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Abstract

High-order methods are truer to the flow physics and more accurate per degree of

freedom than low-order methods. Their high computational intensity relative to their

communication requirements makes them prime candidates for implementation in the

latest hyper-parallel computing architectures like Graphical Processing Units (GPUs).

Why are they not more prevalent in the toolset of design teams?

One of the main barriers to wide adoption of high-order numerical methods in

industrial applications is the schemes’ low robustness relative to low-order methods

[83]. Their stability is highly dependent on the quality of the grid, even when the

solution is relatively smooth. Aliasing, underresolution, and non-smoothness are the

main causes of instabilities.

This dissertation proposes solutions from two fronts: the creation of a set of

families of numerical schemes with guaranteed linear stability and tunable dispersion-

dissipation properties, and the formulation of filters with spectral effectiveness and

element-local stencil.

To ease the adoption, or increase usability, of high-order methods in industry and

academia, a well-documented, validated, verified, and constantly improved source

code is needed. This dissertation walks the reader through the efforts by the Aerospace

Computing Laboratory (ACL) to provide such code: High-Fidelity Large Eddy Sim-

ulation (LES) Open Source Code (HiFiLES) (hifiles.stanford.edu).
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Chapter 1

Introduction

1.1 The Role of High-Order Methods in the Fu-

ture of Industrial Simulations

Over the last 20 years, much fundamental work has been done in developing high-

order numerical methods for Computational Fluid Dynamics. Moreover, the need to

improve and simplify these methods has attracted the interest of the applied mathe-

matics and the engineering communities. Now, these methods are beginning to prove

themselves sufficiently robust, accurate, and efficient for use in real-world applica-

tions.

However, low-order numerical methods are still the standard in the aeronautical

industry. There has been a sustained scientific and economical investment to develop

this successful and robust technology for a long time. Currently, an industry-standard,

second-order finite volume computational tool performs adequately well in a broad

range of aeronautical engineering applications. For that reason, the introduction of

new, high-order numerical schemes in the aeronautical industry is challenging, partic-

ularly in areas where the low-order numerical methods already provide the required

robustness and accuracy (keeping in mind the limitations of current turbulence model

technology).

Thanks to new and emerging aircraft roles (very small or large concepts, very

1
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high or low altitude, quiet vehicles, low fuel consumption vehicles, etc.), revolutionary

aircraft design concepts will appear in the near future, and the need for high-fidelity

simulation techniques to predict their performance is growing rapidly. Undoubtedly,

high-order numerical methods are starting to find their place in the aeronautical

industry.

Unsteady simulations, flapping wings, wake capturing, noise prediction, and LES

are just a few examples of computations that could benefit from high-order numerical

methods. In particular, high-order methods have a significant edge in applications

that require accurate resolution of the smallest scales of the flow. Such situations

include the generation and propagation of acoustic noise from an airframe, or at the

limits of the flight envelope where unsteady, vortex-dominated flows have a significant

effect on aircraft performance. Utilizing a high-order representation enables smaller

scales to be resolved with a greater degree of accuracy than standard second-order

methods. Furthermore, high-order methods are inherently less dissipative, resulting

in less unwanted interference with the correct development of the turbulent energy

cascade. This factor makes the combination of high-order numerics with LES model-

ing very powerful, with the potential to significantly improve upon the accuracy and

computational cost of the standard approach of LES with second-order methods. The

amount of computing effort to achieve a small error tolerance can also be much smaller

with high-order than second-order methods. Even real time simulations (one second

of computational time, one second of real flight), could benefit from high-order algo-

rithms that feature more intensive computation within each mesh element (ideal for

vector machines and new computational platforms like GPUs, FPGAs, coprocessors,

etc).

However, before claiming the future success of high-order numerical methods in

industry, two main difficulties should be overcome: a) high-order numerical schemes

must be as robust as state-of-the-art low-order numerical methods, b) the existing

level of verification and validation in high-order CFD codes should be similar to the

typical level of their low-order counterparts.
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1.2 Motivation

The SD++ code originally designed and developed by Peter Vincent, Patrice Cas-

tonguay, and David Williams [16] marked the culmination of multiple years of research

at the ACL. It solved the Navier-Stokes and Euler equations in general unstructured

grids in 2D and 3D. The original creators demonstrated its capabilities and excellent

scalability in GPUs. Its stability in linear problems was guaranteed for triangular

[96] and tetrahedral [97] elements with constant Jacobians, and its non-linear stabil-

ity properties were understood to a practical extent [40]: as long as the exact flux of

a hyperbolic equation being solved with the FR scheme is not projected exactly onto

the polynomial space of the flux, aliasing instabilities will invariably arise.

At the beginning of my graduate studies, I was extremely impressed by the capa-

bilities of SD++, its clean code base, the high performance it achieved, and its general

applicability beyond Aerospace applications. The members of the ACL agreed that

a code with such capabilities could not be allowed to wither into oblivion. We set

ourselves the goal, inspired by the success of fellow graduate students in the SU2 [65]

team and guided by their lead developer – Francisco Palacios–, to bring the capabili-

ties of SD++ to a level where industrial applications (complex geometries, imperfect

grids, high Re, high Ma) are feasible.

We concluded that releasing the code open source would allow us to more eas-

ily identify what capabilities are most useful and speed up development with the

help of outside researchers. After adding additional LES Sub-Grid Scale (SGS)

models, local time-stepping, and artificial dissipation for shock-capturing, the ACL

released the developer’s edition of the code HiFiLES on GitHub at github.com/

HiFiLES/HiFiLES-solver with an official presence in the Stanford University servers

at hifiles.stanford.edu.

Prof. Jameson’s conclusion regarding aliasing in the solution of non-linear equa-

tions with FR limited HiFiLES’s applicability in the following ways:

• High gradients in the solution (shocks, fast moving fluid over a boundary) would

lead to instabilities

github.com/HiFiLES/HiFiLES-solver
github.com/HiFiLES/HiFiLES-solver
hifiles.stanford.edu
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• Only medium to low Re flows could be simulated

• Even in smooth problems, coarse meshing of areas far away form the regions of

interest could lead to an unpredictable halt in the computations

• Sharp corners in the geometry could stop the simulation

• The time-step in mildly non-linear problems needed to be lower than expected

to deal with the artificial stiffness introduced by aliased solutions

The thrill of getting a code as powerful and modern as HiFiLES to produce an

answer in all possible scenarios, very much how ANSYS Fluent and CFX can, was a

strong drive to tackle the issues of stability.

The first idea to tackle de-stabilizing aliasing came while perusing the derivation

of the Energy Stable FR (ESFR) schemes [85] and the search for their optimal disper-

sion and dissipation properties [4]. In Vincent’s derivation, the correction functions

are parameterized with a constant and are created so the corrected fluxes are globally

continuous. The proof would work similarly if the correction functions were globally

continuous in arbitrarily many derivatives, and thus had arbitrarily many parameter-

izing constants. This observation lead to the development of the CMFR schemes [52].

Suddenly, a linearly provably-stable numerical scheme could have its dispersion and

dissipation properties tuned as freely as necessary.

Approaching the stability issues from the numerics had the potential to yield

good results, but a more immediate approach was needed to stabilize HiFiLES in a

general way. It was not clear CMFR schemes could be readily applied to triangles

and tetrahedral elements. Explicit filtering, as performed by Visbal et al. [87], seemed

like an attractive prospect. White and Visbal use high-order Padé differentiation and

low-pass spatial filtering procedures in implicit LES to solve extremely complex flow

scenarios like turbulence-shock interactions [93]. The creation of the LFS filters [3]

and their extension to general, multi-dimensional elements [53] are the first attempt

to bring the capabilities developed by Visbal to high-order codes for unstructured

grids.
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1.3 Contributions

The vision of bringing a powerful simulation tool like HiFiLES to the engineer’s tool-

box prompted me to focus on the areas that are essential in any such tool: validation

and verification efforts, support to the open source community of researchers who

want to use HiFiLES, re-assessment of and contribution to the stability properties of

FR –HiFiLES’s underlying numerical method–, and enabling HiFiLES to provide a

result even in the most extreme of simulation cases.

1.3.1 Maintenance and Validation and Verification of Hi-

FiLES

After exposure to SD++, HiFiLES’s starting point, by creating its sparse matrix-

vector multiplication routine [16] in Graphical Processing Unit (GPU)s, it became

clear that anyone who has just started working on the source code needs guidance

and assurances about its correctness. The Validation and Verification (V&V) efforts

undertaken by the ACL [51] provided the community assurances about its correctness.

The crucial task of documenting HiFiLES, creating tutorials, providing direct support

to researchers, and eliminating bugs that are found by collaborators is an ongoing task,

as can be seen in HiFiLES’s repository: github.com/HiFiLES/HiFiLES-solver.

1.3.2 Tackling Stability via Numerics: Creation of Provably

Linearly Stable CMFR Schemes

When confronting the problem of the high propensity of HiFiLES to Nan when a

single element was not grided properly, or the flow non-linearities were even slightly

too high for the grid, going back to the basics yielded interesting results. The CMFR

schemes [52] are provably stable for linear problems, very much the same way FR is,

but provide a range of selections of numerical schemes with varying dissipation and

dispersion properties.

The academic endeavor of discovering these schemes provided valuable insights

github.com/HiFiLES/HiFiLES-solver
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into the behavior and potential extensions of high-order methods. However, develop-

ing CMFR schemes further would have detracted focus from the end goal of making

HiFiLES a robust tool.

1.3.3 Tackling Stability via Filtering: Creation of General-

ized LFS Filters

It was encouraging to see the results obtained by Asthana et. al [3] regarding stabi-

lization of extreme high order computations in 1D and 2D tensor product elements

using LFS. The idea of filtering via truncated, element-wise convolutions of the solu-

tion with a kernel seemed to be too simple to work. Absolute accuracy in non-linear

problems did increase with higher order approximations.

The extension to simplex 2D and 3D elements seemed straightforward. The ex-

treme stabilizing properties of the filters were shown in [53]. The main difference

between Asthana’s formulation of the LFS filters and the LFS filters presented in this

dissertation is that I allow the basis functions outside of the element being filtered to

have any form (in fact, their form need not be defined), Asthana requires the basis

functions to extend to infinity when computing the convolution.

My work regarding this form of stabilization has brought HiFiLES closer to per-

forming reliably in realistic industrial scenarios: complex, unstructured geometries

with under-resolved grids being used to solve highly non-linear (high-Re, high-Ma)

flows.



Chapter 2

HiFiLES: an open source

GPU-powered, High-Order

Large-Eddy Simulation code

2.1 Introduction

During the last decade, the ACL of the Department of Aeronautics and Astronautics

at Stanford University has developed a series of high-order numerical schemes and

computational tools that have demonstrated the viability of this technique. In this

chapter, the code named HiFiLES, developed in the ACL and built on top of SD++

(Castonguay et al.[16]), is described in detail with a particular emphasis on robustness

in a range of applications and V&V. HiFiLES takes advantage of the synergies between

applied mathematics, aerospace engineering, and computer science in order to achieve

the ultimate goal of developing an advanced high-fidelity simulation environment.

In addition to the original characteristics of the SD++ code, HiFiLES includes

some important physical models and computational methods such as: LES using

explicit filters and advanced SGS models, high-order stabilization techniques, shock

detection and capturing for compressible flow calculations, and local time stepping.

During the development of this software, several key decisions have been taken

to guarantee a flexible and lasting infrastructure for industrial Computational Fluid

7
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Dynamics simulations:

• The selection of the ESFR scheme on unstructured grids[85]. The flexibility of

this method has been critical to guarantee a correct solution independently of

the particular physical characteristics of the problem.

• High performance, materialized in a multi-GPU implementation that takes ad-

vantage of the ease of parallelization afforded by discontinuous solution repre-

sentation. Furthermore, HiFiLES aims to guarantee compatibility with future

vector machines and revolutionary hardware technologies.

• Code portability by using ANSI C++ and relying on widely-available, and well-

supported mathematical libraries like Blas, LAPACK, CuBLAS, and ParMetis.

• Object oriented structure to boost the re-usability and encapsulation of the

code. This abstraction enables modifications without incorrectly affecting other

portions of the code. Although some level of performance is traded for re-

usability and encapsulation, the loss in performance is minor.

As the mathematical basis and computational implementation of HiFiLES have

been described in previous work [16], the goal of this chapter is to illustrate the level

of robustness of HiFiLES for interesting problems. This will be accomplished via a

V&V study, which is fundamental for increasing the credibility of this technology in

a competitive industrial framework.

In particular, to ensure that the implementation of the aforementioned features in

HiFiLES is correct, the following verification tests are shown: checks of spatial and

temporal order of accuracy using the Method of Manufactured Solutions (MMS) in 2D

and 3D for viscous and inviscid flows and characterization of stable time-step limits.

After the Verification, a detailed Validation of the code is presented to illustrate that

the solutions provided by HiFiLES are an accurate representation of the real world.

Simulations of complex flows are validated against experimental or DNS results for

the following cases: laminar flat-plane, flow around a circular cylinder, SD7003 wing-

section and airfoil at 4◦ angle of attack, the Taylor-Green Vortex, and LES of a square

cylinder.
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The organization of this chapter is as follows. Section 2.2 provides a description

of the governing equations. Section 2.3 describes the mathematical and numerical

algorithms implemented in the code. Section 2.4 focuses on the V&V of HiFiLES,

and the conclusions are summarized in Section 2.5. It is important to highlight that

the contents of this chapter mirror the American Institute of Aeronautics and As-

tronautics (AIAA) paper[51] created jointly with members of the ACL and Francisco

Palacios.

2.2 Governing Equations

2.2.1 Navier Stokes equations

The Navier-Stokes (NS) [45] equations provide a complete (dynamical) description of

a viscous fluid and expresses the conservation of mass, momentum and energy. The

complete system of equations (without source terms and assuming adiabatic boundary

conditions at the solid wall) can be written in the following conservative form:

∂U

∂t
+∇ · F = 0 (2.1)

where F = (F,G,H) = (FI , GI , HI)− (FV , GV , HV ) and

U =



ρ

ρu

ρv

ρw

ρe


(2.2)

FI =



ρu

ρu2 + p

ρuv

ρuw

ρue+ pu


GI =



ρv

ρvu

ρv2 + p

ρvw

ρve+ pv


HI =



ρw

ρwu

ρwv

ρw2 + p

ρwe+ pw


(2.3)
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FV =



0

σxx

σxy

σxz

uiσix − qx


GV =



0

σyx

σyy

σyz

uiσiy − qy


HV =



0

σzx

σzy

σzz

uiσiz − qz


(2.4)

As usual, ρ is density, u, v, w are the velocity components in the x, y, z direc-

tions, respectively, and e is total energy per unit mass. In HiFiLES, the pressure is

determined from the ideal gas equation of state

p = (γ − 1)ρ

(
e− 1

2

(
u2 + v2 + w2

))
(2.5)

the viscous stresses are those of a Newtonian fluid

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µδij

∂uk
∂xk

(2.6)

and the heat fluxes are defined as

qi = −k ∂T
∂xi

(2.7)

where

k =
Cpµ

Pr
, T =

p

Rρ
(2.8)

Cp is the specific heat at constant pressure and R is the specific gas constant. In

the case of air, γ = 1.4 and Prandtl number (Pr) = 0.72. The dynamic viscosity µ in

HiFiLES can be a constant or a function of temperature using Sutherland’s law.

2.2.2 Reynolds Averaged Navier-Stokes equations

The compressible NS equations can be used to solve a variety of different flow physics

problems but for turbulent flows, direct numerical simulation using these equations
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can become excessively expensive. For engineering applications, it is customary to

perform a Favre averaging procedure to the NS equations to solve a turbulent mean

quantity. This leads to a variety of terms which must be modeled in order to provide

closure to the resulting RANS equations [94, 63]. For example, using the one equation

SA turbulence model, the conservative form of the RANS equations is very similar to

the NS equations with the following extra terms included in Eqn. 2.1:

Uν̃ = ρν̃, FI,ν̃ = ρuν̃, GI,ν̃ = ρvν̃, HI,ν̃ = ρwν̃, (2.9)

FV,ν̃ =
1

σ
(µ+ µψ)

∂ν̃

∂x
, GV,ν̃ =

1

σ
(µ+ µψ)

∂ν̃

∂y
, HV,ν̃ =

1

σ
(µ+ µψ)

∂ν̃

∂w
, (2.10)

Sν̃ = cb1S̃ρνψ +
1

σ
[cb2ρ∇ν̃ · ∇ν̃]− cw1ρfw

(
νψ

d

)2

. (2.11)

Note that the flow variables have been redefined as Favre-averaged quantities.

Also, the viscous stresses (Eqn. 2.6) now include the Boussinesq approximated Reynolds

stress terms,

σij = (µ+ µt)

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
(µ+ µt)δij

∂uk
∂xk

(2.12)

and the heat fluxes are redefined as

qi = −Cp
(
µ

Pr
+

µt
Prt

)
∂T

∂xi
(2.13)

where µt is the dynamic eddy viscosity and Prt is the turbulent Prandtl number. The

various terms added by the one equation SA turbulence model are defined in a later

section.

2.3 Numerical Methods

In this section the main numerical techniques implemented in HiFiLES will be de-

scribed. We will emphasize the critical role of the selected numerical discretization
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(FR Method), and it capability to solve Computational Fluid Dynamics (CFD) prob-

lems using unstructured meshes.

2.3.1 FR Method

What follows is an overview of the FR framework. We start the discussion with

the solution of the advection equation in one dimension using the FR approach to

illustrate the method and how it can be cast as a differential operator. Then we

show how it would be possible to use FR to discretize spatial derivatives of arbitrary

order. We then proceed to describe which common schemes can be recovered via

FR and under which norm they can be proven to be stable. Then we explain how

conservation equations can be solved in multiple dimensions. The NS equations are a

set of coupled conservation equations in multiple dimensions, so the extension of the

FR methodology to them uses the concepts explained here. The detailed description

of the algorithm used in HiFiLES is given by Castonguay et al. [16].

2.3.1.1 Solution of the General Advection Equation in One Dimension

using the FR Approach

The FR approach is a discretization of the 1st spatial derivative operator. The general

advection equation is a good starting point to describe the mechanics of the scheme.

Consider the one-dimensional conservation law

∂u

∂t
+
∂f

∂x
= 0 (2.14)

in domain Ω, where x is the spatial coordinate, t is time, u –the solution– is a

scalar function of x and t, and f –the flux– is a scalar function of u. Note that by

letting f = f(u, ∂u
∂x

), Equation 2.14 becomes a model of the NS equations.

Let us partition the domain Ω = [x1, xN+1) into N non-overlapping elements with

interfaces at x1 < x2 < ... < xN+1. Then,

Ω =
N⋃
n=1

Ωn (2.15)
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and Ωn = [xn, xn+1) for n = 1, ..., N . To simplify the implementation, let us map

each of the physical elements Ωn to a standard element Ωs = [−1, 1) with the function

Θn(ξ), where

x = Θn(ξ) =

(
1− ξ

2

)
xn +

(
1 + ξ

2

)
xn+1 (2.16)

With this mapping, the evolution of u within each Ωn can be determined with the

following transformed conservation equation

∂û

∂t
+

1

Jn

∂f̂

∂ξ
= 0 (2.17)

where

û = u(Θn(ξ), t) in Ωn (2.18)

f̂ = f(Θn(ξ), t) in Ωn (2.19)

Jn =
∂x

∂ξ

∣∣∣∣
Ωn

(2.20)

Now, we introduce polynomials of degree p, ûδ and f̂ δ, to approximate the exact

values û, f̂ , respectively. We can write these polynomials as

ûδ =
Ns∑
i=1

ûδi li(ξ) (2.21)

f̂ δ =
Ns∑
i=1

f̂ δi li(ξ) (2.22)

where Ns is the number of solution points, ûδi is the current value of the solution

approximation function at the ith solution point in the reference element, f̂ δi is the

current value of the flux approximation function at the ith flux point in the reference

element, li is the Lagrange polynomial equal to 1 at the ith solution point and 0 at

the others, and δ denotes that the function is an approximation.

Note that the piecewise polynomials might not be continuous (or C0) across the
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interfaces. In the FR approach, the flux used in the time advancement of the solution

is made C0 by introducing flux correction functions.

