark level using a sliding-
window approach: A local landmark is integrated into the
reference map only if it was seen at least ¢ times in the past
w local maps, where ¢ < w; ¢, w € N*. Correspondences
between landmarks are again determined via checking for
overlapping projections in the ground plane.

C. Localization

During online localization, we continuously update the
vehicle pose based on the collected odometry measurements
and periodically correct the estimate by matching online
pole landmarks, which we extract from the most recent local
map, against the reference map. We build the local map by
accumulating laser scans along a segment of the trajectory
and by registering them via odometry. To filter out dynamic
objects, we apply the sliding-window approach described in
the previous section.

A particle filter is well suited for the localization task [28],
because it can not only maintain multiple pose hypotheses in
parallel, but also handle global localization. At time ¢, each
particle corresponds to a 2-D vehicle pose hypothesis, repre-
sented by the 3 x 3 homogeneous transformation matrix X,.
To perform the motion update, we assume Gaussian motion
noise Y and sample from a trivariate normal distribution in
X:

X; = transform(¢) Xy 1 | £~ N(x,2),

where y := [z,y,$]T denotes the latest relative odometry
measurement, with z, y, and ¢ representing the translation
and the heading of the vehicle, respectively. The function
transform([z, y, ¢]T) converts the input vector to the cor-
responding 3 x 3 transformation matrix. In each measure-
ment update, we determine the data associations between
the online landmarks A := {)\;} and the landmarks in the
reference map L := {l,} via nearest-neighbor search in a
k-D tree, assume independence between the elements of A,
and update the particle weights according to the measurement
probability

p(A | X, L) =[] pOk | X, L),
k

where n(k) is the data association function that tells the
index of the reference landmark associated with the k-th
online landmark. To evaluate the above equation, we need
to define a measurement model

PNk | X, L) = N(|| X A = Lo |

,0) + €,

with the reference and online landmarks represented by
homogeneous 2-D position vectors [z,y, 1]T, and where we
assume isotropic position uncertainty o of the reference
landmarks. The constant addend € € Rt accounts for the
probability of discovering a pole that is not part of the
map. This probability can be estimated by generating a

global map from one run, generating a set of local maps
from data recorded on the same trajectory in a second run,
and computing the numbers of matched and unmatched
landmarks.

IV. EXPERIMENTS

In order to evaluate the proposed localization system, we
perform two series of experiments. The complete implemen-
tation is publicly available [1]. In the first series, we assess
the system’s long-term localization reliability and accuracy
on the NCLT dataset [3]. While these experiments provide
profound insights into the performance of the developed
method, the results are absolute and do not allow direct
comparisons with other methods, because to the best of
our knowledge, we are the first to test landmark-based
localization on NCLT. For this reason, we base the second
experiment series on the KITTI dataset [29]. That allows us
to repeat the experiments performed by the authors of another
state-of-the-art localization method, only that this time, we
use the system presented above.

A. Localization on the NCLT Dataset

The NCLT (North Campus Long-Term) dataset [3] was
acquired with a two-wheeled Segway robot on one of the
campuses of the University of Michigan, USA. The data is
perfectly suited for testing the capabilities of any system
that targets long-term localization in urban environments:
Equipped with a Velodyne HDL-32E lidar, GPS, IMU, wheel
encoders, and a gyroscope, among others, the robot recorded
27 trajectories with an average length of 5.5km and an
average duration of 1.3 h over the course of 15 months. The
recordings include different times of day, different weather
conditions, seasonal changes, indoor and outdoor environ-
ments, lots of dynamic objects like people and moving
furniture, and two large construction projects that evolve
constantly. Although the routes differ significantly between
sessions, the trajectories have a large overlap.

The main difference between NCLT and the data used
to evaluate all other pole-based localization methods we
surveyed lies in its extent: While related works briefly
demonstrate the plausibility of their approaches by evaluating
localization performance on datasets with durations between
46s and 30min, we focus on long-term reliability and
accuracy and process 35h of data spread over more than
one year.

Before localizing, we build a reference map of the poles
on the campus. To that end, we feed the laser scans and
the ground-truth robot poses of the very first session to our
mapping module. Unfortunately, the ground truth provided
by NCLT is not perfect. It consists of optimized poses spaced
in intervals of 8 m, interpolated by odometry. Consequently,
point clouds accumulated over a few meters exhibit consid-
erable noise, as illustrated in figure 2. For that reason, we set
the distance of the trajectory segments to build local maps
to 1.5m, the raster spacing of the grid maps to 0.2m, and
the occupancy threshold to p, = 0.2. During mapping and
localization, the pole extractor discards all poles below a