This can be achieved by finding interface solution values at each element boundary

and then correcting the solution. Let f̂ δIL and f̂ δIR be the interface solution values at

left and right boundaries of some element, respectively. f̂ δIL and f̂ δIR can be found with

a Riemann solver for DG methods[34]. Then, select solution correction functions gL

and gR such that

gL(−1) = 1 , gL(1) = 0 (2.23)

gR(−1) = 0 , gR(1) = 1 (2.24)

and let

f̂C = f̂ δ + (f̂ δIL − f̂ δL)gL + (f̂ δIR − f̂ δR)gR (2.25)

where superscript C denotes the function is corrected, and f̂ δL, f̂ δR represent the solu-

tion approximation evaluated at the left and right boundaries.

As a result, the FR spatial differential operator in element n can be written as

∂f(x)

∂x

∣∣∣∣
Ωn

FR
=

1

Jn

∂f̂C(ξ)

∂ξ

=
1

Jn

(
Ns∑
i=1

f̂ δi
∂li(ξ)

∂ξ
+ (f̂ δIL − f̂ δL)

∂gL(ξ)

∂ξ
+ (f̂ δIR − f̂ δR)

∂gR(ξ)

∂ξ

) (2.26)

The actual values of the corrected quantity f̂C are never used, only its first spatial

derivative.

The solution can then be advanced at each solution point i. In semi-discrete form,

this is
dûδi
dt

= − 1

Jn

∂f̂C

∂ξ
(ξi) (2.27)
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2.3.1.2 Extension to Higher Order Spatial Derivatives

FR can be used to discretize spatial differential operators of any order via composition.

For example, the second derivative spatial differential in element n can be discretized

as

∂2∗
∂x2

∣∣∣∣
Ωn

=
∂

∂x

(
∂∗
∂x

) ∣∣∣∣
Ωn

FR
=

1

Jn

∂

∂ξ

(
1

Jn

∂∗C

∂ξ

)C (2.28)

Each differential operator requires the correction of the operand. Then, in the

case of the second derivative operator, ∗ is corrected once using its values at each

element boundary point, the common ∗ values at each boundary point, and its values

at each internal point. This provides the values of ∂∗C
∂ξ

at each internal point.

Let q = 1
Jn

∂∗C
∂ξ

. We can find the values of ∂qC

∂ξ
using the same procedure we used

to find ∂∗C
∂ξ

.

As a result, the mth FR spatial derivative operator will require m corrections.

2.3.1.3 Energy Stability of FR in the Linear Advection-Diffusion Equa-

tion

The FR scheme can be made provably stable for the linear advection-diffusion equa-

tion by selecting special types of correction functions [15]. In general, these correction

functions are polynomials of degree p+ 1 so both sides in Equation (2.27) are quan-

tities related to polynomials of order p –for consistency [36].

Vincent et al. [85] have shown that in the case of the 1-dimensional, linear advec-

tion equation, the FR approach can be proven to be stable for a specific family of

correction functions parameterized by a scalar called c. This parameter arises from

the desire to ensure the following Sobolev-type norm is bounded above by zero

||u||22 =
N∑
n=1

∫ xn+1

xn

{
u2 +

c

2

(
∂pu

∂xp

)2
}
dx (2.29)

In the case of pure linear advection, they showed that by selecting specific values
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of c it is possible to recover a particular nodal DG and SD methods plus a FR scheme

that was previously found to be stable by Huynh [36]. The family of schemes that are

provably stable in the linear advection case are named ESFR. The coefficients that

give rise to the correction functions that recover DG and SD schemes in the linear

advection case are labeled cDG and cSD, respectively. In addition, there is an ESFR

scheme that maximizes the CFL condition. This scheme’s correction functions arise

from selecting c = c+.

Similarly, the families of schemes that are stable in the linear advection-diffusion

equation have an additional parameter, which Castonguay et al. [15] labeled κ. The

schemes arising from κDG and κSD recover the behavior of DG and SD, respectively,

in the linear advection-diffusion equation. The scheme arising from κ+ provides the

largest CFL condition.

It is important to keep in mind that the FR schemes that recover other schemes

in the linear equations can be used in non-linear equations, but the FR schemes’

non-linear properties will likely be different from those of the schemes they recover

in the linear case.

2.3.1.4 Extension to Multiple Dimensions

Extension of FR to multiple dimensions requires formulating multi-dimensional inter-

polation functions and correction functions that satisfy boundary conditions equiva-

lent to those in Eqn. (2.23) for each type of element.

Interpolation bases for quadrilaterals and hexahedra can be obtained via tensor

products of the 1-dimensional interpolation basis. In HiFiLES, the solution in hexa-

hedra is discretized in the following way

ûδ(ξ, η, ζ) =

p+1∑
i=1

p+1∑
j=1

p+1∑
k=1

ûδi,j,kli(ξ)lj(η)lk(ζ), (2.30)

where i, j, k index the solution points along the ξ, η, ζ directions, respectively. The

flux is discretized similarly.
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The interpolation basis for triangles and tetrahedra are described in detail by Hes-

thaven and Warburton [34]. Figure 4.3 shows a possible configuration of internal and

boundary points. The extension of interpolation polynomials to prisms is obtained

via tensor products of the 1-dimensional basis with the triangular basis [16].

The most general polynomial discretization of a k-dimensional solution scalar field

and flux vector field in an arbitrary reference element is

ûδ(ξξξ) =
Ns∑
i=1

ûδiφi(ξξξ), (2.31)

f̂ δ(ξξξ) =
Ns∑
i=1

f̂ δi φi(ξξξ), (2.32)

where Ns is the number of solution points in an element, φi(ξξξ) is a polynomial basis

function associated with solution point i constructed such that φi(ξξξj) = δij and

i, j = 1, . . . , Ns.

By letting ~u =< ûδ1, û
δ
2, . . . , û

δ
Ns
>T ,~f =< f̂ δ1 , f̂

δ
2 , . . . , f̂

δ
Ns
>T , and ~φ =< φ1, φ2, . . . , φNs >

T

the discretization can be written more concisely as

ûδ(ξξξ) = ~uT · ~φ(ξξξ) = ~φ(ξξξ)T · ~u,

f̂ δ(ξξξ) = ~fT · ~φ(ξξξ) = ~φ(ξξξ)T ·~f .
(2.33)

Note that we are using the boldface and arrow notation to denote vectors. Boldface

vectors have a number of entries equal to the number of dimensions of the problem

domain. Arrow vectors are vectors of general dimensions.

In the general FR approach, the boundary conditions for the correction functions

in multiple dimensions can be formulated as

hi(ξξξj) · nj = δij, (2.34)

where hi is the correction vector function associated with interface point i, ξξξj is

the location vector of the jth interface point, and nj is the outward unit normal at

interface point j. Interface (or boundary) points are located on the boundary of an



CHAPTER 2. HIFILES: OPEN SOURCE HIGH-ORDER, LES CODE 18

element.

One of the challenges in the FR approach is finding correction functions that

not only satisfy Equation (2.34) but also guarantee stability in the linear advection-

diffusion case. Correction functions that guarantee such stability exist for 1-dimensional

segments[85], triangles[18, 96], and tetrahedra[97]. FR schemes with these correction

functions comprise the ESFR family of schemes.

The update step at solution point i and element n in the FR approach for the

multidimensional advection equation ∂u
∂t

+∇ · ~f = 0 becomes

duδi
dt

= − 1

det(J̃n)
∇ · fCi (ξξξi) = − 1

det(J̃n)
∇ ·

f δi (ξξξi) +

Nf∑
j=1

[(
f̂ δIj − f̂ bj

)
· nj
]
~hj(ξξξi)


= − 1

det(J̃n)

∇ · f δi (ξξξi) +

Nf∑
j=1

[(
f̂ δIj − f̂ bj

)
· nj
]
∇ · ~hj(ξξξi)


= − 1

det(J̃n)

 ~∇φ(ξξξi)
T ·~f +

Nf∑
j=1

[(
f̂ δIj − f̂ bj

)
· nj
]
∇ · ~hj(ξξξi)

 ,

(2.35)

where Nf is the number of interface points, J̃n is the Jacobian matrix, ~∇φ(ξξξi) is the

vector of gradients of each φi function evaluated at ξξξi, ~f
δ is a vector of flux vectors,

and f̂ bj is the flux vector at the jth interface point (obtained via extrapolation).

Note that it is possible to evaluate each of the terms in Equation (2.35) for all

i = 1, . . . , Ns with a series of matrix-vector multiplications.

In terms of time integration, HiFiLES uses an explicit Adaptive RK 45 (RK45)

Method and local or global time stepping. Currently, a polynomial multigrid to

improve the code convergence is being validated.

2.3.2 Shock Capturing and Stabilization Models

We use the method of concentration described in [75] for detecting shocks on meshes

with quadrilateral elements. We are still in the process of extending the method of
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concentration to triangles and are currently using Persson and Peraire’s method [69,

68] for the same. We have explored both selective addition of artificial viscosity as

well as modal order reduction for capturing the detected shocks effectively. Persson

and Peraire have used this shock capturing tool as a stabilization method as well in

their turbulence calculations. Here we show a viscous case on quadrilateral elements

using the concentration method (reproduction of the result in [75]) and an inviscid

case on triangles using Persson and Peraire’s method.

Figures 2.1 and 2.2 show the density and energy plots for a Ma 1.2 flow over a

NACA 0012 airfoil at a 5◦ angle of attack. The flow is at Re of 60000 and we have

used 6th order polynomial interpolation in the elements for the computation. There

is a bow shock in front of the airfoil and we see fish-tail shocks at the trailing edge.

We can also see boundary layer formation and a Λ-shock structure on the upper side

of the airfoil. Here we have used simple modal order reduction in elements with shock

sensor value above a threshold. Figure 2.3 shows the elemental shock sensor values.

We can see the shock sensor is able to distinguish between shocks and other smooth

regions enabling the structure of the vortices and boundary layer to be preserved.

Figure 2.4 shows an inviscid flow of Ma = 1.6 over a NACA 0012 airfoil at 0◦

angle of attack on a triangle mesh. Here we use Persson and Peraire’s method for

shock detection and can see that we the shock has been detected and captured well.

A few oscillations still remain near the strong bow shock in front of the airfoil even

after enforcement of continuity of the artificial viscosity coefficients. Figures 2.5

and 2.6 show the artificial viscosity being added element-wise and after continuity

enforcement respectively.

2.3.3 SA Turbulence Model and Negative ν̃ Modification

The one equation SA turbulence model is one of the more commonly used turbulence

models used to solve attached and moderately separated aerodynamic flows [78]. The

added equation directly solves for turbulent eddy viscosity via advection, diffusion,
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Figure 2.1: density contours for viscous
flow at Ma = 1.2 over a NACA 0012 airfoil
at 5◦ AoA with polynomial order 6
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Figure 2.2: Energy contours

production and dissipation. A modified form of the equation can be written as [13,

63, 58]:

∂

∂t
(ρν̃) +∇ · (ρν̃u) = cb1S̃ρνψ +

1

σ
[∇ · ((µ+ µψ)∇ν̃) + cb2ρ∇ν̃ · ∇ν̃]

− cw1ρfw

(
νψ

d

)2 (2.36)

where ν̃ is a modified version of the kinematic eddy viscosity and ν is the kinematic

viscosity. The other variables are defined as:

µt =

ρν̃fv1 if ν̃ ≥ 0

0 if ν̃ < 0
where fv1 =

(
ρν̃
µ

)3

(
ρν̃
µ

)3

+ c3
v1

(2.37)

S̃ =

S + S̄ if S̄ ≥ −cv2S

S +
S(c2v2S+cv3 S̄)

(cv3−2cv2 )S−S̄ if S̄ ≤ −cv2S
(2.38)
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Figure 2.3: Figure shows the elemental shock “sensor” for the Ma = 1.2 viscous case
shown in figure 2.1. The shock sensor is just the maximum value of the enhanced
kernel in each element

S =
√
ω · ω S̄ =

(νψ)2fv2
κ2d2

(2.39)

fv2 = 1− ψ

1 + ψfv1
(2.40)

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

g = r + cw2(r
6 − r) r =

νψ

S̃κ2d2
(2.41)

where S is the magnitude of vorticity, d is the closest distance to a wall, cb1 =

0.1355, σ = 2
3
, cb2 = 0.622, K = 0.41, Prt = 0.9, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9,

cw1 = cb1
K2 + (1+cb2)

σ
, cw2 = 0.3, cw3 = 2.

The diffusion term, ∇ · (ρν̃u), may become discontinuous in the first derivative

leading to oscillations in high-order polynomials. This can lead to large negative val-

ues of the modified eddy viscosity term, ν̃, significant enough to cause an unbounded
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Figure 2.4: Ma contours for inviscid flow over NACA0012 at Ma = 1.6 and AoA = 0◦

on a triangle-mesh using Persson and Peraire’s method and using artificial viscosity

solution. To prevent this, the following modification is introduced [58].

ψ =

0.05log(1.0 + e(20.0χ)) if χ ≤ 10.0,

χ if χ > 10.0,
(2.42)

χ =
ν̃

ν
(2.43)

2.3.4 Large Eddy Simulation

In order to resolve all the scales of motion in a high Re number turbulent flow, the

computational mesh would have to be exceedingly fine. A practical solution is to

employ the LES formulation, which only resolves the larger scales of motion and thus

allows for the use of coarser meshes.

The effect of the unresolved or SGS dynamics on the solution is accounted for by

an SGS model for the subgrid-scale stress τij, which is added to the viscous stress

tensor σij given by (2.6):
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Figure 2.5: Element-wise AV coefficients for
the inviscid Ma= 1.6 case

Figure 2.6: AV coefficients with continuity en-
forcement

σij = 2µSdij + τij, (2.44)

Sdij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
. (2.45)

The standard Smagorinsky model [76] is available in HiFiLES:

τij = 2µtS
d
ij, (2.46)

µt = ρC2
S 42 |Sd|, (2.47)

|Sd| =
√

2SdijS
d
ij, (2.48)

where µt is the eddy viscosity, CS = 0.1 is the Smagorinsky coefficient and 4 is the

filter width. In HiFiLES the filter width is given by (in 3D):

4 = α(vol)1/3, (2.49)

where α ≥ 1 is a user-defined scaling factor and vol is the element volume.

HiFiLES also includes the WALE model [61] and the Similarity model [5]. The

Similarity model incorporates a low-pass filtering operator, for which several choices
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are available in HiFiLES: a discrete Gaussian filter[48], a high-order commuting

Vasilyev-type filter[81, 82] and a modal Vandermonde-type filter[8].

The modal filter can be used on unstructured tetrahedral meshes. For details of

these operators, see Lodato, Castonguay and Jameson [48] and Bull and Jameson [11].

One can combine the similarity model with the Smagorinsky or WALE model to form

a mixed SGS model. The WSM model, first proposed by Lodato et al. [49], was used

in simulations of the flow over a square cylinder (see Section 2.4.7).

2.3.5 Computing Architecture and Scalability

The HiFiLES code has been designed to work on multi-CPU as well as multi-CPU-

GPU platforms. The FR method in its current form with explicit time-stepping has a

great potential for parallelization. Since the solution points are not explicitly shared

between elements, most of the computations are element-local enabling an efficient

use of shared memory on GPUs. Also, several computations are independent for each

solution point and the highly parallelizable nature of GPUs becomes very useful. A

detailed description of the parallelization of the FR method, along with scalability

and performance analysis has been performed in [16].

2.4 Verification and Validation

2.4.1 Method of Manufactured Solutions

This section describes the test of HiFiLES’s spatial order of accuracy using the MMS

in 2D and 3D for viscous flows. As shown by Salari et. al [74], the MMS test rigorously

assesses the correctness of implementation of a solver of Partial Differential Equation

(PDE)s. Simplex elements are crucial for simulations in unstructured meshes and

have a more complex implementation than squares and hexahedra. As a result, we

perform the MMS test in grids using simplex elements.

The MMS test for NS solvers requires checking the solver’s solution against an

exact solution. Such exact solution can be chosen arbitrarily. The NS equations can
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be satisfied with this arbitrary solution by including a time-dependent source term

in the equations. Then, we solve

∂U

∂t
+∇ · F = S (2.50)

For the following tests, we selected a smooth exact solution, so aliasing does not

pollute the results. We picked

U2D =


sin (k(x+ y)− ωt) + a

sin (k(x+ y)− ωt) + a

sin (k(x+ y)− ωt) + a

(sin (k(x+ y)− ωt) + a)2



U3D =



sin (k(x+ y + z)− ωt) + a

sin (k(x+ y + z)− ωt) + a

sin (k(x+ y + z)− ωt) + a

sin (k(x+ y + z)− ωt) + a

(sin (k(x+ y + z)− ωt) + a)2



(2.51)

To find the value of S, we plug the values of our selected U into the left-hand side

of Equation (2.51) and simplify. The resulting expression is S. We let Pr= 0.72, γ =

1.4, k = π, ω = π, a = 3.0 and µ = 0.001.

The meshes used have dimensions [−1, 1] × [−1, 1] in 2D and [−1, 1] × [−1, 1] ×
[−1, 1] in 3D. Periodic boundary conditions were applied on the boundaries of the

square and cube domains. Uniform square and cubic meshes were created and then

each element was subdivided into triangles or tetrahedra. Two triangles were created

from each square, and six tetrahedra were created from each cube. Consequently, in

2D a N × N mesh contains 2N2 triangles, and in 3D a N × N × N mesh contains

6N3 tetrahedra.

In 3D, the time step was 1e−4 seconds and 10 seconds of flow were simulated.

In 2D, the time step was 1e−6 seconds and 1 second of flow was simulated. The

time-stepping scheme used was the low-storage, 4th order accurate RK45 method.
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Polynomial
Order Mesh: 2x2x2 4x4x4 8x8x8 16x16x16 Overall Order

of Accuracy

p = 1
L2 error 5.76e-01 1.35e-01 3.22e-02 7.90e-03
O(L2) 2.10 2.06 2.03 2.06

p = 2
L2 error 4.09e-01 5.52e-02 6.87e-03 8.53e-04
O(L2) 2.89 3.01 3.01 2.97

p = 3
L2 error 9.77e-02 5.97e-03 3.78e-04
O(L2) 4.03 3.98 4.01

p = 4
L2 error 1.12e-02 6.39e-04 2.07e-05
O(L2) 4.13 4.95 4.54

p = 5
L2 error 1.53e-01 5.08e-03 6.92e-05
O(L2) 4.91 6.20 5.55

Table 2.1: Accuracy of HiFiLES for NS equations with source term in tetrahedral
meshes at t = 10. L2 error is the L2-norm of the error in the energy field: ρe

Polynomial
Order Mesh: 2x2x2 4x4x4 8x8x8 16x16x16 Overall Order

of Accuracy

p = 1
L2 error 1.98e+01 9.57e+00 4.55e+00 2.19e+00
O(L2) 1.05 1.07 1.06 1.06

p = 2
L2 error 1.17e+01 2.98e+00 7.10e-01 1.71e-01
O(L2) 1.97 2.07 2.06 2.03

p = 3
L2 error 3.17e+00 3.81e-01 4.73e-02
O(L2) 3.06 3.01 3.03

p = 4
L2 error 5.21e-01 4.27e-02 2.69e-03
O(L2) 3.61 3.99 3.80

p = 5
L2 error 3.20e+00 1.88e-01 4.79e-03
O(L2) 4.09 5.29 4.69

Table 2.2: Accuracy of HiFiLES for NS equations with source term in tetrahedral
meshes at t = 10. L2 error is the L2-norm of the error in the gradient of the energy
field: ∂

∂xi
(ρe)
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Polynomial
Order Mesh: 4x4 8x8 16x16 32x32 64x64 Overall Order

of Accuracy

p = 1
L2 error 7.92e-01 1.84e-01 4.36e-02 1.07e-02 2.68e-03
O(L2) 2.10 2.08 2.03 2.00 2.05

p = 2
L2 error 1.29e-01 1.61e-02 1.95e-03 2.33e-04 2.86e-05
O(L2) 3.00 3.05 3.06 3.03 3.04

p = 3
L2 error 1.01e-02 9.25e-04 5.71e-05 3.65e-06 2.35e-07
O(L2) 3.45 4.02 3.97 3.96 3.88

p = 4
L2 error 2.60e-03 6.33e-05 2.00e-06 6.49e-08 3.62e-09
O(L2) 5.36 4.98 4.95 4.16 4.88

p = 5
L2 error 7.15e-05 3.87e-06 6.31e-08
O(L2) 4.21 5.94 5.07

Table 2.3: Accuracy of HiFiLES for NS equations with source term in triangular
meshes at t = 1. L2 error is the L2-norm of the error in the energy field: ρe

Tables (2.3) and (2.1) show the spatial order of accuracy achieved when calculating

the energy fields ρe in 2D and 3D, respectively. Tables (2.4) and (2.2) show the order

of accuracy for the gradient of the energy field ∂
∂xi

(ρe) in 2D and 3D, respectively.

Because of the exact solutions that were picked, the exact values of the gradients of

ρe in the x, y, z directions are equal.

As expected[34], the order of accuracy of the solution is p + 1 and the order of

accuracy of the gradient of the solution is p, where p is the order of the polynomial

used to approximate the solution fields. In the fifth order simulations, the relatively

large time step introduces errors larger than the spatial discretization errors. Hence

we observe sub-optimal orders of convergence in the coarsest meshes.

2.4.2 Subsonic laminar flat-plate

Computations of the flow over a subsonic flat-plate have been performed and validated

against the Blasius’ solution for laminar boundary layer. The flow conditions are

Ma 0.5, 0◦ angle of attack and Re 1 · 106 based on the plate length. The governing

equations are the 2D NS equations with constant ratio of specific heats of 1.4, Prandtl

number of 0.72 and constant dynamic viscosity of 1.827 · 10−5Pa · s.
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Polynomial
Order Mesh: 4x4 8x8 16x16 32x32 64x64 Overall Order

of Accuracy

p = 1
L2 error 1.61e+01 8.31e+00 3.81e+00 1.71e+00 7.84e-01
O(L2) 0.96 1.12 1.15 1.13 1.10

p = 2
L2 error 4.05e+00 8.16e-01 1.90e-01 4.54e-02 1.11e-02
O(L2) 2.31 2.11 2.06 2.04 2.12

p = 3
L2 error 4.71e-01 6.39e-02 7.03e-03 7.75e-04 8.84e-05
O(L2) 2.88 3.18 3.18 3.13 3.11

p = 4
L2 error 1.01e-01 4.30e-03 2.31e-04 1.41e-05 5.27e-06
O(L2) 4.56 4.22 4.04 1.42 3.67

p = 5
L2 error 5.04e-03 2.50e-04 7.80e-06
O(L2) 4.33 5.00 4.67

Table 2.4: Accuracy of HiFiLES for NS equations with source term in triangular
meshes at t = 1. L2 error is the L2-norm of the error in the gradient of the energy
field: ∂

∂xi
(ρe)

Mesh First cell height
# of cells in

boundary layer
p3 p4 p5 p6

Mesh a0 (140 = 14x10) 0.00075 2 × × × !

Mesh a1 (560 = 28x20) 0.000375 4 × × ! !

Mesh a2 (2240 = 56x40) 0.0001875 8 × ! ! !

Mesh a3 (8960 = 112x80) 0.0000935 16 ! ! ! !

Table 2.5: HiFiLES convergence using different grids and polynomial order. × /

!indicates not converged/converged resp.

The objective of this study is to determine the minimum number of elements and

the order of polynomial required to converge the flat-plate simulation using HiFiLES.

Four different numerical grids have been used in this study (2, 4, 8, 16 elements inside

the boundary layer) and four polynomial orders (p3–p6). The results, summarized

in Table 2.5, show that a minimum number of elements is needed in the boundary

layer depending on the polynomial order to obtain satisfactory convergence (free from

inter-element jumps).

The results are compared with the Blasius’ solution for laminar boundary layer

with satisfactory results, and some details of the solutions are presented in Fig. 2.7
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Figure 2.7: Detail of the flat-plate lead-
ing edge (x=0.0, mesh a2).

Figure 2.8: Flow solution at the end of
the flat-plate (x=1.0, mesh a2).

(leading edge), and Fig. 2.8 (end of the flat-plate). It is important to note that in this

particular case (mesh a2) the flat-plate boundary layer is captured using 8 elements,

while in a second order solver it would be necessary of the order of 30 elements inside

the boundary layer.

To finalize, it is critical to note that the absence of a local time stepping technique

in HiFiLES increases the required number of iterations to obtain a converged solution.

However, we have noticed an improvement of the rate of convergence as we refine the

grid (see Fig. 2.9). The obtained convergence rate is comparable to a second order

numerical code (e.g. SU2 [65, 64]) running using a similar numerical time integration

(see Fig. 2.10).
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Figure 2.9: Convergence comparison (3rd

order, finest grids).
Figure 2.10: Comparison of HiFiLES
with SU2 using a similar time integration
scheme.
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2.4.3 Circular Cylinder

The classic test case of laminar flow past a circular cylinder at low Re number has also

been chosen as a verification and validation case for the 2D NS equations in HiFiLES,

and the results are compared to existing experimental data and simulation results [66].

Two separate cases are computed: first, the steady flow past the cylinder at Re= 20,

and second, the unsteady flow past the cylinder at Re= 100, where Re is based upon

the diameter of the cylinder. For both cases, Ma number is set to 0.1 in order to

recover nearly incompressible flow for comparisons with the existing incompressible

results. The remaining flow conditions are 0◦ angle of attack, a constant ratio of

specific heats of 1.4, a Prandtl number of 0.72, a free-stream temperature of 300K,

and a free-stream dynamic viscosity of 1.853 · 10−5Pa · s (laminar viscosity varies

according to Sutherland’s law during the simulation).

The two simulations are performed with third order polynomials on a mesh with

4988 total elements that contains quadrilateral elements near the body of the cylin-

der and triangular elements out to the far-field. There is a small refinement box

immediately downstream of the cylinder to help resolve features in the wake. The

rectangular far-field boundaries are located approximately 30 diameters away from

the cylinder in the upstream, upward, and downward directions and 50 diameters

away in the downstream direction. A view of the mesh near the cylinder surface is

show in Fig. 2.11.

The flow around the cylinder for Re= 20 is steady, and it features a large recir-

culation region behind the cylinder. Fig. 2.11 presents x-velocity contours around

the cylinder along with streamlines. The length of the recirculation region can be

determined from the streamlines, and a length of approximately one cylinder diam-

eter agrees well with reported results for Re= 20. The coefficient of drag computed

by HiFiLES is 2.043, which is close to the value of 2.01 reported by Park et al. [66]

Pressure contours around the cylinder are shown in Fig. 2.12.

When Re is increased to 100, the flow around the cylinder becomes unsteady

and exhibits periodic vortex shedding. This periodic shedding in the wake behind

the cylinder can be seen in the instantaneous contours of x-velocity and vorticity
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(a) Zoom view of the mesh near the cylinder. (b) X-velocity contours and streamlines around
the circular cylinder for Re = 20.

Figure 2.11: The mesh for the circular cylinder simulations along with x-velocity
contours for the Re = 20 case.

(a) Pressure contours for the Re = 20 case. (b) Pressure contours for the Re = 100 case.

Figure 2.12: Pressure contours for the steady and unsteady (instantaneous) cylinder
cases.
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(a) X-velocity contours around the circular cylin-
der for Re= 100.

(b) Vorticity contours for the Re= 100 case.

Figure 2.13: Instantaneous solution contours for the unsteady cylinder case.

in Fig. 2.13, and it also results in periodic fluctuations in the force coefficients on

the cylinder. HiFiLES reports an average drag coefficient of 1.339 with a maximum

deviation from this value of 0.0092, which agree excellently with the values reported

by Park et al. [66] of 1.33 and 0.0091 for the average Cd and maximum deviation from

it, respectively. Instantaneous pressure contours for the Re= 100 case can be seen in

Fig. 2.12. The asymmetry that is visible in the pressure contours contributes to the

variability in the drag coefficient.
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2.4.4 SD7003 airfoil at 4◦ angle of attack

Abundant literature documents flow around a SD7003 infinite wing and airfoil. Hence,

physical experiments [62, 70] and numerical simulations [30, 86, 17, 67, 80] of flow

over this geometry can be used to benchmark HiFiLES.

The simulations on the 2D geometry were performed on a circular domain with a

radius of 50c, where c is the airfoil’s cord length, centered at the leading edge of the

airfoil. The boundary conditions are characteristic on the outer edge and adiabatic

no-slip wall on the airfoil. The Mach number for all simulations was Ma= 0.2. The

reported lift and drag coefficients in Table (2.6) correspond to the average of lift and

drag coefficients over 13 periods after the flow reached a pseudo-periodic state. More

details are provided by Williams [95].

Re = 10K Re = 22K Re = 22K
Source CL CD CL CD CL CD
Uranga et al.[80] 0.3755 0.04978 0.6707 0.04510 0.5730 0.02097
cdg, κdg 0.3719 0.04940 0.6722 0.04295 0.5831 0.01975
c+, κ+ 0.3713 0.04935 0.6655 0.04275 0.5774 0.02005

Table 2.6: Time-averaged values of the lift and drag coefficients for the SD7003 airfoil
flows with Re = 10, 000, 22, 000, 60, 000

The average lift and drag coefficients are in close agreement with the results by

Uranga el. al [80]. The density contours in Figures (2.14),(2.15), and (2.16) show

that vortical structures are captured for a reasonable distance away from the airfoil

despite the fact that elements are coarser away from the airfoil.
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(a) Density contours (b) Vorticity contours

Figure 2.14: Density and vorticity contours for the flow with Re= 10, 000 around the
SD7003 airfoil. p = 2 on unstructured triangular grid with N = 25, 810 elements

(a) Density contours (b) Vorticity contours

Figure 2.15: Density and vorticity contours for the flow with Re= 22, 000 around the
SD7003 airfoil. p = 2 on unstructured triangular grid with N = 25, 810 elements
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(a) Density contours (b) Vorticity contours

Figure 2.16: Density and vorticity contours for the flow with Re= 60, 000 around the
SD7003 airfoil. p = 2 on unstructured triangular grid with N = 25, 810 elements

2.4.5 SD7003 wing section at 4◦ angle of attack

To validate HiFiLES’s performance in 3D simulations, we extrude the SD7003 ge-

ometry from Section(2.4.4) by 0.2c in the z-direction and apply periodic boundary

conditions at z = 0 and z = 0.2c. Table (2.7) shows the time-averaged lift and drag

coefficients.

Re = 10K
Source CL CD
Uranga et al.[80] 0.3743 0.04967
cdg, κdg 0.3466 0.04908
c+, κ+ 0.3454 0.04903

Table 2.7: Time-averaged values of the lift and drag coefficients for the SD7003 wing-
section in a flow with Re = 10, 000

It is worth noting that the vortical structures are preserved better than in the 2D

case. Table (2.7) demonstrates that HiFiLES provides average lift and drag coefficient

estimates in close agreement with experiments.
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(a) Density contours (b) Vorticity contours

Figure 2.17: Density and vorticity isosurfaces colored by Mach number for the flow
with Re = 10, 000 around the SD7003 wing-section. p = 3 on unstructured tetrahe-
dral grid with N = 711, 332 elements
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2.4.6 Taylor-Green Vortex at Re = 1,600

The TGV is a simple test of the resolution of the small scales of a turbulent flow

by a numerical method. The compressible TGV at Re= 1600 was one of the bench-

mark problems in the 1st and 2nd International Workshops on High-Order CFD

Methods [91]. A reference solution was computed by Debonis [26] using a high-order

Dispersion Relation-Preserving (DRP) scheme on a mesh of 5123 elements. The re-

sults presented here were obtained by Bull and Jameson using FR to recover the

fourth-order-accurate DG and SD schemes in HiFiLES [11, 12]. We also compare our

results to those of Beck and Gassner [7], who used a fourth-order filtered DG method

on a mesh of 643 elements. From a simple initial condition in a triply-periodic box

of dimensions [0 : 2π]3, interactions between vortices cause the flow to develop in a

prescribed manner into a mass of elongated vortices across a range of scales. The

initial condition is specified as

u(t0) = u0 sin(x/L) cos(y/L) cos(z/L), (2.52)

v(t0) = −u0 cos(x/L) sin(y/L) cos(z/L), (2.53)

w(t0) = 0, (2.54)

p(t0) = p0 +
ρ0V

2
0

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)][
cos

(
2z

L

)
+ 2

]
, (2.55)

where L = 1, u0 = 1, ρ0 = 1 and p0 = 100. Ma is set to 0.08 (consistent with the

initial pressure p0) and the initial temperature is 300K.

Figs. 2.18 (a) and (b) show the volume-averaged kinetic energy 〈k〉 on (a) hex-

ahedral meshes of 163, 323 and 643 elements and (b) tetrahedral meshes (formed

by splitting the hexahedral meshes). The reference solution, labeled as‘DRP-512’ is

plotted for comparison. Figs. 2.18 (c) and (d) show the kinetic energy dissipation

rate, given by ε = −d〈k〉/dt versus the reference solution and the results of Beck

and Gassner [7], labeled as‘Beck-DG-64x4’. On the finest hexahedral and tetrahe-

dral meshes the kinetic energy and dissipation rate predictions match the reference

solution, demonstrating that the high-order numerical scheme is able to resolve the

important flow dynamics on a relatively coarse mesh. As a qualitative measure of
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the resolution of the turbulent flow structures, Figure 2.19 shows isosurfaces of the q

criterion at four times during the simulation. The evolution of complex small scale

structures is evident.
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(a) 〈k〉, hexahedral meshes

0 5 10 15 20
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 tu

rb
ul

en
t k

in
et

ic
 e

ne
rg

y

SD-16x4
SD-32x4
SD-64x4
DRP-512

(b) 〈k〉, tetrahedral meshes
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(c) −d〈k〉/dt, hexahedral meshes
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(d) −d〈k〉/dt, tetrahedral meshes

Figure 2.18: Taylor-Green vortex results on hexahedral and tetrahedral meshes from Bull
and Jameson [11]. (a, b) Evolution of average kinetic energy 〈k〉; (c, d) dissipation rate
−d〈k〉/dt. ‘SD-M×N ’ refers to M3 mesh, Nth-order accurate SD scheme. (- - -) 4th-order
DG on 643 mesh [7]; (◦) DNS [26].
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(a) t = 2.5, Q = 0.5 (b) t = 5, Q = 1.5

(c) t = 7.5, Q = 1.5 (d) t = 10.75, Q = 1.5

Figure 2.19: TGV solution on the fine mesh using fourth order accurate DG method,
showing isosurfaces of q criterion colored by velocity magnitude at time t = 2.5 to
10.75 seconds.
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2.4.7 LES of Flow Over a Square Cylinder at Re = 21,400

Using the FR method to recover the fourth-order accurate SD scheme, the flow over

a square cylinder of side D in a domain of 21D × 12D × 3.2D (see Figure 2.20)

at Re = 21, 400 and Ma 0.3 was simulated, for which LDV experimental data is

available [56, 55]. A tetrahedral mesh of 87, 178 elements was generated giving a total

of 1.74M Degrees of Freedom (DoF) since there are 20 solution points per element at

fourth order accuracy. Time discretization was by the fourth-order five-stage explicit

RK scheme. A total time of 250 seconds was simulated and time-averaged quantities

were calculated over the last 100 seconds (approx. 5 flow-through periods). The

WSM model (see Section 2.3.4) based on the modal Vandermonde filter [11] was

used with the Breuer-Rodi three-layer wall model [9] within 0.2D of the wall. The

computation took around 60 hours on 7 GPUs in the lab’s own cluster. Figure 2.20

shows the computational mesh including all the DoF. Figure 2.21 shows an isosurface

of the q-criterion colored by velocity magnitude, illustrating the structures present

in the turbulent boundary layer and wake. Figures 2.22 (a, b) show the normalized

mean streamwise and vertical velocity components 〈u〉/uB and 〈v〉/uB respectively

along several vertical lines in the wake. Figures 2.22 (c, d) show the normalized

mean Reynolds stress components 〈u′u′〉/u2
B and 〈u′v′〉/u2

B along the same lines. For

comparison, high-order LES results computed by Lodato and Jameson [48] using the

SD method and the WSM model on a hexahedral mesh of 2.3M DoF are plotted. Mean

velocities are accurately predicted although the accuracy is reduced near the cylinder

owing to the coarse tetrahedral resolution in the boundary layer. The Reynolds

stresses are less accurately predicted than the mean velocities but are broadly correct.

These results highlight the advantages of using HiFiLES for LES of turbulent flows:

the ability to obtain good results on coarse meshes and the ability to use unstructured

tetrahedral meshes.
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(a) geometry (b) boundary layer mesh

Figure 2.20: Square cylinder geometry and tetrahedral boundary layer mesh showing
all degrees of freedom

Figure 2.21: Isosurface of the q-criterion colored by velocity magnitude showing the
wake behind the square cylinder
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(a) Mean streamwise velocity 〈u〉/uB

(b) Mean vertical velocity 〈v〉/uB

(c) Mean Reynolds stress 〈u′u′〉/u2B

(d) Mean Reynolds stress 〈u′v′〉/u2B

Figure 2.22: (a) Mean streamwise and vertical velocity and mean Reynolds stresses along
vertical lines in the wake. (—) current results, (- - - ) 4th order SD+WSM on hexahedral
mesh by Lodato and Jameson [48], (◦) LDV experiments by Lyn et al. [56, 55].
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(a) Zoomed view of the mixed element mesh near
the NACA 0012 airfoil.

(b) X-momentum contours near the NACA 0012
airfoil

Figure 2.23: Turbulent flow past a NACA 0012 airfoil at Re = 6 million, Ma = 0.15,
α = 0◦ using FR to recover 4th order accurate DG method and the SA turbulence
model.

2.4.8 NACA 0012 airfoil at 0◦ angle of attack, Re = 6 million,

Ma = 0.15

In this section, the NACA 0012 airfoil is used to study the accuracy of the SA turbu-

lence model coupled with FR. The NACA 0012 is commonly used as a validation case

for all turbulence models and a large database of results are available at the NASA

Turbulence Modeling Resource website. A 6, 539 element quad/triangle mixed mesh

is used with a NACA 0012 airfoil of chord length 1.0 and a far field boundary 20

chord lengths away. The results are compared with CFL3D and experimental results

from Gregory & O’Reilly [32].
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Figure 2.24: Pressure coefficient on the NACA 0012 airfoil at Re = 6 million, Ma
= 0.15, α = 0◦ using FR to recover 4th order accurate DG method and the SA
turbulence model.
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2.5 Conclusion

In this chapter, we have presented a comprehensive description, verification and vali-

dation of the HiFiLES solver. In its first version, HiFiLES offers to its users an optimal

implementation of the FR methodology in unstructured 3D grids using GPUs or tra-

ditional Message Passing Interface (MPI). The implementation has been verified via

MMS. The code has been tested in some difficult NS and LES problems with very

satisfactory results.

The power of the FR method is in its flexibility, efficiency and accuracy. Different

high-order schemes can be recovered by choosing a single parameter, allowing the

numerical behavior to be fine-tuned. Though the use of explicit timestepping sets

limits on the CFL condition, the fact that HiFiLES can be run on high performance

multi-GPU platforms more than compensates for this.

Despite considerable advances in the accuracy and versatility of SGS models, cur-

rent industrial CFD codes are restricted in their ability to perform LES of turbulent

flows by the use of highly dissipative second-order numerical schemes. Therefore, in

order to advance the state of the art in industrial CFD, it is necessary to move to

high-order accurate numerical methods. The ESFR family of schemes are ideal for

resolving turbulent flows due to low numerical dissipation and high-order accurate rep-

resentation of solution gradients at the small scales. Advanced subgrid-scale models

have been implemented in HiFiLES for all element types, enabling simulation of tur-

bulent flows over complex geometry. The development of the first high-order accurate

solver for unstructured meshes incorporating LES modeling capabilities represents a

significant step towards tackling challenging compressible turbulent flow problems of

practical interest. Future additions will include optimization of the ESFR schemes for

turbulence resolution, moving mesh capabilities, multigrid convergence acceleration,

and advanced turbulence modeling.



Chapter 3

Flux Reconstruction Schemes with

Corrected Fluxes Continuous in m

Derivatives

3.1 Introduction

The FR approach to high-order methods provides a unifying framework to analyze

and implement a large set of high-order schemes, including the nodal DG and SD

methods. The unification occurs through the formulation of flux correction functions.

The main appeal of FR is its differential formulation, which is ideal for highly-parallel

computational architectures. ESFR provides the added benefit of guaranteeing linear

stability while having variable dispersion and dissipation properties parameterized

by a single constant. Asthana [4] found optimal values for such constant and found

that the FR scheme could be optimized further if the scheme’s formulation were not

constrained by this parameter.

With the intention of providing a framework whereby more parameters are intro-

duced while linear stability is guaranteed, we formulate the Cm Flux Reconstruction

(CMFR) set of families of schemes. The main difference between ESFR and CMFR

is that the flux correction functions in CMFR are forced to be continuous among

elements in an arbitrary number of derivatives, while ESFR requires C0 and Cp+1

47
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continuity only –where p is the degree of the polynomial used to discretize the solu-

tion.