Session Date  fmap Aps  RMSEpes  Auwg  RMSEang
(%] [m] (m] [°] [°]
2012-01-08  100.0 0.130 0.178 0.663 0.857
2012-01-15 8.5 0.156 0.225 0.760 0.999
2012-01-22 5.1 0.172 0.222 0.939 1.291
2012-02-02 0.4 0.155 0.205 0.720 0.975
2012-02-04 0.1 0.144 0.195 0.684 0.903
2012-02-05 0.5 0.148 0.210 0.691 0.947
2012-02-12 0.8 0.269 1.005 0.802 1.040
2012-02-18 0.8 0.149 0.221 0.699 0.938
2012-02-19 0.0 0.148 0.194 0.704 0.944
2012-03-17 0.0 0.149 0.191 0.830 1.062
2012-03-25 0.0 0.200 0.262 1.418 1.836
2012-03-31 0.0 0.143 0.184 0.746 0.973
2012-04-29 0.0 0.170 0.251 0.829 1.079
2012-05-11 5.5 0.161 0.225 0.773 0.998
2012-05-26 0.4 0.158 0.217 0.690 0.889
2012-06-15 0.4 0.180 0.238 0.659 0.879
2012-08-04 0.3 0.210 0.340 0.884 1.143
2012-08-20 3.8 0.189 0.264 0.711 0.941
2012-09-28 0.3 0.206 0.311 0.731 0.952
2012-10-28 14 0.217 0.338 0.693 0.919
2012-11-04 2.5 0.257 0.456 0.746 0.996
2012-11-16 2.7 0.403 0.722 1.467 2.031
2012-11-17 0.4 0.243 0.377 0.686 0.959
2012-12-01 0.0 0.266 0.492 0.674 0.930
2013-01-10 0.0 0.217 0.278 0.689 0.911
2013-02-23 0.0 2.470 5.480 1.083 1.769
2013-04-05 0.0 0.365 0.920 0.654 1.028

TABLE I: Results of our experiments with the NCLT dataset,
averaged over ten localization runs per session. The variables
Apos and A,y denote the mean absolute errors in position
and heading, respectively, RMSE,os and RMSE,,, represent
the corresponding root mean squared errors, while fiap
denotes the fraction of lidar scans per session used to build
the reference map.

minimum pole height of Ay, = 1 m and below a minimum
pole score of i, = 0.6. The extent of the local maps is
chosen 30m x 30m X 5m in z, y, and 2z of the map frame,
respectively. Figure 3 illustrates the corresponding results.
Although the first session covers most of the campus, the
robot occasionally roams into unseen regions during later
sessions. For that reason, we iterate over all subsequent
sessions, too, but add landmarks to the global map only if
the corresponding laser scans are recorded at a minimum
distance of 10 m from all previously visited poses. Table I
shows that after the second session, the fractions of scans
per session that contribute to the map drop to fi.p < 5.5 %.
During localization, odometry mean and covariance es-
timates are generated by fusing wheel encoder readings,
gyroscope, and IMU data in an extended Kalman filter. The
particle filter contains 5000 particles, which we initialize by
uniformly sampling positions in a circle with radius 2.5m
around the earliest ground-truth pose. The headings are
uniformly sampled in [—5°,5°]. To maximize reliability, we
inflate the motion noise by a factor of four, which corre-
sponds to doubled standard deviation, define the position
uncertainty of the poles in the global map as o = 1m?,

and set the addend in the measurement probability density
to € = 0.1. We resample particles whenever the number of
effective particles ne == (>, w?) ™ < 0.5, where w; is the
weight of the i-th particle, via low-variance resampling as
described by Thrun et al. [28]. In order to obtain the pose
estimate, we select the best 10 % of the particles and compute
the weighted average of their poses.

Table I presents for each of the 27 sessions the correspond-
ing position and heading errors. To generate these values, we
run the localization module ten times per session, evaluate
the deviation of our estimate from ground truth every 1 m
along the ground-truth trajectory, compute the means and
RMSEs, and average these metrics over the ten sessions.
The results demonstrate that the proposed method achieves
both high reliability and accuracy, even if the data used
for mapping and for localization lie 15 months apart: The
particle filter never even partially diverges, except for one late
session discussed below. Furthermore, despite the inaccura-
cies in ground truth, which affect both the global map and
the evaluation, it achieves a mean positioning accuracy over
all sessions of 0.284 m. Looking at the evolution of the errors
over time, we observe slightly increasing magnitudes. This is
due to changes in campus infrastructure accumulating over
time and rendering the initial map more and more outdated.

In session 2012-02-23, these changes eventually cause the
localization module to temporarily lose track of the exact
robot position. The diverging behavior reproducibly occurs
when the robot drives along a row of construction barrels
that fence a large construction site. When the global map was
built, these barrels were located on the footpath. Just before
the session in question, however, the barrels were moved
laterally by a few meters, while maintaining their longitu-
dinal positions. Since the barrels are the only landmarks in
the corresponding region, the localizer “corrects” the robot
position so that the incoming pole measurements match the
map. Having passed the construction site, the localizer is
confident about its wrong position estimate, which is why
it takes some time until the particle cloud diverges and
the robot relocalizes. The positioning error over all sessions
except 2012-02-23 amounts to 0.200 m.