In this article we present the proof of linear stability of the CMFR set of families

of schemes, the derivation of C1FR –a FR scheme with C1 correction functions–, and

promising results for energy preservation of underresolved wavenumbers with C1FR.

3.2 Background

High-order numerical methods for unstructured grids promise to offer better accuracy

than low-order schemes for a comparable computational cost. Their relative lower

dispersion and dissipation make them prime candidates for use in LES [50]. Below

is a brief history on the developments in high-order numerical schemes that form the

foundations for this chapter.

The work of Reed and Hill [71] in the 70’s introduced the DG method to solve

PDEs in variational form. Cockburn and Shu formulated the DG method for conser-

vation laws and advanced its theoretical foundations [22, 21, 20, 25, 24]. As a way

to reduce the computational cost of the original DG scheme, researchers developed a

nodal variant. Hesthaven and Warburton give a through exposition of this method

in their book [34]. Kopriva and Kolias [43] developed a staggered grid method based

on the differential form of the equations. This method was later named SD and

was thoroughly studied by Liu et al. [47] and Wang et al. [92]. Wang [90] has also

introduced the popular spectral volume method.

Noting the similarities between nodal DG and the SD schemes, Huynh introduced

the FR approach to high-order methods [36, 37]. With this approach, it is possible

to analyze and implement multiple high-order schemes within a unifying framework,

including the SD method and a variant of nodal DG for the linear advection equation.

Furthermore, Huynh used the FR approach to create a variety of new high-order

schemes with different stability and accuracy properties. Vincent et al. [85], building

on Jameson’s proof of stability of the SD scheme [38], formulated a class of ESFR

schemes. These schemes are provably stable at all orders of accuracy for the linear

advection-diffusion equations [15]. Williams et al. and Castonguay et al. have proved
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this stability for all orders in tetrahedral [97] and triangular [18, 96] meshes.

In the p+ 1th order FR and ESFR schemes for the 1-dimensional linear advection

equation, the solution is represented by a polynomial of degree p and the flux is

represented by a polynomial of degree p + 1. In this article, we show that it is

possible to represent the flux with a polynomial of degree m – where m ≥ p + 1–,

evaluate such flux at the regular p + 1 points, retain the provable linear stability,

and obtain the expected m + 1th order convergence (limited only by interpolation

errors). An important part of the proof consists of ensuring that the flux polynomial

representations have continuous arbitrary derivatives at the flux points connecting

interfaces between elements, hence we call these schemes Cm Flux Reconstruction

(CMFR) schemes. This general framework recovers ESFR schemes and provides an

arbitrary number of parameters that can be used to optimize the dispersion and

dissipation properties of the schemes. The work by Asthana [4] shows how it is

possible to optimize the dispersion and dissipation properties of ESFR schemes. His

work inspired the formulation of a provably stable scheme with more optimizable

parameters, and thus the creation of the CMFR schemes presented here.

The article starts with the formulation of the CMFR schemes. We then present

the proof of stability for all orders of accuracy of the CMFR schemes for the linear

advection equation. The proof of stability requires the formulation of some “correc-

tion functions”, so the discussion continues with the general procedure for finding

these. To illustrate the process of scheme creation, we show the development of the

CMFR scheme that has fluxes continuous in the 0th and 1st derivatives: the C0,1FR

(or C1FR) scheme. We then perform numerical experiments that demonstrate the

schemes’ p+1th order convergence when we use an pth order polynomial to represent

the flux. The discussion is followed by showing how the CMFR schemes can preserve

the energy of high-frequency waves better than the nodal DG method at the price of

exchanging flux derivative information across element interfaces and additional work

in the simulation pre-processing stage. We conclude by showing potential avenues of

future research.
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3.3 The Cm Flux Reconstruction Approach

3.3.1 Preliminaries: the general advection equation

Suppose we would like to solve the one-dimensional conservation law

∂u

∂t
+
∂f

∂x
= 0 (3.1)

in the domain Ω. x is the spatial coordinate, t is time, u = u(x, t) is the conserved

scalar quantity (or solution), and f = f(u) is the flux.

To discretize the equation, let us partition Ω into N non-overlapping elements

Ωn = {x|xn < x < xn+1} and approximate both the solution u and flux f within

each Ωn with polynomials. In each element, solution points are the locations where

the solution values are stored and advanced; flux points in each element serve the

same purpose for the flux values. In the Flux Reconstruction family of schemes, the

solution and flux points are collocated in order to not have to compute additional

flux interpolations.

As is customary, let us map the approximated solution and flux from the physical

domain Ωn in x-coordinates to the reference domain Ω̂ = {ξ| − 1 < ξ < 1} in

ξ-coordinates. We can then write the approximations in the following form

û =
P+1∑
p=1

ûplp(ξ) (3.2)

f̂ =
P+1∑
p=1

f̂(ûp)lp(ξ) (3.3)

where P is the polynomial order used to represent the solution, lp is the Lagrange

polynomial that equals 1 at the solution/flux point p and 0 at the others, and ûp is the

solution value at the point p. Note that both u and f are potentially discontinuous

across elements. The circumflex ∧ means that the polynomial or entity below it is

written or defined in reference domain coordinates.

Understanding that Jn = ∂x
∂ξ

∣∣
n
, we can rewrite Eqn. (3.1) the reference domain
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coordinates
∂û

∂t
+

1

Jn

∂f̂

∂ξ
= 0 (3.4)

Let us clearly show the values of the desired mth order derivatives at the left

interfaces of the nth element in both the physical and reference domains.

f
∣∣I
L,n

= f̂
∣∣I
L,n

(3.5)

∂f

∂x

∣∣∣∣I
L,n

=
1

Jn

∂f̂

∂ξ

∣∣∣∣I
L,n

(3.6)

∂mf

∂xm

∣∣∣∣I
L,n

=
1

Jmn

∂mf̂

∂ξm

∣∣∣∣I
L,n

(3.7)

Here the symbol |In,L denotes that the quantity to its left is being evaluated at the

left (L) interface (I) of element n, and Jn represents the Jacobian of element n. Note

that the desired interface values ∂mf̂
∂ξm

∣∣I
L,n

and ∂mf̂
∂ξm

∣∣I
R,n

will be defined later on when

proving linear stability of the scheme.

It is important to note that

∂mf

∂ξm

∣∣∣∣I
R,n

=
∂mf

∂ξm

∣∣∣∣I
L,n+1

(3.8)

Eventually, we would like to add a polynomial to the flux in order to guarantee

continuity of arbitrary derivatives across elements. To that end, let us define the fol-

lowing correction constants at the left interface of element n –the correction constants
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at the right interface are defined in the same way by replacing L with R–

for c0 continuity: I0L,n
= f

∣∣I
L,n
− f

∣∣
L,n

= f̂
∣∣I
L,n
− f̂

∣∣
L,n

...

for cm continuity: ImL,n
=
∂mf

∂xm

∣∣∣∣I
L,n

− ∂mf

∂xm

∣∣∣∣
L,n

=
1

Jmn

(
∂mf̂

∂ξm

∣∣∣∣I
L,n

− ∂mf̂

∂ξm

∣∣∣∣
L,n

)
(3.9)

These constants are the difference between the desired flux derivative and the deriva-

tive of the flux polynomial at the interface of interest.

We can now introduce the correction functions that will enforce flux derivative

continuity across elements. To guarantee that we have full control over which deriva-

tives will be continuous at both the left (L) and right (R) interfaces at each element,

we set the following conditions on the correction functions gLi
(ξ) and gRi

(ξ) defined

in element n as follows:

∂jgLi

∂xj
(−1) = δij ;

∂jgLi

∂xj
(1) = 0

∂jgRi

∂xj
(−1) = 0 ;

∂jgRi

∂xj
(1) = δij

(3.10)

where δij is the Kronecker delta. i and j belong to the set of derivatives in which

we wish to have continuity. For example, if we desire flux continuity in the zeroth

and third derivatives, i, j ⊂ {0, 3}. Note that the correction function polynomials

must be of order greater than or equal to 2s, where s is the number of derivative

continuities desired, due to the existence of two constraints per correction function.

In the previous example, s = 2.

Putting all the definitions together, we can now define the corrected flux in element

n as

f̂ c = f̂ +
m∑
i=0

{
IiL,n

gLi
+ IiR,n

gRi

}
(3.11)
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where m is the highest derivative in which continuity is desired. The superscript c

is used to make it explicit that the quantity over which it appears has been made

continuous across element interfaces. In the example, m = 3, I1L,n
= I1R,n

= I2L,n
=

I2R,n
= 0. The semi-discrete form of the update step in element n is

dûp
dt

= − 1

Jn

[
∂f̂

∂ξ
(ξp) +

m∑
i=0

{
IiL,n

∂gLi

∂ξ
(ξp) + IiR,n

∂gRi

∂ξ
(ξp)

}]
(3.12)

for p = 1, . . . , P + 1. Note that the correction functions are being sampled at the

same points as the flux and solution, so the fact that we are using polynomials of high

orders as correction functions does not add computational complexity to the update

step. In vector form,

d
−→
û

dt
= − 1

Jn

−→∂f̂
∂ξ

+
m∑
i=0

{
IiL,n

−−→
∂gLi

∂ξ
+ IiR,n

−−→
∂gRi

∂ξ

} (3.13)

Here we see more clearly that the scheme maintains the desired computational

parallelizability of the Flux Reconstruction family of schemes, as the only element

specific values are the scalars Jn, IiR,n
and IiL,n

.

3.3.2 CMFR schemes for the general advection-diffusion equa-

tion

The extension of a FR scheme for the advection equation to the advection-diffusion

equation is straightforward. If we want to solve

∂u

∂t
+
∂f

∂x
+
∂2h

∂x2
= 0 (3.14)
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where f and h are functions of u, we can introduce an auxiliary variable q so the

equation becomes

∂u

∂t
+
∂q

∂x
= 0

q = f +
∂h

∂x

(3.15)

Note that in the linear case, h = −βu and f = au.

When solving any PDE, the CMFR schemes correct all functions dependent on u

whose first derivatives need to be found. In this general advection-diffusion case, q

and h need to be corrected following the form in Eqn. (3.11). The main difference

between this and the advection equation CMFR scheme is that in this case there are

two corrections necessary and the interface values IiL,n
, IiR,n

used to correct q will be

a function of q = f + ∂h
∂x

and not just f . The correction functions found for Eqn.

(3.11) remain exactly the same.

3.4 Linear stability of Cm continuous flux recon-

struction (f̂ = aû)

In this section we show that the CMFR schemes are stable in the 1-D linear advection

equation in the following Sobolev-type norm:

||u||2m =
N∑
n=1

∫ xn+1

xn

{
m∑
r=0

cr
2

(
∂ru

∂xr

)2
}
dx

=
N∑
n=1

m∑
r=0

cr

(
1

J2r
n

)∫ 1

−1

{
1

2

(
∂rû

∂ξr

)2
}
Jn · dξ

(3.16)

where cr for 0 ≤ r ≤ m are arbitrary constants. It is possible to find ranges of values

of each cr for which Eqn. (3.16) is a norm. As shown later in section 3.6.2, negative

values of cr are possible given that u is a polynomial. To establish stability, we need
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to show that

d

dt
||u||2m =

N∑
n=1

m∑
r=0

cr

(
1

J2r
n

)
d

dt

∫ 1

−1

{
1

2

(
∂rû

∂ξr

)2
}
Jn · dξ ≤ 0 (3.17)

To that end, consider the FR scheme in element n for linear advection:

dû

dt
= − 1

Jn

[
a
∂û

∂ξ
+

m∑
i=0

{
IiL,n

∂gLi

∂ξ
+ IiR,n

∂gRi

∂ξ

}]
(3.18)

To express Eqn. (3.16) in known terms, differentiate Eqn. (3.18) r times, where

0 ≤ r ≤ m, with respect to ξ; multiply by ∂rû
∂ξr

; and integrate from −1 to 1 to obtain

d

dt

∫ 1

−1

{
1

2

(
∂rû

∂ξr

)2
}
dξ = − 1

Jn
[¬ +  + ®] (3.19)

where

¬ = a

∫ 1

−1

1

2

∂

∂ξ

(
∂rû

∂ξr

)2

dξ =
a

2

[(
∂rû

∂ξr

)2 ∣∣∣∣
R,n

−
(
∂rû

∂ξr

)2 ∣∣∣∣
L,n

]
(3.20)

 =
m∑
i=0

IiL,n

∫ 1

−1

∂rû

∂ξr
· ∂

r+1gLi

∂ξr+1
dξ (3.21)

® =
m∑
i=0

IiR,n

∫ 1

−1

∂rû

∂ξr
· ∂

r+1gRi

∂ξr+1
dξ (3.22)

It is possible to simplify Eqn. (3.21) further. Integrating by parts,

 =
m∑
i=0

IiL,n

{∫ 1

−1

(
∂

∂ξ

[
∂rû

∂ξr
∂rgLi

∂ξr

]
− ∂rgLi

∂ξr
∂r+1û

∂ξr+1

)
dξ

}
(3.23)

 =
m∑
i=0

IiL,n

[
∂rû

∂ξr
∂rgLi

∂ξr

]1

−1

−
m∑
i=0

IiL,n

∫ 1

−1

∂rgLi

∂ξr
∂r+1û

∂ξr+1
dξ (3.24)
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By using the boundary conditions on gLi
given in Eqn. (3.10),

 = −IrL,n
Jrn
∂rû

∂ξr

∣∣∣∣
L,n

−
m∑
i=0

IiL,n

∫ 1

−1

∂rgLi

∂ξr
∂r+1û

∂ξr+1
dξ (3.25)

Proceeding similarly with term ®

® = IrR,n
Jrn
∂rû

∂ξr

∣∣∣∣
R,n

−
m∑
i=0

IiR,n

∫ 1

−1

∂rgRi

∂ξr
∂r+1û

∂ξr+1
dξ (3.26)

Note the difference in signs between  and ®.

By replacing the expression from Eqn. (3.19) into Eqn. (3.17), we obtain

d

dt
||u||2m =

N∑
n=1

{ m∑
r=0

cr

(
− 1

J2r
n

)
a

2

[(
∂rû

∂ξr

)2 ∣∣∣∣
R,n

−
(
∂rû

∂ξr

)2 ∣∣∣∣
L,n

]

+
m∑
r=0

cr

(
− 1

J2r
n

)[
−IrL,n

Jrn
∂rû

∂ξr

∣∣∣∣
L,n

−
m∑
i=0

IiL,n

∫ 1

−1

∂rgLi

∂ξr
∂r+1û

∂ξr+1
dξ

]

+
m∑
r=0

cr

(
− 1

J2r
n

)[
IrR,n

Jrn
∂rû

∂ξr

∣∣∣∣
R,n

−
m∑
i=0

IiR,n

∫ 1

−1

∂rgRi

∂ξr
∂r+1û

∂ξr+1
dξ

]}
(3.27)

To de-clutter the notation, let us define

∂r∗
∂ξr

= ∗(r)

and re-arrange Eqn. (3.27) to obtain

d

dt
||û||2m = a©+ b©+ c© (3.28)



CHAPTER 3. PROVABLY-STABLE CM FR SCHEMES 57

where

a© = −
N∑
n=1

{ m∑
r=0

cr
a

2

[
û(r)2

∣∣
R,n
− û(r)2

∣∣
L,n

]( 1

J2r
n

)
+

m∑
r=0

−crIrL,n
Jrnû

(r)
∣∣
L,n

(
1

J2r
n

)
+

m∑
r=0

crIrR,n
Jrnû

(r)
∣∣
R,n

(
1

J2r
n

)} (3.29)

b© =
N∑
n=1

{
m∑
r=0

cr

m∑
i=0

IiL,n

∫ 1

−1

gLi

(r)û(r+1)dξ

(
1

J2r
n

)}
(3.30)

c© =
N∑
n=1

{
m∑
r=0

cr

m∑
i=0

IiR,n

∫ 1

−1

gRi

(r)û(r+1)dξ

(
1

J2r
n

)}
(3.31)

We show stability of CMFR in the two following steps:

1. We show that for a selection of interface values IiL,n
and IiR,n

,

a© ≤ 0 (3.32)

2. We explain how to find functions gLi
and gRi

, for i = 0, . . . ,m satisfying condi-

tions (3.10) such that

b© = 0

c© = 0
(3.33)

for arbitrary cr, r = 1, . . . ,m.

By showing that expressions (3.32) and (3.33) hold, we conclude, from Eqn. (3.28)

that
d

dt
||û||m ≤ 0 (3.34)
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3.4.1 Part 1.

In this part of the proof, we aim to show that the term a© in Eqn. (3.28) is non-

positive.

Rearranging and factoring terms in a©, Eqn. (3.29) becomes

a© =−
N∑
n=1

{ m∑
r=0

cr

(
1

J2r
n

)(
a

2

[
û(r)2

∣∣
R,n
− û(r)2

∣∣
L,n

]
− IrL,n

Jrn · û(r)
∣∣
L,n

+ IrR,n
Jrn · û(r)

∣∣
R,n

)} (3.35)

Recall the definition of the correction constants IrL,n
and IrR,n

in element n from

Eqn. (3.9),

IrL,n
Jrn = f (r)

∣∣I
L,n
− f (r)

∣∣
L,n

IrR,n
Jrn = f (r)

∣∣I
R,n
− f (r)

∣∣
R,n

(3.36)

In the case of linear advection, f̂ δ = aû, so the correction constants become

IrL,n
Jrn = f̂ (r)

∣∣I
L,n
− aû(r)

∣∣
L,n

IrR,n
Jrn = f̂ (r)

∣∣I
R,n
− aû(r)

∣∣
R,n

(3.37)

Let us introduce the following generalized Roe flux at the interfaces, so

f̂ (r)
∣∣I
L,n

=
1

2

[
aû(r)

∣∣
L,n

+ aû(r)
∣∣
R,n−1

]
− 1− αr

2

∣∣ArL,n

∣∣ [û(r)
∣∣
L,n
− û(r)

∣∣
R,n−1

]
f̂ (r)
∣∣I
R,n

=
1

2

[
aû(r)

∣∣
L,n+1

+ aû(r)
∣∣
R,n

]
− 1− αr

2

∣∣ArR,n

∣∣ [û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

]
(3.38)

Where ArL,n
and ArR,n

are the Jacobian matrices corresponding to the rth deriva-

tive of the flux at the left (L) and right (R) interfaces of element n. Equivalently,
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ArL,n
=

[
d
(
f̂ (r)
)

d
(
û(r)
)]

L,n

ArR,n
=

[
d
(
f̂ (r)
)

d
(
û(r)
)]

R,n

(3.39)

Numerically, ArL,n
and ArR,n

can be evaluated for the linear advection equation

as

ArL,n
=
aû(r)

∣∣
L,n
− aû(r)

∣∣
R,n−1

û(r)
∣∣
L,n
− û(r)

∣∣
R,n−1

= a

ArR,n
=
aû(r)

∣∣
L,n+1

− aû(r)
∣∣
R,n

û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

= a

(3.40)

Note that ArL,n
= ArR,n−1

even for non-linear fluxes by construction.

Plugging these values of ArL,n
and ArR,n

into Eqn. (3.38), and substituting the

updated interface flux values f̂ (r)
∣∣I
L,n

and f̂ (r)
∣∣I
R,n

into the definition of the interface

correction values in Eqn. (3.37), we obtain

IrL,n
Jrn =

1

2

{
aû(r)

∣∣
L,n

+ aû(r)
∣∣
R,n−1

}
− 1− αr

2
|a|
{
û(r)
∣∣
L,n
− û(r)

∣∣
R,n−1

}
− aû(r)

∣∣
L,n

IrR,n
Jrn =

1

2

{
aû(r)

∣∣
L,n+1

+ aû(r)
∣∣
R,n

}
− 1− αr

2
|a|
{
û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

}
− aû(r)

∣∣
R,n

(3.41)
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Simplifying,

IrL,n
Jrn =

a

2

{
−û(r)

∣∣
L,n

+ û(r)
∣∣
R,n−1

}
− 1− αr

2
|a|
{
û(r)
∣∣
L,n
− û(r)

∣∣
R,n−1

}
IrR,n

Jrn =
a

2

{
û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

}
− 1− αr

2
|a|
{
û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

}
(3.42)

Using the updated values of IrL,n
and IrR,n

from Eqn. (3.42), Eqn. (3.35) becomes

a© = −
N∑
n=1

{ m∑
r=0

cr

(
1

J2r
n

)(
a

2

[
û(r)2

∣∣
R,n
− û(r)2

∣∣
L,n

]
−
[
a

2

{
−û(r)

∣∣
L,n

+ û(r)
∣∣
R,n−1

}
− 1− αr

2
|a|
{
û(r)
∣∣
L,n
− û(r)

∣∣
R,n−1

}]
· û(r)

∣∣
L,n

+

[
a

2

{
û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

}
− 1− αr

2
|a|
{
û(r)
∣∣
L,n+1

− û(r)
∣∣
R,n

}]
· û(r)

∣∣
R,n

)}
(3.43)

Distributing the
(

1
J2r
n

)
term to convert the derivatives with respect to ξ into
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derivatives with respect to x, and factoring out the a
2

term,

a© = −
N∑
n=1

{ m∑
r=0

cr
a

2

([
u(r)2

∣∣
R,n
− u(r)2

∣∣
L,n

]
−
[{
−u(r)

∣∣
L,n

+ u(r)
∣∣
R,n−1

}
− 1− αr

a
|a|
{
u(r)
∣∣
L,n
− u(r)

∣∣
R,n−1

}]
· u(r)

∣∣
L,n

+

[{
u(r)
∣∣
L,n+1

− u(r)
∣∣
R,n

}
− 1− αr

a
|a|
{
u(r)
∣∣
L,n+1

− u(r)
∣∣
R,n

}]
· u(r)

∣∣
R,n

)}
(3.44)

Note that all terms in Eqn. (3.44) are defined at element interfaces. More explic-

itly,

u(r)
∣∣
L,n

= un(xn)

u(r)
∣∣
R,n

= un(xn+1)
(3.45)

where un is the polynomial representing the solution in element n and xn is the loca-

tion of the nth interface in physical coordinates. Using the identities in Eqn. (3.45),

Eqn. (3.44) becomes

a© = −
N∑
n=1

{ m∑
r=0

cr
a

2

([{
u(r)
n (xn+1)

}2 −
{
u(r)
n (xn)

}2
]

−
[{
−u(r)

n (xn) + u
(r)
n−1(xn)

}
− 1− αr

a
|a|
{
u(r)
n (xn)− u(r)

n−1(xn)
}]
· u(r)

n (xn)

+

[{
u

(r)
n+1(xn+1)− u(r)

n (xn+1)
}

− 1− αr
a
|a|
{
u

(r)
n+1(xn+1)− u(r)

n (xn+1)
}]
· u(r)

n (xn+1)

)}
(3.46)
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Let us do the following substitutions to simplify algebraic manipulations

Bn =
m∑
r=0

cr
a

2

([
u

(r)
n−1(xn)

]2

+

[{
u(r)
n (xn)− u(r)

n−1(xn)
}

− 1− αr
a
|a|
{
u(r)
n (xn)− u(r)

n−1(xn)
}]
· u(r)

n−1(xn)

) (3.47)

Dn =
m∑
r=0

cr
a

2

(
−
[
u(r)
n (xn)

]2
−
[{
−u(r)

n (xn) + u
(r)
n−1(xn)

}
− 1− αr

a
|a|
{
u(r)
n (xn)− u(r)

n−1(xn)
}]
· u(r)

n (xn)

) (3.48)

We can then rewrite Eqn. (3.46) as

a© = −
N∑
n=1

{Bn+1 +Dn} (3.49)

Let us manipulate (3.49) to combine the two summations into one whose terms

have the same unshifted index

a© = −
N∑
n=1

Dn −
N∑
n=1

Bn+1

a© = −
N∑
n=1

Dn −
N+1∑
n=2

Bn

a© = −D1 −
N∑
n=2

Dn −
N∑
n=2

Bn −BN+1

a© = −D1 −
N∑
n=2

{Dn +Bn} −BN+1

(3.50)
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Note that various terms in Bn and Dn cancel when summed (compare (3.47) and

(3.48)). After doing such cancellations, Eqn. (3.46) becomes

a© = −D1 −
N∑
n=2

m∑
r=0

cr ·
1− αr

2
|a|
(
u

(r)
n−1(xn)− u(r)

n (xn)
)2

−BN+1 (3.51)

The value of the solution and its derivatives at x1 and xN+1 are set by the desired

boundary conditions. Both D1 and BN+1 depend exclusively on such pre-determined

conditions:

D1 = −
m∑
r=0

cr
a

2

[
u

(r)
1 (x1)

]2

(3.52)

BN+1 =
m∑
r=0

cr
a

2

[
u

(r)
N (xN+1)

]2

(3.53)

To not introduce/extract energy into/from the solution, let us set periodic bound-

ary conditions in all derivatives,

u
(r)
1 (x1) = u

(r)
N (xN+1) (3.54)

Consequently, D1 +BN+1 = 0, and Eqn. (3.46) becomes simply

a© = −
N∑
n=2

m∑
r=0

cr ·
1− αr

2
|a|
(
u

(r)
n−1(xn)− u(r)

n (xn)
)2

(3.55)

Knowing that the following holds,

cr ≥ 0

0 ≤ αr ≤ 1(
u

(r)
n−1(xn)− u(r)

n (xn)
)2

≥ 0 for 2 ≤ n ≤ N

(3.56)

we conclude that

a© ≤ 0 (3.57)
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We have shown that the term a© in Eqn. (3.28) is non-positive, concluding this

part of the proof.

3.4.2 Part 2.

We wish to find functions gLi
and gRi

, for i = 0, . . . ,m, which satisfy the boundary

conditions in Eqn. (3.10) and the stability conditions of Eqn. (3.33) ( b©= 0 and

c©= 0) for arbitrary cr, r = 1, . . . ,m.

We start by finding gLi
. Let us manipulate b© in Eqn. (3.30) to find restrictions

on gLi
,

b© =
N∑
n=1

{
m∑
r=0

[
cr

(
1

J2r
n

) m∑
i=0

(
IiL,n

∫ 1

−1

gLi

(r)û(r+1)dξ

)]}
= 0

=
N∑
n=1

{
m∑
i=0

[
IiL,n

m∑
r=0

(
cr

1

J2r
n

∫ 1

−1

gLi

(r)û(r+1)dξ

)]}
= 0

(3.58)

To satisfy Eqn. (3.58), either

m∑
i=0

(
IiL,n

∫ 1

−1

gLi

(r)û(r+1)dξ

)
= 0 (3.59)

or
m∑
r=0

(
cr

1

J2r
n

∫ 1

−1

gLi

(r)û(r+1)dξ

)
= 0 (3.60)

We then have two options for finding gLi
. Observing that the only term in the

summand in (3.60) that changes as the solution evolves is û itself, we realize that

a generic gLi
with special polynomial orthogonality properties would satisfy Eqn.

(3.58). As a result, we could pre-compute a non-changing gLi
to run a linearly stable

scheme. On the other hand, the option given by (3.59) obliges us to find gLi
at every

time-step because the scalar IiL,n
changes with the solution. Therefore, we choose to

find gLi
using (3.60).
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Rewriting û as a sum of scaled Lagrange polynomials, condition (3.60) becomes

P+1∑
p=1

ûp

m∑
r=0

cr
J2r
n

(∫ 1

−1

gLi

(r)lp
(r+1)dξ

)
= 0 (3.61)

This implies that
m∑
r=0

cr
J2r
n

∫ 1

−1

gLi

(r)lp
(r+1)dξ = 0 (3.62)

for p = 1, . . . , P + 1, (recall P is the order of the polynomial used to represent û).

Let us expand the Lagrange polynomials lp and the correction functions gLi
into

monomials,

lp =
P∑
j=0

ζpjξ
j

gLi
=

S∑
k=0

θikξ
k

(3.63)

Note that ζpj are known, unchanging scalars while θik are the unknowns we are trying

to find. S is the desired polynomial order of the correction function.

Eqn. (3.62) becomes

m∑
r=0

cr
J2r
n

∫ 1

−1

(
S∑
k=r

θik
k!

(k − r)!
ξk−r

)(
P∑

j=r+1

ζpj
j!

(j − r − 1)!
ξj−r−1

)
dξ = 0

After some algebraic manipulation, we arrive at the conditions that each gLi
must

satisfy so the CMFR scheme maintains linear stability:

m∑
r=0

cr
J2r
n

[
S∑
k=r

θik
k!

(k − r)!

(
P∑

j=r+1

ζpj
j!

(j − r − 1)!

∫ 1

−1

ξj+k−2r−1dξ

)]
= 0 (3.64)

Recall that i in θik indexes the correction function corresponding to each specific

derivative in which continuity is desired. p indexes each solution point in the reference

domain.
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With Eqn. (3.64) and the constraints given in Eqn. (3.10) we can construct a

system of equations to solve for gLi
in each element. More specifically, if we would

like to ensure s different flux continuities between elements, the boundary constraints

in Eqn. (3.10) produce 2s equations, and the conditions in Eqn. (3.64) produce P

equations (not necessarily all independent), where P is the order of the solution

representation û.

We can recover the ESFR scheme by ensuring continuity in the 0th and P + 1th

derivatives. These two desired flux continuities (s = 2) force the flux to be of order,

at least, P +1. This is the order of the correction functions suggested by Vincent [85].

The ESFR scheme is one of the cases in which Eqn. (3.62) produces P−1 independent

equations instead of P . This can be seen by the fact that the P + 1th and P + 2th

derivatives of a Lagrange polynomial lp of order P is zero.

Once we find gLi
, we find gRi

automatically by setting

gRi
= (−1)igLi

(−ξ) (3.65)

3.5 C1 linearly stable flux reconstruction family of

schemes

In this section, we illustrate the process of creating a scheme that ensures C1 flux

continuity to solve the advection and advection-diffusion equation. This scheme is

called C01FR, or C1FR. We use this notation because it is possible to create a scheme

whose reconstructed flux is continuous in the, say, zeroth and third derivatives without

enforcing continuity in the first and second derivatives, and such scheme would have

a C0,3 flux and be called C03FR. When a scheme ensures continuity in the 0, . . . ,M

derivatives of the flux, we call it CMFR to simplify the name, which could as well be

C012...MFR.
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3.5.1 C1FR for the linear advection equation

To create the scheme with C1 flux, we only need to find correction functions gLi
that

satisfy (3.64) and boundary conditions (3.10). Let c0 and c1 be non-zero in Eqn.

(3.64). Expanding the summation over r, we have the following P + 1 equations for

each i

c0

[
S∑
k=0

θik

(
P∑
j=1

ζpj · j ·
∫ 1

−1

ξj+k−1dξ

)]

+
c1

J2
n

[
S∑
k=1

kθik

(
P∑
j=2

ζpj · j · (j − 1) ·
∫ 1

−1

ξj+k−3dξ

)]
= 0

(3.66)

for p = 1, ..., P + 1.

Rearranging terms we obtain

P∑
j=1

ζpj

[ S∑
k=0

θik

(
c0 · j

∫ 1

−1

ξj+k−1dξ

+
c1

J2
n

kj · (j − 1)

∫ 1

−1

ξj+k−3dξ

)]
= 0

(3.67)

and, therefore we have the following P equations, where j = 1, . . . , P ,

S∑
k=0

θik

(
c0 · j

∫ 1

−1

ξj+k−1dξ +
c1

J2
n

kj · (j − 1)

∫ 1

−1

ξj+k−3dξ

)
= 0 (3.68)

We can evaluate the integral terms understanding that for positive integer q

∫ 1

−1

ξqdξ =

{
2
q+1

, q even

0 , q odd
(3.69)

Recalling the constraints on gLi
,

g
(j)
Li

(−1) = δijJ
j
n ; g

(j)
Li

(+1) = 0 (3.70)
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we can obtain additional equations for each θik. Specifically, for gL0 ,

S∑
k=0

θ0k(−1)k = 1
S∑
k=0

θ0k(1)k = 0

S∑
k=1

kθ0k(−1)k−1 = 0
S∑
k=1

kθ0k(1)k−1 = 0

(3.71)

and for gL1 ,

S∑
k=0

θ1k(−1)k = 0
S∑
k=0

θ1k(1)k = 0

S∑
k=1

kθ1k(−1)k−1 = Jn

S∑
k=1

kθ1k(1)k−1 = 0

(3.72)

From Eqn. (3.65), we can find gRi
by setting

gRi
= (−1)i

S∑
k=0

θik(−ξ)k =
S∑
k=0

θik(−1)i+kξk (3.73)

As a result, for each gLi
we have P + 4 equations. By setting S, the order of

the correction function, to be P + 3, we have P + 4 unknowns and can solve a

(P + 4) × (P + 4) system of equations to have a one-parameter, linearly stable, C1

flux, FR scheme.

Letting the polynomial order P be 3, we obtain the correction functions seen in

Fig. 3.1 for varying values of c1. We let c0 = 1 without loss of generality (as seen by

the fact that in Eqn. (3.68) only the ratio c1/c0 modifies the correction functions).

We note that the correction functions that ensure the flux is continuous in its first

derivative, namely gL1 and gR1 are unaffected by changes in c1. On the other hand,

gL0 and gR0 change dramatically with changes in c1. In section 3.6 we will see how

these variations affect dispersion and dissipation properties qualitatively.

In Fig. 3.2 we see the correction functions corresponding to the C012FR, or C2FR,

scheme with P = 3. It is interesting to note that changes in c1 affect gL0 and gR0
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only, changes in c2 affect gL1 and gR1 only, and gL2 and gR2 are not affected by c1 or

c2.
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Figure 3.1: Left and right correction functions for the C1FR scheme with P = 3, in
which the zeroth and first derivatives of the corrected flux are continuous

3.6 Numerical test cases

In this section we present solutions to the linear advection equation using the C1FR

scheme to show that it is stable and achieves the theoretical order of convergence

of P + 1 when the solution is discretized with an order P polynomial. In addition,

we present solutions to the linear advection-diffusion equation to demonstrate the

ability to change the scheme’s dispersion and dissipation properties while maintaining
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Figure 3.2: Left and right correction functions for the C2FR scheme with P = 3, in
which the zeroth, first, and second derivatives of the corrected flux are continuous

stability. As a test of the scheme’s ability to solve non-linear systems of equations,

solutions to Sod’s Shock Tube problem [72] and Einfeldt et al.’s 123 Problem [28] are

presented. The solution of these challenging, difficult to stabilize initial conditions

of the Euler equations would be a testament to the CMFR’s promise as a numerical

scheme with built-in stability.

As can be seen from the derivation of the C1FR scheme, the interface flux con-

stants α0 and α1, the norm constants c0 and c1, and the location of the solution points

at each element are variable. In this exposition, we will not modify the location of the

solution points and use the standard zeroes of the Legendre polynomials. We note
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that the values of c1 have a direct impact on the scheme’s dispersion and dissipa-

tion, while –as expected– the αr values affect the dissipation only. A future rigorous

Fourier analysis would reveal wiser choices for the c1 parameter.

In the case of the Euler equations, the solution points in an element are located

at the zeroes of the Legendre polynomials plus the end-points. It was found that

the absence of solution points at, or very close to, the edges of an element would de-

stabilize the scheme. This is to be expected, given that extrapolation of a polynomial

is prone to large over and under-shoots of the real values.

3.6.1 Order of Accuracy of C1FR

3.6.1.1 Setup

The 1-D experiments follow the procedure suggested by Vincent et al. [84] to estimate

a scheme’s order of accuracy isolating interpolation errors. We solve the linear ad-

vection equation with advection speed of a = 1. The domain was Ω = [−10, 10] and

was discretized in n = 10, 15, 24, 38, 60 equispaced elements of orders P = 1, 2, 3. The

initial condition was a sine wave with wavenumber k = 2π/20 ≈ 0.63. The advection

speed was 1 and fully upwinded fluxes α0 = 0, α1 = 0 in Eqn. (3.38)) were used. The

boundary conditions were periodic. The simulation advanced using a fourth order

RK scheme with a time-step of order 10−3.

The initial condition was advected for a full domain length, using either standard

nodal DG or C1FR, and the resulting solution was taken as the reference solution

uref . The wave was advected for a further full domain length to obtain the final

solution ufinal. The error was calculated by taking the L-2 norm of uref − ufinal.

3.6.1.2 Results and discussion

Figures 3.3,3.4, and 3.5 show the rate of convergence of the solution and its derivative

obtained by discretizing the solution wih polynomials of order P = 1, 2, 3, respectively.

The slopes of the best fit lines are presented in each figure’s caption.

The fact that we recover the expected nodal DG’s 2P + 1 order of convergence

found by Vincent et al. [84] for P = 1, 2, 3 validates the experimental setup. It is
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Figure 3.3: L-2 norm of error of advected sine wave and its derivative, e(2,0) and
e(2,1) respectively, versus number of elements, for linear advection with polynomial
discretization of order P = 1. Order of accuracy in solution: DG: 2.728, C1FR: 3.374.
Order of accuracy in first derivative: DG: 2.691, C1FR: 3.359.

interesting to note that C1FR retains FR’s even-odd order of convergence behavior:

when P is odd, the order of convergence is 2P + 1; while when P is even, the order

of convergence is 2P .

This numerical experiment does not replace a von Neumann analysis, but does

show that the scheme is stable, consistent, and maintains the desired order of accuracy.

Although we would not expect the scheme to maintain super-convergence properties

in real applications –as the interpolation errors are themselves of order P + 1–, this

experiment relieves worries about C1FR’s introducing lower order errors.

3.6.2 Advection-Diffusion Energy Preservation

Motivated by the fact that in turbulent simulations the preservation of energy at dif-

ferent scales (or wavenumbers) is of paramount importance, we wanted to explore the

potential benefit of having sets of families of stable numerical schemes with modifiable

dispersion and dissipation properties.

By solving the linear advection-diffusion equation we are able to assess how much

dissipation in different scales is due to numerics as opposed to the nature of the

equation.
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Figure 3.4: L-2 norm of error of advected sine wave and its derivative, e(2,0) and
e(2,1) respectively, versus number of elements, for linear advection with polynomial
discretization of order P = 2. Order of accuracy in solution: DG: 4.960, C1FR: 3.917
. Order of accuracy in first derivative: DG: 4.971, C1FR: 4.178.

3.6.2.1 Setup

In these numerical experiments we solve the linear advection-diffusion equation using

the C1FR and nodal DG schemes following the approach described by Huynh [37].

In essense, we re-write the diffusion-advection equation as a system of two first order

PDEs as follows

∂u

∂t
+
∂q

∂x
= 0

q − au+ κ
∂u

∂x
= 0

(3.74)

where a is the advection speed, κ is the diffusion coefficient, and q is a dummy

variable. The desired scheme is used to discretize the spatial differentiation.

In this section, we let a = 1, κ = 10−2. The domain was Ω = [−10, 10] and was

discretized in n = 20 equispaced elements of polynomial order P = 5. The boundary

conditions were periodic. The initial conditions were sine waves with low, medium,

and high wavenumbers. The wavenumbers were chosen relative to the Nyquist limit

of the discretization:

k = ρ(P + 1)π/h
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Figure 3.5: L-2 norm of error of advected sine wave and its derivative, e(2,0) and
e(2,1) respectively, versus number of elements, for linear advection with polynomial
discretization of order P = 3. Order of accuracy in solution: DG: 7.119, C1FR: 7.187.
Order of accuracy in first derivative: DG: 7.908, C1FR: 7.882.

where ρ is a non-dimensional constant, P + 1 is the number of solution points in each

element of polynomial degree P , and h is the size of the element. Note that when

ρ = 1, the Nyquist limit is reached exactly if the solution points are spaced evenly.

In our experiments, for the low wavenumber ρ = 0.25; medium wavenumber ρ =

0.5; high wavenumber ρ = 0.75. The fluxes were all fully upwinded and in the C1FR

scheme, c1 = −5 · 10−3. The solution is advanced with a standard RK4 time-stepping

scheme. A CFL of 0.3 is used for both schemes. At each timestep, we calculate the

square of the L-2 norm of the solution and its derivative, and compare it to the exact

corresponding values. ||u||(2,m) is the L-2 norm of the mth derivative of solution u.

3.6.2.2 Results and discussion

Fig. 3.6 shows that both schemes preserve the exact solution and derivative norms

of the low wavenumber. On the other hand, 3.8 shows that both schemes suffer from

aliasing and deviate significantly from the exact L-2 norms when the initial solution

is a high wavenumber. C1FR is somewhat closer to the exact values than nodal

DG both before and after the norms of the numerical solutions intersect the exact

solution’s L-2 norm.