Lastly, we describe the runtime requirements of our
method stochastically. On a 2011 quad-core PC with ded-
icated GPU, we measure an average 1.33s for pole ex-
traction with our open-source Python implementation [1],
which corresponds to processing 0.5 million laser data points
per seconds. The measurement step with data association
requires a mean computation time of 0.09 s. These two steps
pose by far the highest computational requirements and make
others, like the measurement update, negligible.

B. Localization on the KITTI Dataset

As delineated in section II, Kiimmerle et al. [5], Weng
et al. [6], and Sefati et al. [8] present methods for vehicle
localization with pole landmarks extracted from 3-D lidar
data. While the former two use small proprietary datasets
— a fact that makes a direct comparison infeasible — Sefati
et al. evaluate their method on sequence number 9 of the



(a) Registration via the original NCLT ground truth.

LY

(b) Refined registration.

Fig. 2: The same set of point clouds taken from a short sequence of an NCLT session, registered using different ground-truth
robot poses. The colors encode the point height above ground: Blue represents the ground plane, whereas green, yellow, and
red indicate increasing height. The left image shows the result of the registration based on the original NCLT ground truth
poses, which we use throughout our experiments. To illustrate the inaccuracy of the original ground truth, the right-hand
side image presents a refined registration that we generated via pose-graph optimization. While the original ground truth
leads to a blurry point cloud, the refined version significantly improves point alignment and results in crisp details. The
mean positional error between both ground truth versions is approximately 0.25m on average, which leads us to believe
that the original NCLT ground truth is off by a similar amount. This fact impedes the generation of an accurate reference

pole map and negatively affects our localization results.
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Fig. 3: Exemplary pole extraction result for a point cloud
from the NCLT dataset. The gray values of the points corre-
late with the intensity values returned by the lidar sensor. The
orange wireframe represents the boundaries of the local map,
while the blue wireframes represent the extracted poles. The
pole extractor is triggered by different kinds of pole-shaped
objects like traffic signs, street lamps, and tree trunks.

publicly available KITTI dataset [29]. This sequence is a
short recording of 46s along a simple L-shaped trajectory.
Trajectories in KITTI have hardly any overlap, which is
why Sefati et al. use the sequence data for both mapping
and localization. Consequently, their results have limited
significance as to real localization performance: They could
theoretically localize the vehicle based on dynamic land-
marks only, and they would still obtain accurate results with

respect to their map, although it is extremely unlikely that
they will encounter the same constellation of dynamic objects
ever again. The same is true for Weng et al., who also use
a single trajectory of 3.5km for mapping and localization.
Nevertheless, we repeat Sefati et al.’s experiment with the
localization system proposed in this paper and compare
accuracies in table II. This time, we set the grid spacing for
the pole extractor to 0.1 m, because the quality of the ground-
truth robot poses is higher than in NCLT. Furthermore, we
adjust the parameters of our localizer to match the values
Sefati et al. apparently used — 2000 particles, 3 m initial
positioning variation, +5° heading variation — and average
our results over 50 experimental runs. As shown in table II,
our localization system outperforms the reference method
by reducing the RMSEs in position and heading by 54 %
and 69 %, respectively. For qualitative analysis, table II also
includes the results Kiimmerle et al. and Weng et al. obtained
after processing their respective proprietary datasets.

V. CONCLUSION AND FUTURE WORK

We presented a complete landmark-based 2-D localization
system that relies on poles extracted from 3-D lidar data,
that is able to perform long-term localization reliably, and
that outperforms current state-of-the-art approaches in terms
of accuracy. The implementation is publicly available [1].

For the future, we have two major extensions in mind.
First, we plan to fuse the separated mapping and localization
modules into a single SLAM module. Second, we would
like to explore pole-based localization in different sensor
modalities.



Approach Apos RMSEPOS Al Olat Alon Olon Aang Oang RMSE;, g
[m] [m] [m] [m] [m] [m] [°] [°] [°]
Kiimmerle et al. [5] 0.12 — 0.07 — 0.08 — 0.33 — —
Weng et al. [6] — — — 0.082 — 0.164 — 0.329 —
Sefati et al. [8] — 0.24 — — — — — — 0.68
Ours 0.096 0.111 0.061 0.075 0.060 0.067 0.133 0.188 0.214

TABLE 1II: Comparison of the accuracies of Sefati et al.’s method and the proposed localization approach on the KITTI
dataset. The results of Weng et al. and Kiimmerle et al. are not directly comparable and are stated for qualitative analysis
only.
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