Fig. 3.7 presents a promising result. C1FR preserves the correct L-2 norms of
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the solution while nodal DG’s numerical dissipation affects the energy content of the

wave. The L-2 norm of C1FR’s solution derivative oscillates around the exact value,

while nodal DG’s oscillates with similar magnitude trending further below the exact

values.
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Figure 3.6: Time history of norms of numerical solutions to the advection-diffusion
equation and their first derivative. Initial condition is a sine wave with low wavenum-
ber: k = 0.25(P + 1)π/h, P = 3, h = 1.
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Figure 3.7: Time history of norms of numerical solutions to the advection-diffusion
equation and their first derivative. Initial condition is a sine wave with medium
wavenumber: k = 0.5(P + 1)π/h, P = 3, h = 1.



CHAPTER 3. PROVABLY-STABLE CM FR SCHEMES 76

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

t

‖u
‖2 (2

,0
)

0 0.5 1 1.5 2 2.5
10

−1

10
0

10
1

10
2

10
3

10
4

t

‖u
‖2 (2

,1
)

 

 

Exact C1FR DG

Figure 3.8: Time history of norms of numerical solutions to the advection-diffusion
equation and their first derivative. Initial condition is a sine wave with high wavenum-
ber: k = 0.75(P + 1)π/h, P = 3, h = 1.

3.6.3 Solutions to the Euler Equations

3.6.3.1 Setup

Solving the 1-D Euler equations is a good test of a scheme’s robustness and potential

for solving challenging Navier-Stokes cases. In this section we compare the perfor-

mance of C1FR to that of unmodified DG. The equations in conservative form are

∂U

∂t
+
∂F

∂x
= 0 (3.75)

where

U =


ρ

ρu

E

 , F =


ρu

ρu2 + p

u(E + p)

 , (3.76)

E =

(
e+

1

2
u2

)
ρ, (3.77)

and

p = (γ − 1)

(
E − 1

2
ρu2

)
. (3.78)

γ, ρ, e are the usual symbols of ratio of specific heat capacities of the gas, density,

and specific internal energy, respectively.
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We can rewrite the system of equations so only three variables appear:

U =


U1

U2

U3

 , F =


U2

U2
2

U1
+ p

U2

U1
(U3 + p)

 , p = (γ − 1)

(
U3 −

1

2

U2
2

U1

)
(3.79)

It is possible to find exact solutions to problems with initial conditions of the form

ρ(x, 0) =

{
ρL if x < xref

ρR if x ≥ xref
,

p(x, 0) =

{
pL if x < xref

pR if x ≥ xref
, and (3.80)

u(x, 0) =

{
uL if x < xref

uR if x ≥ xref
.

where subscripts R,L mean the value is constant to the right and left, respectively,

of the point xref . A thorough description on how to find such exact solutions is in

Section 4.2 in [77].

High order methods are known to not perform well in the presence of shocks.

This is specially true when the initial condition is discontinuous. C1FR schemes are

not impervious to this problem and become unstable at any CFL with discontinuous

initial conditions such as those in Eqn. (3.80).

In order to produce a solution, the initial discontinuity is “thickened” by using a

hyperbolic tangent (tanh) function, as opposed to a Heaviside step function, to step

from the left value to the right value. For the following results,

y =
yR − yL

2
tanh(K(x− xref )) +

yR + yL
2

(3.81)

where y is the quantity being initialized (ρ, p, u) and K modifies the sharpness of

the step. When K →∞, we recover the Heaviside step function. A value of K = 90

produced a subjectively appropriate sharpness and allowed the numerical solution
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to develop shocks by itself. We are interested in seeing how the numerical scheme

handles the latter.

Even though the initial conditions were modified, it is still possible to observe

that the C1FR functions have enhanced built-in resilience relative to regular DG.

No modifications to the interface flux definitions were made for the following

results. It can be argued that a different selection of fluxes and the use of limiters

or filters could improve the results of both C1FR and DG. However, the goal of

the following exposition is not to present the “best” or a “better” numerical scheme

for the solution of the Euler equations, but rather to assess the behavior of a general

scheme like C1FR in a challenging situation that could appear in a flow of engineering

interest. The idea behind this goal is that if an untuned scheme performs well in a

challenging scenario, it is reasonable to expect the engineer will not need to spend

much time and effort tuning the simulation parameters to obtain a useful solution to

a problem.

3.6.3.2 Results and discussion

3.6.3.2.1 Sod’s Shock Tube

The initial conditions for this problem are, as shown in [72],

ρ(x, 0) =

{
1 if x < 0.5

0.123 if x ≥ 0.5
, p(x, 0) =

{
1 if x < 0.5

0.1 if x ≥ 0.5
, and u(x, 0) = 0.

Figure 3.9 plots the initial conditions with the “thickened” discontinuity.

Figure 3.10 shows the results to this problem at t = 0.25 s using C1FR. The flux

used in the 0th derivative is central (α0 = 1 in Eqn. (3.38)) and the flux used in

the 1st derivative is upwinded (α1 = 0 in Eqn. (3.38)). The correction functions are

created with c1 = 1e − 2 in Eqn. (3.68). The time-stepping method was RK4, and

the CFL for the C1FR and DG cases was 2.5e− 2. The timestep was set to

∆t =
CFLh

|a|+ |u|
(3.82)
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Figure 3.9: Sod’s Shock Tube Problem with “thickened” discontinuity at t = 0.

where h is the element size and |a| =
√
γ p
ρ

is the speed of sound.

The solution to the Shock Tube problem with C1FR exhibits oscillations at the

contact discontinuities, as expected. During the run of this simulation, the magnitude

of these oscillation increased and decreased. The maximum value of the internal

energy was not achieved. It is worth noting that slight oscillations are also present at

the plateaus. This is an unexpected result, as a central flux causes large oscillations

beyond the discontinuity points. It could be surmised that the upwinding of the first

derivative flux acted as a limiter.

Figure 3.11 shows the solution with regular, unfiltered, non-limited DG with the

upwinded Rusanov flux (α0 = 0 in Eqn. (3.38)).

The solution to the Shock Tube problem with DG exhibits larger oscillations

at the contact discontinuities than with C1FR. The maximum value of the internal

energy was achieved, albeit with very large oscillations at the discontinuity. Results

by Lv et al. [54] show that even some bounding strategies produce similar overshoot

magnitudes at the discontinuities. Visible oscillations are also present at the plateaus,

contrary to the results with C1FR. This behavior is expected; DG has been used
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Figure 3.10: Sod’s Shock Tube Problem at t = 0.25 solved with C1FR. Solid black
line is the exact solution to the original problem with discontinuous initial conditions.
Superimposed solid red line is the solution obtained with the C1FR scheme and
“thickened” discontinuity in the initial conditions shown in Figure 3.9. N = 71, P =
3, c1 = 1e− 2, α0 = 1, α1 = 0,CFL = 2.5e− 2
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Figure 3.11: Sod’s Shock Tube Problem at t = 0.25 solved with regular DG. Solid
black line is the exact solution to the original problem with discontinuous initial
conditions. Superimposed solid red line is the solution obtained with the DG scheme
and “thickened” discontinuity in the initial conditions shown in Figure 3.9. N =
70, P = 3, α0 = 0
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to solve the 1-D Euler equations neatly in the presence of shocks when combined

with limiters [89] or filters [3]. It could be surmised that the upwinding of the first

derivative flux acted as a limiter.

3.6.3.2.2 123 Problem

The 123 Problem was designed to reach conditions in which the Euler equations

cannot be linearized and, hence, the Roe Flux does not provide a physical answer. It

is important to note that this case is challenging for even low-order methods created

specifically for the Euler equations, as seen in [35], where the Harten-Lax-van Leer

and Einfeldt (HLLE) scheme [27] and Advection Upstream Splitting Method Plus

(AUSM+) [46] are compared. The initial conditions are, as shown in [28],

ρ(x, 0) = 1, p(x, 0) = 0.4, and u(x, 0) =

{ −2 if x < 0.5

2 if x ≥ 0.5
.

Figure 3.12 plots the initial conditions with the “thickened” discontinuity.

Figure 3.13 shows the results at t = 0.1 s using C1FR. The parameters for C1FR

in this case are the same as in Section 3.6.3.2.1, including the CFL.

Stable results with unmodified DG could not be obtained. The reader is directed

to Figure 3.4 in [89] and Figure 4.3 in [35] to appreciate that accurate solutions to

this problem are particularly difficult. [89] needed to design fluxes for DG to obtain

a reasonable result.

The most common challenge for the schemes in the aforementioned references is

that the internal energy at x = 0 is always over-estimated. For example, as shown

in [35], HLLE overestimates e(x = 0, t = 0.1) by 0.1; AUSM+ by 0.8; and [89] by

at least 0.2, even though Wang’s simulations used DG with P = 1 (second order

accurate in space).

Given how challenging this problem is, C1FR performed exceedingly well without

the use of limiters or filters. e(x = 0, t = 0.1) is overestimated by 0.1 and shows some

oscillations around x = 0. The plateau in u(x = 0, t = 0.1) is missed (likely because

of the “thickened” discontinuous initial conditions). This type of result suggests that
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Figure 3.12: 123 Problem with “thickened” discontinuity at t = 0 solved with C1FR.
Solid black line is the exact solution to the original problem with discontinuous initial
conditions. Superimposed solid red line is the solution obtained with the C1FR
scheme and “thickened” discontinuity in the initial conditions shown in Figure 3.12.
N = 71, P = 3, c1 = 1e− 2, α0 = 1, α1 = 0,CFL = 2.5e− 2
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Figure 3.13: 123 problem at t = 0.1. Solid black line is the exact solution. Superim-
posed solid red line is the solution obtained with the C1FR scheme.

C1FR could be robust enough for flows of engineering interest.

3.7 Conclusions

We have presented a natural extension of the FR approach. The CMFR schemes

guarantee 1-D linear stability and introduce an arbitrary number of parameters that

modify the scheme’s dispersive and dissipative properties. The addition of these

parameters require the representation of the reconstructed flux to be p+ 1 or higher,

where p is the order of the polynomial used to represent the conservative solution.

We have shown the derivation of the C1FR scheme, which has reconstructed fluxes

continuous in the zeroth and first derivatives across elements. This scheme, with

a particular selection of its free parameter, was able to preserve the energy of an

advected and diffused wave with a medium wavenumber better than the nodal DG

scheme. Certainly, this one example cannot be said to be generalizable. Nevertheless,

it calls for a Von Neumann analysis to assess the impact of the free parameter on
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the scheme’s properties. As the general CMFR schemes have arbitrarily many such

parameters, this analysis should be generalizable.

A major complication with the general CMFR schemes is that the correction

functions do depend on the element’s Jacobian, so they are not as general and element-

agnostic as those in the original FR schemes. However, as shown by Allaneau [2], it

is possible to formulate some FR schemes as filtered DG schemes without the need to

find the correction functions explicitly. A similar analysis with the FR schemes could

yield element-dependent filtered DG schemes whose properties can be understood or

optimized in the CMFR framework.

C1FR solutions to the 1-D Euler equations suggest that the scheme is more robust

than regular DG in problems likely to arise in engineering applications. This is

not to mean that solutions cannot be obtained with DG, but rather that the built-

in robustness in C1FR could allow it to provide good solutions to challenging flow

problems without the need of tuning, limiting, or filtering. Certainly, performing any

of the latter could enhance the accuracy and robustness of the scheme, as it does in

DG.

Future work should include numerical experiments in 2-D and 3-D using tensor

product elements to assess the extent to which the stability guarantees in 1-D translate

to other dimensions. In addition, it is still unclear if the degree of continuity of the

corrected fluxes could be beneficial in the solution of high order partial differential

equations like the heat equation.



Chapter 4

Local Fourier Spectral Filters

4.1 Introduction

Low-order methods are ubiquitous in industry and academia. Regardless of the mesh

quality and flow conditions, commercial CFD packages output an answer. It is up to

the informed user to decide if such answer is believable or accurate to her satisfaction.

This is not so true of high-order methods: they are still sensitive to starting conditions,

mesh quality, and the non-linearity of the flow, i.e. how high Re is. If any of these

parameters is not chosen well, the simulation will halt prematurely and no result,

not even a rough estimate, will be provided. Certainly, this is not acceptable in an

industrial setting.

The LFS filters being proposed in this chapter are an attempt at tackling the low

robustness of high-order methods from the perspective of flow physics, rather than

the classical frameworks of polynomial order reduction, artificial viscosity, or limiting.

Very promising results have been shown by Asthana and the author [3] for 1D non-

linear advection-diffusion problems and 2D inviscid high-Ma flows with quadrilateral,

unstructured, coarse grids, and polynomial discretizations of up to order 8. The

present paper extends their formulation to arbitrary elements in arbitrary dimensions

and shows results in high-Re flows without turbulence modeling.

It is well known that turbulent flows –which tend to be high-Re–, exhibit an

energy cascade: the energy from large scales is transferred to smaller scales due to

86
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natural dissipation. In very crude terms, large vortices become ever smaller vortices

until they reach dimensions proportional to the Kolmogorov length-scale [42]. This

phenomenon is well captured by the NS equations. Hence, a good NS solver would see

large scales become ever smaller. In general, low-order methods in grids not created

for DNS introduce enough numerical dissipation that the ever shrinking scales are

dissipated before they become aliased (or under-sampled).

We postulate that it is precisely this very natural energy cascade which is de-

stabilizing high-order numerical methods. Because high-order methods introduce

little numerical dissipation, the ever shrinking scales may not be dissipated before they

become aliased: they re-appear as larger scales that, naturally, become smaller later

on. This vicious cycle introduces non-physical energy into the flow until the simulation

is de-stabilized. Thus, removing the small scales before they become aliased would,

in theory, stabilize the solution.

LFS filters target scales relative to the element size, as the filtering operation

happens in the reference element. The smaller the element, the smaller the scale

being filtered. In addition, the filters help satisfy boundary conditions. The results

presented here show that the LFS filters can stabilize not only high-Re flows but also

moderate-Ma and low-Ma flows in coarse grids, which opens the door to using the

filters as pre-conditioners or in multigrid cycles. All simulations being presented ran

from start to finish without intervention.

Many stabilization schemes created for high-order methods have focused on shock-

capturing. A concise review of the shock-capturing literature can be seen in Section

3.4 in [83]. An AV-based shock capturing approach that has gained popularity because

of its ease of implementation and increase of robustness was suggested by Persson and

Peraire [69]. A similar approach for high-Re flows with turbulence modeling has been

proposed by Nguyen et al. [60]. Lodato [50] has used filtering in the formulation of

SGS models for LES with high-order SD schemes. His work inspired the formulation

of the filters presented here. A stabilization strategy based on optimization was

suggested by Guba et al. [33] shows great promise. A limiter-based stabilization

strategy easily implemented in DG-type methods was proposed by Kuzmin [44] and

Lv et al. [54].
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The main reason we decided to find a stabilization strategy that could be posed

as a matrix multiplication and requires a very local stencil arises from the fact that

HiFiLES performs best on GPUs. GPUs require a low-communication, highly-parallel

implementation with organized memory accesses and homogeneous computations.

Implementation of AV would have required elements adjacent to each other to share

information about the AV that each requires, leading to inevitable additional inter-

element communication.

Section 2.3.1 presented a general description of the FR method. Section 2.3.1.4

showed how this scheme relies on matrix multiplications and, hence, a filter that costs

two small matrix multiplications per element is ideal for FR. Section 4.2 describes the

properties being sought in the LFS filters and the mechanics of their implementation.

Section 4.3 provides visualizations of the filters and their effects on a polynomial

solution. Section 4.4 presents the results of 2D simulations, in unstructured coarse

grids, of flows where Re= 1e6. This Re number was selected because of the availability

of experimental data for the case of the circular cylinder and HiFiLES had not been

run at these Re numbers. In addition, Section 4.4.7 shows results that isolate the

effects of filtering from the effects of coarsening a grid or changing the spatial order of

accuracy to demonstrate that LFS filters preserve element-wise spectral properties.

4.2 Local Fourier Spectral Filters

4.2.1 Desired Properties

When designing the LFS Filters presented in this paper, we considered the following

properties as desirable:

1. The filter should have spectral interpretation so there is control over the physical

scales being smoothed

2. The filtering operation must have a local stencil: only interior and boundary

solution values can be used to filter the solution in the interior of the element
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3. The filter should preserve boundary conditions

4. Filtering the solution at the interior points should be influenced by the solution

values at the element’s boundary

5. The influence of a boundary point on the internal point being filtered should be

inversely proportional to the distance between them

6. To limit computational cost, the filter should be applied in the reference domain

and involve matrix-vector multiplications exclusively

7. Filtering strategy should be generalizable to any type of element in unstructured

grids

In the early stages of the filter design, we noted that Properties 3 and 4 could be

overly stringent, so we re-phrased them as the following, more relaxed condition:

8. If solution values at the boundary lie on a hyperplane in the space of spatial

coordinates and solution values, the filtering operation should bring the internal

solution values closer to such plane. In other words, if the solution values at the

boundaries can be determined from a linear function of their location, the filter

should bring the internal solution values closer to satisfying such linear function.

Condition 8 may not allow a filtered solution to satisfy the boundary conditions

always. Nevertheless, in the limit of infinite mesh refinement the solutions at the

boundary of every element will be coplanar, even in the presence of shocks in the

NS equations. Hence, Condition 8 satisfies conditions 3 and 4 asymptotically. This

re-formulation was inspired by the Essentially-Local-Extremum-Diminishing (ELED)

property of the Jameson-Schmidt-Turkel (JST) scheme[39] for finite volume methods.

Whether or not (some) LFS filters satisfy ELED properties shall be left for a future

study.

4.2.2 Mechanics of LFS Filters

The core idea of the LFS filtering technique is that the solution is filtered with a

matrix whose entries depend on the element interface values, the basis functions of
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the solution, and a selected Fourier filtering kernel.

Suppose we wish to filter the scalar field v inside an arbitrary element. This field

could be density, momentum in a specific direction, or energy. We can represent v,

as usual, as a weighted sum of basis functions.

v(ξξξ) =
Ns∑
i=1

viφi(ξξξ), (4.1)

where vi is the ithweight, ξξξ is a vector of coordinates in a reference domain, and φi(ξξξ)

is the ithbasis function.

The key component of the LFS technique is that the Fourier filtering operation

over the element is approximated at each internal point i with coordinates ξξξi. Suppose

we wish to use filtering kernel G(ξξξ) to filter v(ξξξ), then the filtered value at internal

point i becomes

v̄j = (G ∗ v)(ξξξj)

=

∫
Rd

G(ξξξj − ξξξ)v(ξξξ)dξξξ

=

∫
Rd

G(ξξξj − ξξξ)

(
Ns∑
i=1

viφi(ξξξ)

)
dξξξ

=
Ns∑
i=1

vi

∫
Rd

G(ξξξj − ξξξ)φi(ξξξ)dξξξ,

(4.2)

where Ω is the entire problem domain, not just the element domain, Ns is the

number of solution points, and the overbar means the quantity is filtered. Filtering

over the entire domain would be computationally expensive, but would certainly

smoothen the solution field and can be done while maintaining the order of accuracy

of the underlying numerical scheme[57, 79, 88]. In order to use only a local (element-

wise) stencil, it is possible to break the integration as follows∫
Rd

G(ξξξj − ξξξ)φi(ξξξ)dξξξ =

∫
Ωn

G(ξξξj − ξξξ)φi(ξξξ)dξξξ +

∫
Rd\Ωn

G(ξξξj − ξξξ)φi(ξξξ)dξξξ, (4.3)
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where Ωn is the domain of element n (where the φi values are known) and Ω\Ωn is the

complement of Ωn in Ω. As G and φi are defined in Ωn, it is possible to calculate the

first integral in Equation (4.3) analytically or via an adaptive quadrature algorithm

like quanc8 [29].

A design choice arises in defining φi in the domain Ω\Ωn. Asthana et al. [3] initially

decided to let φi equal a constant in 1D elements, and a combination of constant and

polynomial in quadrilaterals. Non-tensor-product elements became problematic for

this kind of formulation. This paper presents a more generic filter design method

based on the desired properties in Section 4.2.1.

Let us describe the mechanics of the two components of the integral in Equation

(4.3) in a subsection each. We can call the filter associated with the term
∫

Ωn
G(ξξξj −

ξξξ)φi(ξξξ)dξξξ “Internal Filtering Component” and the filter associated with the term∫
Rd\Ωn

G(ξξξj − ξξξ)φi(ξξξ)dξξξ “Boundary Filtering Component”.

The filtering operation being sought follows this format

~̄v = αT ~v + (1− α)B ~v∗, (4.4)

where T is the internal filtering component, as it acts on the solution at internal

points ~v, and B is the boundary filtering component, as it acts on the solution at

boundary points ~v∗, and α is a scalar between 0 and 1 that determines the relative

influence the internal and boundary components have on the internal solution values.

4.2.3 Internal Filtering Component

There are two steps to the creation of the internal filtering component T . First we

create the filtering matrix with the spectral interpretation, and then we normalize it

so if the quantity being filtered is a constant, the filter preserves the constant.

4.2.3.1 Matrix formation

It can be seen from the last line in Equation (4.2) that finding the vector of so-

lution values filtered with the internal component can be posed as a matrix-vector
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multiplication:
v̄1

v̄2

...

v̄Ns

 =


∫

Ωn
G(ξξξ1 − ξξξ)φ1(ξξξ)dξξξ

∫
Ωn
G(ξξξ1 − ξξξ)φ2(ξξξ)dξξξ · · ·

∫
Ωn
G(ξξξ1 − ξξξ)φNs(ξξξ)dξξξ∫

Ωn
G(ξξξ2 − ξξξ)φ1(ξξξ)dξξξ

∫
Ωn
G(ξξξ2 − ξξξ)φ2(ξξξ)dξξξ · · ·

∫
Ωn
G(ξξξ2 − ξξξ)φNs(ξξξ)dξξξ

...
...

. . .
...∫

Ωn
G(ξξξNs

− ξξξ)φ1(ξξξ)dξξξ
∫

Ωn
G(ξξξNs

− ξξξ)φ2(ξξξ)dξξξ · · ·
∫

Ωn
G(ξξξNs

− ξξξ)φNs(ξξξ)dξξξ




v1

v2

...

vNs

 .

More compactly,

~̄v = F~v (4.5)

we use over-arrow to denote column vectors. Interesting choices for G(ξξξ) depend on

a desired wavenumber threshold h:

I. Gaussian function:

G(ξξξ) = h exp (h||ξξξ||), (4.6)

where ||ξξξ|| is a measure of the length of ξξξ.

II. Multidimensional indicator function:

G(ξξξ) = hI[0,1](h||ξξξ||), (4.7)

where I[0,1](x) = 1 if 0 ≤ x ≤ 1, and 0 otherwise.

III. Multidimensional sharp-spectral function:

G(ξξξ) = h||ξξξ||−n/2Jn/2(h||ξξξ||), (4.8)

where Jα is a Bessel function of the first kind and n is the number of dimensions

of ξξξ.

In these functions, the larger the value of h, the thinner the filter is in physical

space, so the fewer wavenumbers it dampens. Note that as h→∞, Fij → φj(ξξξi), so

~̄v → ~v. The integrals in Equation (4.2.3.1) can be evaluated to arbitrary accuracy

with quanc8 [29] in a pre-processing stage.
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4.2.3.2 Enforcing Conservation of a Constant Quantity

The requirement to preserve a constant can be posed in an equation as

v̄i =
Ns∑
j=1

Fijvconst = vconst, (4.9)

where vconst is a constant scalar. As a result, each row of F must satisfy

Ns∑
j=1

Fij = 1, (4.10)

where i = 1, . . . , Ns. This constraint can be enforced by dividing each row of F with

the total sum of the row. More explicitly,

Tij =
Fij∑Ns

k=1Fik
, (4.11)

where the normalized matrix T is the internal filtering component in Equation (4.4).

4.2.3.3 Integration Domain

The normalization of the matrix introduces a bias. As the integration is being per-

formed in some reference domain Ωn, the integral
∫

Ωn
G(ξξξi − ξξξ)φj(ξξξ)dξξξ will tend to

have a greater value when ξξξi is well inside the reference element. This is more evi-

dent when using the multidimensional indicator function (shown in II) as the filtering

kernel.

To ameliorate this bias, we have selected to perform the integration in a reference

domain that is symmetric. With this precaution all integrals related to points close

to a domain edge have a similar magnitude, and thus the filtering operation does not

favor points close to some arbitrary edge over the others.

Figure 4.1 illustrates the potential introduction of bias in triangular elements that

use a right triangle as a reference element.

In practice, the basis functions φj(ξξξ) may be defined in non-symmetrical elements.

To simplify the evaluation of the integral, the definition of the norm in the filtering
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bc bc bc

bc bc

bc

(a) Equilateral triangle domain

bc bc bc

bc bc

bc

(b) Right triangle domain

Figure 4.1: Using the same filter width in two different domains introduces different
bias. The small, solid circles represent the location of solution points. The large
circles represent the filter width acting on two specific internal points in two different
domains. Integration is being performed in the area encompassed by the solid, straight
lines.
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Figure 4.2: Sketch of ellipsis ||ξξξ−ξξξ0||rt = 1 defined in the right triangle domain maps
to a circle in the equilateral triangle domain

kernel G(ξξξ) can be modified so the curve drawn by ||ξξξ−ξξξ0|| = 1 in the non-symmetric

reference element would map to a circle in a symmetric reference element.

In the case of a triangle, the basis functions are defined in a right triangle with

vertices [−1,−1], [1,−1], [−1, 1].

By defining the norm in this right triangle as follows

||ξξξ||2rt = ξξξ2
1 + ξξξ2

2 + ξξξ1ξξξ2, (4.12)

||ξξξ−ξξξ0||rt = 1 maps to a circle in the equilateral triangle with vertices [−1,−1], [1,−1], [0,
√

3−
1]. Figure 4.2 sketches this mapping. || · ||rt is the norm defined in the right triangle.

4.2.4 Boundary Filtering Component

Formulating the influence of boundary solution values on internal solution values as

a matrix is not so straightforward. The approach being suggested here is based on

some reasonable desired properties, but some choices are arbitrary.

The creation of this matrix proceeds as follows: place the boundary points and

the internal points in a symmetric domain, select an “influence” function with as

many unknowns as dimensions, find values for these unknowns such that Condition

8 is satisfied, and create the boundary filtering component.
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4.2.4.1 Ensuring Boundary Filtering Component Preserves Linearity of

the Solution at the Boundary (Condition 8)

In this sub-section, we seek to form matrix B in Equation 4.4. In this analysis, we

assume that α = 0 in Equation 4.4 so we can isolate B’s properties from those of T .

The preservation of linearity can be posed in the following way. Assume that

values ~v∗ at the boundaries are linear in space. More explicitly, for each boundary

point i = 1, . . . , Nf

v∗i = ξξξ∗i
T
~a+ b, (4.13)

where v∗i is the solution at the ithboundary point, ξξξ∗i are the coordinates of such

boundary point, ~a is a vector of constant coefficients, and b is a constant scalar. In

vector notation, we are assuming

~v∗ = ξξξ∗
T
~a+ ~b∗, (4.14)

where ~b∗ = b1[Nfx1] and ξξξ∗
T

is a matrix of dimensions Nf by Nd –number of dimen-

sions.

To satisfy Condition 8, we seek a matrix B such that, when ~v∗ satisfies Equation

4.14,

~̄v = B ~v∗ = ξξξT~a+~b, (4.15)

where ~b = b1[Nsx1] and ξξξT is a matrix of dimensions Ns by Nd. The ithrow of ξξξT is

ξξξi
T, the coordinates of the ithinternal point.

Therefore, we seek a matrix B such that

B
(
ξξξ∗

T
~a+ ~b∗

)
= ξξξT~a+~b. (4.16)

As a result, for general ξξξ∗
T

, ξξξT, and ~a,

Bξξξ∗T = ξξξT and B~b∗ = ~b (4.17)

=⇒
Nf∑
j=1

Bijξ∗jd = ξid and

Nf∑
j=1

Bij = 1 (4.18)
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Element type Ns Nd Nf

# of Equations:

Ns(Nd + 1)

# of Unkowns:

NsNf

Line p+ 1 1 2 2(p+ 1) 2(p+ 1)

Triangle 1
2
(p+ 1) · (p+ 2) 2 3(p+ 1) 3

2
(p+ 1) · (p+ 2) 3

2
(p+ 1)2 · (p+ 2)

Quadrilateral (p+ 1)2 2 4(p+ 1) 3(p+ 1)2 4(p+ 1)3

Tetrahedron 1
6
(p+ 1) · (p+ 2)

·(p+ 3)

3 41
2
(p+ 1) · (p+ 2) 2

3
(p+ 1) · (p+ 2)

·(p+ 3)

1
3
(p+ 1)2 · (p+ 2)2

·(p+ 3)

Pyramid 1
6
(p+ 1) · (p+ 2)

·(2p+ 3)

3 41
2
(p+ 1) · (p+ 2)

+(p+ 1)2

2
3
(p+ 1) · (p+ 2)

·(2p+ 3)

1
6
(p+ 1)2 · (p+ 2)

·(2p+ 3) · (3p+ 5)

Prism 1
2
(p+ 1)2 · (p+ 2) 3 21

2
(p+ 1) · (p+ 2)

+3(p+ 1)2

2(p+ 1)2 · (p+ 2) 1
2
(p+ 1)3 · (p+ 2)

·(4p+ 5)

Hexahedron (p+ 1)3 3 6(p+ 1)2 4(p+ 1)3 6(p+ 1)5

Table 4.1: Number of internal points Ns, number of boundary points Nf , and number
of equations and unknowns in matrix B for each type of element, assuming the solution
is being discretized with a polynomial of degree p

for all i = 1, . . . , Ns and d = 1, . . . , Nd. Where ξ∗jd is the dth coordinate of the jth

boundary point, and ξid is the dth coordinate of the ith internal point.

Equation 4.18 introduces Ns(Nd + 1) constraints for NsNf unknowns in B. Each

row in B needs to satisfy Nd + 1 equations. Table 4.1 shows the number of equa-

tions and unknowns for specific elements assuming that the solution within each is

represented by a polynomial of degree p ≥ 0.

All elements, except for the line element, have matrices B with more unknowns

than equations. This calls for a reduction of the number of unknowns in a strategic

way. This is achieved by invoking Condition 5: the farther away a boundary point is

from an internal point, the less influential it should be.
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4.2.4.2 Ensuring Influence of Boundary Points on Internal Points is In-

versely Proportional to their Distance (Condition 5)

Given this requirement and Equation (4.18), a reasonable design choice for each entry

in B is:

Bij =
gi
(
||ξξξi − ξξξ

∗
j ||
)−1

Nf∑
k=1

gi (||ξξξi − ξξξ
∗
k||)
−1

, (4.19)

where ξξξi is the location of the ithinternal point, ξξξ∗j is the location of the jthboundary

point, and gi(·) is a monotonically increasing function and gi(0) = 0. The norm

|| · || is ideally defined in a symmetric element, or a reformulation of a norm in an

non-symmetric element as in Equation (4.12). We note that the requirement that∑Nf

j=1 Bij = 1 is immediately satisfied regardless of the exact form of gi(·).
To avoid dividing by zero when ||ξξξi − ξξξ

∗
j || = 0, we can recast Equation (4.19) as

Bij =
1

1 + gi
(
||ξξξi − ξξξ

∗
j ||
) Nf∑
k=1
k 6=j

gi (||ξξξi − ξξξ
∗
k||)
−1

. (4.20)

This definition of B is now too stringent, so it is not clear if the conditions in Equation

(4.18) are satisfied for any selection of gi(·). Each row in B has Nd equations left to

satisfy.

By introducing Nd unknowns in the definition of gi(·) we can expect to satisfy the

remaining Nd equations per row. A choice made here is to let

gi(x) =

Nd∑
d=1

aidx
d, (4.21)

where x is a scalar, and aid are the unknowns to be found in each row i.

To find the values of aid, a regular non-linear minimization function can be invoked.

In this paper, we used the downhill simplex method by Nelder and Mead [59]. The

implementation in C++ was adapted from Jia [41]. The function being minimized
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Figure 4.3: Internal and boundary points in the reference triangular domain when
solution is represented with polynomial of degree 5 (p = 5). Black circles represent
the internal points. Red squares represent the boundary points.

for each row i of B is

Ji(ai1, . . . , a1Nd
) =

Nd∑
d=1

 Nf∑
j=1

Bijξ∗jd − ξid

2

, (4.22)

where Ji is the cost function to be minimized related to row i. In occasions, the

minimum of J does not reach machine zero. However, as it will be shown in the case

of triangles, B still behaves as desired.

4.3 Visualization of the LFS Filters in Triangular

Elements

In this section we present visualizations of the effect of the LFS filters on a polynomial

solution of degree 5 in a reference triangle.

In the plots that follow, the internal and boundary points are located as shown in

Figure 4.3.
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Figure 4.4: Solution values after filtering with internal component exclusively, ~̄v = T ~v,
where vi = sin (kξi1) + cos (kξi2), where k = 500. Hollow black circles show the
unfiltered solution at the interior points, transparent colored surface is the polynomial
representation of the unfiltered solution, filled black circles show the filtered values
of the solution at the interior points, and the meshed surface shows the polynomial
representation of the filtered solution.

4.3.1 Internal Filtering Components

To illustrate the effect of the internal filtering component, let us filter a solution using

matrix T exclusively. Figure 4.4 shows the result of filtering using a width of h = 10

in the 2-D sharp-spectral filtering kernel (III) with the modified norm (4.12).

It can be seen that the polynomial representation of the filtered values is smoother

than the polynomial representation of the unfiltered values while maintaining the

general shape and curvature.

4.3.2 Boundary Filtering Components

To illustrate the effect of the boundary filtering component, let us filter a solution

using matrix B exclusively. Figure 4.5 shows the result of filtering. Because only B
is acting on the solution, the unfiltered values of the solution at the internal points
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Figure 4.5: Solution values after filtering with boundary component exclusively, ~̄v =
B ~v∗, where ~v∗ = a~ξ∗1 + b~ξ∗2 + c for some constants a, b, c. Red squares show the
values of the solution at the boundaries, filled black circles show the filtered values
of the solution at the interior points, and the meshed surface shows the polynomial
representation of the solution.

are not plotted.

We have made all the values of the solution at the boundaries co-planar to illus-

trate how effectively Condition 8 is satisfied. The operation of filtering with B does

bring the filtered solution closer to a plane if the boundary values are co-planar.

Figure 4.6 illustrates how the boundary filtering component would behave in the

case the boundary values are not coplanar. It is interesting to note that close to

the corner (ξ1, ξ2) = (−1, 1), two boundary points with different values are close to

an internal point. The value of the filtered solution close to those boundary points

assumes a value that is close to the average of the two.

The polynomial interpolation of the filtered interior values shows that the closer

an interior point is to a boundary point, the more it will be influenced by such

boundary point. This causes the filtered values close to the boundaries to get closer

to the boundary values. This suggests that the boundary filtering component does in

fact help in bringing the solution closer to satisfying the boundary conditions while
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Figure 4.6: Solution values after filtering with boundary component exclusively, ~̄v =
B ~v∗, where v∗i = sin (kξ∗i1) + cos (kξ∗i2), k = 500. Red squares show the values of the
solution at the boundaries, filled black circles show the filtered values of the solution
at the interior points, and the meshed surface shows the polynomial representation
of the solution.

diminishing oscillations within the element.

4.3.3 Filtered Solutions

No filtering component is used solely by itself. The factor α in Equation 4.4 determines

how much weight to give to each component. Figure 4.7 illustrates the effect of the

boundary values on a fully filtered solution, when α = 0.8.

The internal filtering component reduces oscillations, while the boundary filtering

component brings the interior values closer to the boundary values. By placing the

boundary values on different planes, this effect becomes more evident.
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(a) β = −0.75
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(b) β = 0.75

Figure 4.7: Solution values after filtering with both internal and boundary compo-
nents, ~̄v = αT ~v + (1 − α)B ~v∗, where α = 0.8, vi = sin (kξi1) + cos (kξi2), k = 500,
~v∗ = β(−~ξ∗1 + ~ξ∗2). Hollow black circles show the unfiltered solution at the interior
points, transparent colored surface is the polynomial representation of the unfiltered
solution, filled black circles show the filtered values of the solution at the interior
points, hollow red squares show the value of the solution at the boundary points, and
the meshed surface shows the polynomial representation of the filtered solution.
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4.4 Results

To test the filters’ ability to increase general robustness of a high-order solver, we have

implemented their formulation in HiFiLES for triangular elements and performed sim-

ulations where the solver would become unstable otherwise. In addition, we analyze

the impact the filters have on a well-resolved 2-D simulation.

We wanted to test the increase of robustness in extreme cases of grid coarseness,

high Reynolds number, very low Ma, and moderate Ma. It is important to keep in

mind that in these cases we are not seeking very accurate results, but rather robustness

under all conditions. In order to popularize high-order methods, we need to make

them as robust as their low-order counterparts while retaining their benefit of higher

accuracy with less computational and setup effort.

The goal is to have a cheap stabilization strategy that preserves boundary condi-

tions for cases in which the mesh is not necessarily perfectly appropriate for resolving

the flow physics over the entire domain. This scenario arises frequently in industrial

applications, where the mesh would be properly refined at regions of interest and

coarse in regions that the engineer/scientist has decided are not as important for the

problem at hand.

All the simulations that follow were performed using HiFiLES[51]. 2-D NS equa-

tions are being solved, with varying values of Ma, Re, time-step (∆t), and filtering

frequency. The common parameters are:

1. Four-stage, five-step, low-storage Runge-Kutta time-stepping method (RK45) [14]

was used in the GPUs, and forward Euler was used when running a simulation in

CPUs

2. Polynomial solution representation (p) of order 4. Rusanov Flux as a Riemann

solver, and a Local Discontinuous Galerkin (LDG) [23] viscous flux.

3. Filters with width h = 10 and weighting parameter α = 0.8.

4. Starting from uniform flow
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Case Ma ∆t nF C̄D St
Flow time

(s) Time steps
Wall time

(hours)
Computing
Resources

1 0.2 5e− 5 1000 0.9256 0.1600 1.2069 1, 675, 700 12.65 1 4-core i7 CPU

2 0.077 5e− 5 1000 0.9314 0.1627 15.44 8, 252, 500 11.78 1 GPU

3 0.87 5e− 5 100 1.8383 0∗ 1.3833 8, 355, 256 12.63 1 GPU

4 0.0077 1.25e− 5 1000 1.18 0.20 53.44 11, 428, 000 59.51 2 GPUs

Table 4.2: Summary of simulation results. All cases were run at Re = 1e6 with
polynomial representation of order 4. Cases 1-3 were run using the mesh shown in
Figure 4.8. Case 4 was run using the mesh shown in Figure 4.13. Cases with 0∗

Strouhal number reached an artificial steady-state.

5. Characteristic boundary conditions at the inflow and outflow. No-slip, isothermal

wall boundary conditions at the cylinder’s surface.

6. All quantities non-dimensionalized with free-stream temperature and cylinder wall

temperature of 300, reference length of 1.

7. Flow properties: γ = 1.4, Prandtl number Pr = 0.72, gas constant R = 286.9 J
KgK

,

viscosity determined by Sutherland’s law with reference temperature of 291.15K

and reference viscosity of µ = 1.827e− 5

Results of interest are shown in Table 4.2. Accuracy of the results is not expected.

Nevertheless, as a reference, for the flow around a cylinder at Re= 1e6, C̄D ≈ 0.6

in [1], C̄D ≈ 0.4 in [73] and St ≈ 0.4 in [73]. It is important to note that at a high Re,

flow over a cylinder can result in a range of C̄D and St values, as the results become

highly sensitive to surface roughness and the level of free-stream turbulence [98]. The

experimental values of C̄D vary from 0.17 to 0.40, and those of St from 0.18 to 0.50.

Because of the results obtained in Case 4, it is good to keep in mind that for flow

around a cylinder at Re≈ 2e2, C̄D ≈ 1.18 in [73] and St ≈ 0.2 in [73].
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4.4.1 Stabilization Strategy

In the simulations presented here, the solution inside every element in the entire

domain is being filtered using Equation 4.4 every nF time-steps, where nF is an

integer to be determined. No sensor is being used to detect problems in the flow.

The frequency of filter application is being chosen in the following heuristic way:

1. Start the simulation with a specific time step and no filtering. Record at what

time-step the simulation ends prematurely (produces Nan values) and note the

value of the residuals at the last valid time-step. This step usually takes no more

than 1 minute.

2. To ensure the simulation is ending prematurely because of grid resolution problems

or presence of sharp gradients, and not because of an unstable time step, halve the

time step and run the simulation again.

3. Wait for the simulation to exit prematurely. If the residual at this last exit is close

in value to the previous exiting residual, the time step in Step 2 was stable. Set

the new time step to the time step in 2. Otherwise, record the exiting residual and

go back to Step 2.

4. Now that a stable time step has been found, apply the filter to the simulation

every nF time steps, where nF is about 90% of the number of imte-steps it took

the simulation to become unstable when unfiltered.

It would certainly be desirable to filter the solution at elements where a problem

is detected. Nevertheless, this heuristic approach has so far enabled the stabiliza-

tion of every case tried and de-couples the effectiveness of the filters from possible

shortcomings of aliasing/shock sensors.

4.4.2 Coarse mesh used in simulations

In these tests, we have used the very coarse triangular mesh with 714 elements shown

in Figure 4.8. The boundary layer is purposefully not resolved properly, as we would

like to induce aliasing errors in the unfiltered calculation.
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(a) Full mesh view (b) Close-up view

Figure 4.8: Unstructured, coarse mesh of a circular cylinder with 714 triangular
elements. Elements adjacent to the cylinder have quadratic edges.

4.4.3 Flow Around a Circular Cylinder, Re = 106,Ma = 0.2

This was the first simulation performed after implementing the filters in HiFiLES,

so the GPU implementation was not available then. The time-stepping scheme used

here is simply forward Euler.

Figure 4.9 shows “pretty pictures” resulting from the simulation. A video of this

simulation is linked here.

It is interesting to note that there is a very dissipative form of vortex shedding

occurring. The wake region is long, as in lower Re-number cases.

The simulation remained stable throughout and no human intervention was per-

formed while it was occurring, from the start in uniform flow to the moment it was

stopped.

From this experiment, it is unclear what portion of the numerical dissipation arises

from the coarse discretization and what portion is due to the filtering operation.

This case demonstrates that the stabilization strategy can work well in cases where

the mesh is improperly refined: they stabilize the solution and preserve the boundary

conditions.

https://youtu.be/b6kx8-jrK6Q
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(a) Full view (b) Close-up view

Figure 4.9: Flow past a cylinder. Re = 1e6,Ma = 0.2, p = 4

4.4.4 High Reynolds Number, Flow Around a Circular Cylin-

der, Re = 106,Ma = 0.077

This was the first simulation performed using GPUs. The lower Ma case was of

interest, as HiFiLES had not been able to run full simulations of flows with Ma< 0.2.

Figure 4.10 shows the colorful results for this case. Once again, the boundary

conditions are satisfied and the simulation is stabilized without further intervention.

The same time-step size was used as in the previous case in order to leave as many

parameters as possible unchanged.

A video of this simulation is linked here in real-time, and here at 0.1×. A feature

of these simulations that can only be appreciated by watching the linked videos is

that the filters have a visible effect on the regions where aliasing and instabilities

are expected: the rear part of the cylinder and the boundary layer. However, even

though the filters are being applied everywhere, smooth, well-resolved regions of the

flow look unchanged. To what extent the smooth regions remain unchanged has not

been quantified.

https://youtu.be/EymTVFzyPcA
https://youtu.be/8ZH349_GRUA
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(a) Full view (b) Close-up view

Figure 4.10: Flow past a cylinder. Re= 1e6, Ma = 0.077, p = 4

4.4.5 High Reynolds Number, Flow Around a Circular Cylin-

der, Re = 106,Ma = 0.87

This case encompasses all potential sources of instabilities in a high-order solver: poor

resolution, aliasing, and sharp gradients. Figure 4.11 shows plots of the solution. The

simulation shows a clear un-physical asymmetry due to the coarseness of the mesh.

Nevertheless, the no-slip boundary conditions are being satisfied and the shock is

present.

Because of the coarseness of the mesh and the high-gradients present in the so-

lution, quite a lot of filtering had to occur. This forced the flow to a “steady state”

and shown in the Residual and CD plots in Figure 4.12.

Values of CD and residual history are shown in Figure 4.12. The value of drag

“converges” after time-step 1.846e6. The residual in the energy conservation equation

also “converges” to a zig-zag pattern after this iteration. Figure 4.12b shows the

energy residual in the last few thousand time-steps. The sharp decrease in residual

magnitude reveals the time-steps at which the filter is being applied.
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(a) Full view (b) Close-up view

(c) Full view (d) Close-up view

Figure 4.11: Flow past a cylinder. Re= 1e6, Ma = 0.87, p = 4
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(b) Energy residual history over the last few thousand
time-steps

Figure 4.12: History of CD and energy residual of simulation in Figure 4.11

4.4.6 High Reynolds Number, Flow Around a Circular Cylin-

der, Re = 106,Ma = 0.0077, less-coarse mesh

This case was run with the more refined mesh seen in Figure 4.13. This mesh is

still coarse for standard turbulent computations. It is interesting to note that the

predicted CD = 1.18 and St = 0.20 match experimental results for Re= 2e2. This

phenomenon could imply that the grid of the stabilized simulation determines the

effective Reynolds number being simulated.

A real-time video of this simulation is linked here for Mach contours, and here for

vorticity strength contours. The filters stabilized this almost-incompressible simula-

tion without a problem.

4.4.7 Effects of Filtering in a Well-resolved Simulation

This Section shows that the use of LFS has effects similar to using artificial viscos-

ity. The previous results show that LFS filters can stabilize even the most extreme

of circumstances. What about the effect of using LFS filters in more reasonable

https://youtu.be/XSzWPn2fZ90
https://youtu.be/_zIbZgHjepY
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(a) Full mesh view (b) Close-up view

Figure 4.13: Unstructured, coarse mesh of a circular cylinder with 5,616 triangular
elements. Elements adjacent to the cylinder have quadratic edges.

(a) Full view (b) Close-up view

Figure 4.14: Flow past a cylinder. Re= 1e6, Ma = 0.0077, p = 4
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conditions?

The case of 2-D flow over a circular cylinder at Re = 3, 900, Ma = 0.1 has been

selected given the good amount of computational results for it. The thesis by Beaudan

[6] provides a very thorough discussion of the physics of the 3-D problem and results

of simulations with structured high-order methods.

At Re = 3, 900, a proper simulation of flow around a circular cylinder must be

3-D [10]. In fact, previous 2-D simulations of this case have shown the flow to be

highly asymmetric [10]. The aim of the simulations presented here is not to predict

experimental results, but rather to provide an understanding of how the flow will be

affected by the use of LFS filters. We will see that the LFS filters act as artificial

viscosity: flow that would otherwise exhibit chaotic behavior becomes periodic. A

similar transition from chaotic to periodic behavior due to added dissipation (via

turbulence modeling) has been observed in Unsteady RANS (URANS) simulations

[19].

4.4.7.1 Setup

We first generate a grid for a 2nd order method that resolves the y+ scales around

the cylinder. We then generate grids that maintain close to the same number of DoF

for a 5th and 6th spatial order of accuracy scheme. We perform the simulation of

Re= 3.9e3 past a circular cylinder using the 5th and 6th order schemes in the different

grids. The aims of this setup are to:

1. Have a well-resolved, baseline case

2. Visualize the effects of changing the spatial order of accuracy while maintaining

the number of DoF almost constant

3. Visualize the effects of using an under-resolved grid

4. Visualize the effects of using LFS filters in different grids with different spatial

orders of accuracy

A baseline case with a 6th order accurate in space scheme was attempted while

maintaining the same number of degrees of freedom as the case with the 2nd order
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scheme. However, the non-linearities within the relatively large elements elements

prevented the simulation from completing without intervention. However, a simu-

lation with filtering in the same grid with the same order of accuracy did run to

completion.

In addition, to compare the effects of filtering versus running a slightly unresolved

simulation, an unfiltered case of a slightly unresolved grid was run with a 5th order

scheme.

Finally, a well resolved, yet filtered, simulation with the 5th order scheme was

performed.

All cases ran with the same non-dimensional time-step of ∆t = 1e− 5 for a non-

dimensional time of t = 64.7. Given that Ma = 0.1, temperature of air simulated

was 300K, γ = 1.4, and the reference length was 1 meter, the physical time-step was

2.88e− 6 seconds and the physical simulation time was 1.86 seconds.

Filtering is performed with a value of h = 10 in Equation (4.8) and α = 0.8

in Equation (4.4). All conservation fields are filtered every 500 time-steps, so every

5e−2 non-dimensional time units, or every 1.44e−3 seconds. The filtering procedure

was kept the same to isolate the effects of filtering. In practice, a sensor should be

used in order to only filter the elements where instabilities could arise.

4.4.7.2 Results and Discussion

Table 4.3 summarizes all the cases run and provides hyperlinks to videos of the

resulting flow simulations. The value of St provided reflects the peak St of the lift

coefficient power spectrum.

All cases display the following phases: a pair of vortices strengthen behind the

cylinder, the vortices elongate and the drag coefficient decreases, asymmetries in the

solution trigger vortex shedding, the vortex growth and shedding process transitions

into a quasiperiodic (when not filtered) or periodic (when filtered) behavior.

Effect of changing the spatial order of accuracy while keeping the number of DoF

constant. Cases A (P = 1) and B (P = 4) keep close to the same number of DoF.

Their lift coefficient power spectra show that the main vortex shedding frequencies

are similar. Their drag coefficient figures reveal that Case B, as expected, experiences
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Case P Mesh Filtered Grid # DoF
CL and CD vs. t

Figure St Video

A 1 4.15 No 4.15 1,579,620 4.19 0.19 link

B 4 4.16 No 4.16 1,398,780 4.20 0.17 link

C 4 4.17 No 4.17 703,260 4.21 0.17 link

D 4 4.16 Yes 4.16 1,398,780 4.22 0.25 link

E 5 4.18 No 4.18 1,362,396 Unstable N/A N/A

F 5 4.18 Yes 4.18 1,362,396 4.23 0.21 link

G 5 4.16 Yes 4.16 1,958,292 4.24 0.25 link

Table 4.3: Simulation results that illustrate effect of filtering, changing meshes, and
varying the spatial order of accuracy. All cases were run at Ma = 0.1, Re= 3.9e3.

Figure 4.15: Mesh used in case A in Table 4.3. Contains 131,635 triangular elements
with second order edges.

https://www.youtube.com/watch?v=mtUrv-Aj_y0
https://www.youtube.com/watch?v=FpyAf08kz7A
https://www.youtube.com/watch?v=Tud7N1tmmrA
https://youtu.be/H1xKenZ2g6Q
https://www.youtube.com/watch?v=FMZBi285alk
https://www.youtube.com/watch?v=cmIKRwJXoME
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Figure 4.16: Mesh used in cases B, D, and G in Table 4.3. Contains 23,313 triangular
elements with second order edges.

Figure 4.17: Mesh used in case C in Table 4.3. Contains 11,721 triangular elements
with second order edges.



CHAPTER 4. LOCAL FOURIER SPECTRAL FILTERS 117

Figure 4.18: Mesh used in cases E and F in Table 4.3. Contains 16,219 triangular
elements with second order edges.

less numerical dissipation; the initial vortices detach later than in Case A. In addition,

the drag coefficient plot in Case B shows the presence of fairly small structures. Case

A seems to diffuse such structures. This effect can be seen in the corresponding videos

as well.

Effect of changing the number of DoF while maintaining the spatial order of accu-

racy constant. Cases B and C differ only in the mesh, Case C has about half as many

DoF as B. Both cases have a peak in the lift coefficient power spectrum at St= 0.17.

As can be seen in the videos and the drag coefficient plots, smaller structures are

present in Case B, however, Case C still captures smaller structures than A (P = 1)

while using half as many DoF and introduces less dissipation as demonstrated by

Case C’s delayed start of vortex shedding. The strength of the peak at St= 0.17

has decreased in Case C. This points to the fact that higher dissipation increases the

strength of shearing forces on the vortices, thus prompting earlier detachment and

smaller lift coefficient oscillation amplitude.

Effect of using LFS filters. Cases B and D differ only in the filtering. Case D is

filtered. The most salient effect of filtering is that the filtered solution starts shedding

vortices earlier, sheds vortices periodically (as opposed to quasiperiodically), and very
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Figure 4.19: Case A in Table 4.3 lift coefficient, St power spectrum, and drag coeffi-
cient. Case is not filtered and uses mesh 4.15 with P = 1.
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Figure 4.20: Case B in Table 4.3 lift coefficient, St power spectrum, and drag coeffi-
cient. Case is not filtered and uses mesh 4.16 with P = 4.
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Figure 4.21: Case C in Table 4.3 lift coefficient, St power spectrum, and drag coeffi-
cient. Case is not filtered and uses mesh 4.17 with P = 4.
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Figure 4.22: Case D in Table 4.3 lift coefficient, St power spectrum, and drag coeffi-
cient. Case is filtered and uses mesh 4.16 with P = 4.
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Figure 4.23: Case F in Table 4.3 lift coefficient, St power spectrum, and drag coeffi-
cient. Case is filtered and uses mesh 4.18 with P = 5.
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Figure 4.24: Case G in Table 4.3 lift coefficient, St power spectrum, and drag coeffi-
cient. Case is filtered and uses mesh 4.16 with P = 5.
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fine structures are almost non-existent. Indeed the flow looks like the case of Re= 100

in Figure 2.13, yet it predicts a higher mean drag coefficient. The power spectrum

of the lift coefficient has very little energy at high values of St. This is consistent

with the desire of filtering specific frequencies from the simulation. Unfortunately

the author could not find studies performed regarding the effect of artificial viscosity

on the properties of chaotic flows. Nevertheless, the behavior observed in the filtered

solution is consistent with what would be expected of a more viscous flow.

Effect of spatial order of accuracy on filtered simulations. Cases D and G are

both filtered and differ only in the spatial order of accuracy. The two simulations are

nearly identical. This result is very encouraging: the filtering formulation maintains

the spectral properties independent of the spatial order of accuracy. Recall that the

filtering matrices are different for the different schemes. This means that the LFS

filters’ spectral properties can be relied on when developing or using SGS models.

Effect of the mesh on filtered simulations. Cases F and G are both filtered and

differ only in the mesh used. The peak St number for the coarser grid, Case F, is

lower and its predicted average drag coefficient is lower. This result reflects the general

high dependence of simulation results on the grid quality. The grid used in Case F

could not produce a stable unfiltered simulation result even with smaller time-steps.

It is possible the shift in the drag coefficient is a reflection of the mesh’s improper

resolution. This shows that the LFS filters could in some cases provide stability at

the expense of accurate physics and confirms that LFS filters de-couple stability from

proper resolution.

4.4.7.3 Conclusion

In the simulations summarized in Table 4.3, it was possible to isolate the effects of

filtering on a Re= 3.9e3, Ma= 0.1 2-D flow past a circular cylinder. The unfiltered

solutions in different grids obtained with different spatial orders of accuracy displayed

minor differences: all unfiltered flows showed quasiperiodic flow with a peak lift coef-

ficient power at a frequency of St≈ 0.18. All filtered solutions exhibited an apparent

regime change: the flow became periodic and the peak lift coefficient power occurred

at a higher frequency.
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It could be surmised that the LFS filters showed the following strengths:

1. The scales filtered by LFS filters are relative to the element size and virtually

independent of the order of the basis polynomials, this could be leveraged in the

development of SGS models. This was demonstrated by the extremely similar

results of Cases D and G, which were performed in the same grid with different

orders of accuracy.

2. LFS filters de-couple stability from proper simulation resolution. This could be

very helpful when performing LES of turbulent flows. If proper resolution were

required for stability, such cases would need to have a resolution close to that

of DNS.

The following was identified as a potential drawback:

1. Application of LFS filters in the entirety of the simulation can cause an artificial

regime change consistent with what would be expected of increasing viscosity

in the flow. This calls for a selective application of LFS filters.

2. Because the spectral properties of LFS filters scale with the element size, results

of flows filtered throughout are grid dependent. Once again, the use of sensors

could ameliorate this grid dependence.

4.5 Conclusion

We have suggested a formulation of LFS filters for the stabilization of NS solvers

for unstructured grids that use a Finite Element Method-based approach to achieve

high order spatial discretizations. This includes DG, SD, Spectral Element, and

FR methods. The filtering operation can be performed at individual elements and

maintains a local stencil by using the element’s solution and boundary values. This

makes their implementation highly parallelizable.

The filters have been developed with the desired properties shown in Section 4.2.1.

In essence, the filters have a spectral interpretation and satisfy boundary conditions
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asymptotically. The computational cost of applying a filtering operation to a single

element is two small matrix multiplications. This low cost plus the compact stencil

makes the LFS filters a good alternative to using artificial dissipation. The main

advantage of LFS filters over artificial dissipation is that no modification needs to be

made to the partial differential equations being solved.

We have shown by implementing the LFS filters in HiFiLES that little to no tuning

is necessary to achieve stability in cases where instability is expected: coarse grids,

high-Re flows, high-Ma flows, and low-Ma flows. In all cases, the filters preserved the

boundary conditions, did not introduce visible flow anomalies, and allowed the flow

to develop its natural features. The summary of results can be seen in Table 4.2.

Because the filter has a physical interpretation, SGS modeling could be done with

the classical physical arguments. A similar type of filter has been used by Lodato[50]

in the SD scheme to do SGS modeling rather than to stabilize the solution.

The unexpected finding that the filters could bring simulations in very coarse

meshes to a pseudo-steady state opens up the possibility of using the LFS filters as

part of a pre-conditioning strategy or to start flow simulations from conditions more

developed than uniform flow.

All algorithms are publicly available in the HiFiLES repository under the branch

“LFS-filters”. The filters have been fully implemented for GPU/CPU computations

for triangular grids only.

4.6 Future Work

Implementation in 3D elements is straightforward and shall be the immediate course

of action. 3D high-Re simulations had not been possible in HiFiLES and it is expected

stabilization with LFS filters will enable them.

So far in all simulations the filters are acting on all elements in the domain with a

pre-determined frequency. A more surgical approach to filtering is needed. As shown

by Lv et al. [54], localized and selective direct solution manipulation (limiting by

multiplying the solution by a scalar while preserving the average within an element)

https://github.com/HiFiLES/HiFiLES-solver
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can preserve the overall order of accuracy. The implementation of an aliasing/shock

sensor is in order. Because the filters appear to have little effect on regions where the

solution is well resolved, it is acceptable if the sensor is too conservative. The sensor

proposed by Persson et al. [69] for general elements and by Sheshadri et al. [75] for

tensor-product elements are prime candidates.

The filters are modifying all conservation variables within an element, and very

likely key flow quantities like entropy and pressure are being disturbed. This distur-

bance needs to be quantified.

To prove the usefulness of the LFS filters in a challenging simulation environment,

it will be essential to assess their performance in a grid refined properly for the case

at hand.



Chapter 5

Conclusion

Spurring the adoption of high-order methods in industry is a process. Not only is

it necessary to show the advantages of these numerical schemes in regards to par-

allelizability, potential for scalability, and accuracy per degree of freedom, but also

demonstrate that they can be as robust and usable as the current industrial tools.

Through the release, maintenance, and support of HiFiLES, an open-source high-

order code, the ACL aims to increase usability. Feedback from fellow scientists and

engineers can only help improve the learning curve needed to use high-order meth-

ods for practical purposes. This dissertation has shown validation and verification

cases performed in HiFiLES to demonstrate its versatility and provide a guide for

researchers interested in performing similar computations.

The development of the CMFR schemes provides a path to tuning dissipation

and dispersion properties of a numerical scheme as a simulation progresses. Through

solution of challenging 1-D Euler Equations scenarios in 3.6.3, the robustness of C1FR

schemes seems to translate to non-linear systems of equations without additional

modifications to the flux computations, or the performance of limiting, or filtering.

The LFS filters provide a low-cost stabilization method for all Finite Element

Method-based high-order solvers to use in the cases where under-resolution and high

gradients can lead to instabilities. These two efforts aim to increase the robustness

in high-order methods.
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5.0.1 Future Work

Usability also relates to an intuitive user interface. I must acknowledge the current

workflow in HiFiLES is not very intuitive: the user creates a mesh in some program,

then selects parameters in an input file, then runs HiFiLES in the command line. Only

advanced users can, as of now, truly take advantage of the power of HiFiLES. Part of

future, post-graduation, efforts must include the implementation of a Graphical User

Interface. An excellent example of a starting point is provided by Gmsh [31].

The CMFR schemes have variable dispersion-dissipation properties with arbitrary

tuning parameters. It is still unclear how much effect each new parameter has on such

properties. A Von Neumann study along the lines of that performed by Vincent et

al. [84] would help quantify this.

The LFS filters show great promise for their use in industrial simulations with

unstructured grids. Interestingly, as shown by Asthana et al. [3], the stronger the

filter, the lower the order of the scheme; yet accuracy in high-order, filtered simula-

tions remains higher than in low-order simulations. LFS filters could provide a way

to perform grid refinement via polynomial refinement in very large elements without

worrying about instabilities. Understanding this phenomenon through grid refine-

ment studies and analysis would be an interesting future research path.
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